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1. Introduction

Gas dynamics is a science belonging to the branch of fluid dynamics concerned with the study of the motion of
gases and its effects on physical systems. This science is based on the principles of fluid mechanics and thermody-
namics and arises from studies of gas flows which include choked flows in nozzles and valves, shock waves around jets,
aerodynamic heating on atmospheric reentry vehicles and flow of gas fuel within a jet engine [1]. Gas dynamics equa-
tions are nonlinear partial differential equations (PDEs) based on the physical laws that exist in standard engineering
practice such as conservation of mass, conservation of momentum, conservation of energy, and so on [2]. These
mathematical models are particularly applicable to three types of nonlinear waves, namely, shock fronts, rarefactions
and contact discontinuities [3]. Gas dynamics equations (GDEs) have generated much interest in the literature and
have been solved by means of a variety of methods which have included, but not limited to, Laplace homotopy per-
turbation method (LHPM) [4, 5], fractional natural decomposition method (FNDM) [6], fractional reduced differential
transform method (FRDTM) [3], new integral projected differential transform method (NIPDTM) [7] and homotopy
perturbation method with natural transform (NHPM) [8].

This paper applies the semi analytic iterative method (SAIM), first proposed by Temimi and Ansari [10], to the solution
of the classical gas dynamics equation. This method has been used for solving different types of linear and nonlin-
ear ordinary differential equations, PDEs and higher-order integrodifferential equations [10–12]. More recently it has
been applied to solution of the Korteweg-de Vries (KdV) equation [13]. To the best of the author’s knowledge, this
method has not been applied to the solution of the one-dimensional classical gas dynamics equation.

Consider the fractional nonlinear gas dynamics equation

Dα
t u +uux −u(1−u) = f (x, t ), t > 0, −∞< x <∞, (1)

∗ E-mail address(es): ckasumo@gmail.com

1

http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:ckasumo@gmail.com


2 On Analytical Solutions of the Classical Gas Dynamics Equation

for 0 <α≤ 1, subject to the initial condition

u(x,0) = h(x), (2)

where t is the time, x is the spatial coordinate, u(x, t ) is the probability density function and α is a parameter de-
scribing the order of the time-fractional derivatives. In the case α = 1, Eq. (1) reduces to the classical nonlinear gas
dynamics equation (GDE)

ut +uux −u(1−u) = f (x, t ), t > 0, (3)

which is the focus of this paper.

The rest of the paper is organized as follows: Section 2 describes the proposed method of solution. In Section 3 the
results of numerical experiments based on a selection of test problems are presented and compared with the exact
solution and solutions from previous methods used in the literature and Section 4 offers some conclusions.

2. Description of the Method

The semi analytic iterative method (SAIM) which we propose to use in the solution of gas dynamics equations was
used by Yassein [12] to solve higher order integro-differential equations and by Yassein and Aswhad [13] to solve KdV
equations. The method was also used by Kasumo [14, 15] in the solution of the Klein-Gordon, Korteweg-de Vries and
Burgers equations. This method uses an iterative approach together with analytical computations to provide a so-
lution of a modified reformulated linear problem. The SAIM was inspired by the homotopy analysis method (HAM)
which is a general approximate analytical approach for obtaining convergent series solutions of strongly nonlinear
problems [11]. The SAIM is an efficient, reliable and powerful iterative scheme that offers several advantages over ex-
isting methods such as Picard’s successive approximations method (SAM), He’s variational iteration method (VIM) and
the Adomian decomposition method (ADM). It is very easy to implement since it avoids the calculation of Adomian
polynomials for the nonlinear term in the ADM or Lagrange multipliers in the VIM, thus demanding less computa-
tional work [16]. In this paper we propose to use the SAIM to solve the classical GDE of the form (3), with the initial
condition (2). Eq. (3) can be expressed as

Lu +Nu = f (x, t ), (4)

with the condition B
(
u, ∂u

∂t

)
= 0, where Lu = ut , Nu = uux −u(1−u), f (x, t ) is the source term and B is the boundary

operator. Assuming that u0(x, t ) is an initial approximation of the solution u(x, t ), we take it to be the solution of the
equation

L[u0(x, t )] = 0, (5)

with B
(
u0, ∂u0

∂t

)
= 0. Note that

u0(x, t ) = u(x,0) = h(x).

To generate the next iteration to the solution, we solve the equation

L[u1(x, t )] =−N [u0(x, t )]+ f (x, t ) (6)

with B
(
u1, ∂u1

∂t

)
= 0. Continuing in this manner leads to a simple iterative procedure which is effectively the solution

of a linear set of problems, i.e.,

L[un+1(x, t )] =−N [un(x, t )]+ f (x, t ), (7)

with B
(
un+1, ∂un+1

∂t

)
= 0, from which the general iterative relation for solving the standard GDE (3) is

un+1(x, t ) = un+1(x,0)+L−1 {−N [un(x, t )]+ f (x, t )
}

, (8)

where L−1 = ∫ t
0 (·)d s. Thus, the solution to the problem (3) with condition (2) is given by

u(x, t ) = lim
n→∞un(x, t ).

Note that if f (x, t ) = 0, then the GDE is homogeneous and is solved using the iterative scheme

un+1(x, t ) = un+1(x,0)+L−1 {−N [un(x, t )]} . (9)
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3. Numerical Examples and Discussion

In this section, we illustrate the SAIM by considering three numerical examples of the classical GDE to demonstrate
the applicability of the method, as well as to validate its reliability and efficiency. All the computations associated
with these examples were performed using a Samsung Series 3 PC with an Intel Celeron CPU 847 at 1.10 GHz with 6.0
GB internal memory and 64-bit operating system (Windows 8). The figures were constructed using MATLAB R2016a.
The results are presented in tables and figures accompanying the discussion.

Example 3.1.
Consider the homogeneous GDE [3, 7]:

ut +uux −u(1−u) = 0, (10)

subject to the initial condition

u(x,0) = e−x .

This GDE has exact solution u(x, t ) = et−x which grows exponentially with time t . To solve (10) using the SAIM, we
rewrite it in operator-theoretic form as

Lu +Nu = 0, (11)

where Lu = ut and Nu = uux −u(1−u). The initial approximation u0(x, t ) is obtained by solving the equation

L[u0(x, t )] = 0, with u0(x,0) = e−x . (12)

Using the initial condition, the solution of the primary problem is

u0(x, t ) = u0(x,0) = e−x .

The general recursive relation for solving (10) is

L[un+1(x, t )] =−N [un(x, t )], with un+1(x,0) = e−x , (13)

that is,

un+1(x, t ) = un+1(x,0)+
∫ t

0

[−ununx +un(1−un)
]

d s. (14)

From the recursive relation, we have the approximations

u0(x, t ) = e−x

u1(x, t ) = e−x −
∫ t

0

[
u0u0x −u0(1−u0)

]
d s = e−x (1+ t )

u2(x, t ) = e−x −
∫ t

0

[
u1u1x −u1(1−u1)

]
d s = e−x

(
1+ t + t 2

2

)
u3(x, t ) = e−x −

∫ t

0

[
u2u2x −u2(1−u2)

]
d s = e−x

(
1+ t + t 2

2
+ t 3

6

)
and so on. Thus, the solution is

u(x, t ) = e−x
(
1+ t + t 2

2!
+ t 3

3!
+·· ·

)
= e−x et = et−x

which is the exact solution of the GDE (10), the same result obtained by FRDTM [3], LHPM [4] and NHPM [8, 9]. The
approximate solutions from the SAIM are close to the exact solutions at the seventh term and are shown in Table 1
and Fig. 1. The absolute errors are also given and it can be seen that they are reducing as x increases.
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Table 1. Comparison of Exact and Approximate Solutions from SAIM for Example 3.1

x t u(x, t ) uSAIM(x, t ) e = |u −uSAIM|
0.0 1.00 2.718281828459050 2.718055555555560 0.000226272903490

0.1 1.00 2.459603111156950 2.459398370967180 0.000204740189770

0.2 1.00 2.225540928492470 2.225355671907790 0.000185256584680

0.3 1.00 2.013752707470480 2.013585080380720 0.000167627089760

0.4 1.00 1.822118800390510 1.821967125127430 0.000151675263080

0.5 1.00 1.648721270700130 1.648584029246700 0.000137241453430

0.6 1.00 1.491824697641270 1.491700516438900 0.000124181202370

0.7 1.00 1.349858807576000 1.349746443777480 0.000112363798520

0.8 1.00 1.221402758160170 1.221301087190840 0.000101670969330

0.9 1.00 1.105170918075650 1.105078922378270 0.000091995697380

1.0 1.00 1.000000000000000 0.999916758850712 0.000083241149288
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Fig. 1. (a) Comparison of exact and SAIM solutions for the GDE in Example 3.1 for 0 ≤ x, y ≤ 1 and a fixed t = 1; (b) Space-time
surface plot for 0 ≤ x, t ≤ 1; (c) Comparison of SAIM solutions at different values of t ; (d) Absolute errors between the exact and
SAIM solutions

Example 3.2.
Consider the homogeneous GDE [3, 7]:

ut +uux −u(1−u) ln a = 0, (15)

subject to the initial condition

u(x,0) = a−x .

The exact solution of (15) is u(x, t ) = at−x . Rewriting (15) as

Lu =−Nu,
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where Lu = ut , Nu = uux −u(1−u) ln a, the general recursive relation is given by

L[un+1(x, t )] =−N [un(x, t )], with un+1(x,0) = a−x . (16)

We use the iteration

un+1(x, t ) = un+1(x,0)−
∫ t

0

[
ununx −un(1−un)

]
d s (17)

to obtain the successive approximations

u0(x, t ) = a−x

u1(x, t ) = a−x −
∫ t

0

[
u0u0x −u0(1−u0)

]
d s = a−x (1+ t ln a)

u2(x, t ) = a−x −
∫ t

0

[
u1u1x −u1(1−u1)

]
d s = a−x

(
1+ t ln a + (t ln a)2

2

)
u3(x, t ) = a−x +

∫ t

0

[
u2u2x −u2(1−u2)

]
d s = a−x

(
1+ t ln a + (t ln a)2

2
+ (t ln a)3

6

)
and so on, leading to the solution

u(x, t ) = a−x
(
1+ t ln a + (t ln a)2

2!
+ (t ln a)3

3!
· · ·+

)
= a−x et ln a = at−x

which is the exact solution also obtained using the FRDTM [3] and the NIPDTM [7]. Table 2 compares the approximate
results for t = 1 up to the eighth term with the exact results. Fig. 2(a) shows the results for different values of a =
10, 20, 30, 40 for 0 ≤ x ≤ 1 and t = 1 and Fig. 2(b) is a space-time surface plot of the SAIM solution at a = 10.

Table 2. Comparison of Exact and Approximate Solutions from SAIM for Example 3.2

x t u(x, t ) uSAIM(x, t ) e = |u −uSAIM|
0.0 1.00 10.000000000 9.973936032 0.026063968

0.1 1.00 7.943282347 7.922579002 0.020703345

0.2 1.00 6.309573445 6.293128193 0.016445252

0.3 1.00 5.011872336 4.998809408 0.013062928

0.4 1.00 3.981071706 3.970695453 0.010376253

0.5 1.00 3.162277660 3.154035510 0.008242150

0.6 1.00 2.511886432 2.505339459 0.006546973

0.7 1.00 1.995262315 1.990061870 0.005200445

0.8 1.00 1.584893192 1.580762332 0.004130860

0.9 1.00 1.258925412 1.255644153 0.003281259

1.0 1.00 1.000000000 0.997393603 0.002606397

Example 3.3.
Consider the nonhomogeneous GDE

ut +uux −u(1−u) =−et−x , (18)

subject to the initial condition

u(x,0) = 1−e−x

and having exact solution u(x, t ) = 1−et−x [3, 17, 18].

In operator-theoretic form, Eq. (18) is expressed as

Lu +Nu = f (x, t ),

where, Lu = ut , Nu = uux −u(1−u) and f (x, t ) = −et−x . Since the primary problem Lu0 = 0, with u0(x,0) = 1−e−x ,
has a solution u0(x, t ) = 1−e−x , Eq. (18) can be solved using the general iterative scheme

un+1(x, t ) = un+1(x,0)+
∫ t

0

[−ununx +un(1−un)−es−x]
d s.
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Fig. 2. (a) Comparison of exact and SAIM solutions for the GDE in Example 3.2 for 0 ≤ x ≤ 1 and t = 1 at different values of a; (b)
Space-time surface plot for a = 10 and 0 ≤ x, t ≤ 1

Thus, the first four approximations are

u0(x, t ) = 1−e−x

u1(x, t ) = 1−e−x +
∫ t

0

[−u0u0x +u0(1−u0)−es−x]
d s = 1−et−x

u2(x, t ) = 1−e−x +
∫ t

0

[−u1u1x +u1(1−u1)−es−x]
d s = 1−et−x

...

un+1(x, t ) = 1−et−x , n ≥ 1

Thus, the solution to (18) is

u(x, t ) = 1−et−x ,

which is the exact solution for the given gas dynamics equation. This solution was also obtained using the FRDTM [3],
NHPM [8, 9], q-HAM [17] and ADM [18]. Fig. 3 compares the results from the SAIM with the exact solution for t = 1
and 0 ≤ x ≤ 1.
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Fig. 3. (a) Comparison of exact and SAIM solutions for the GDE in Example 3.3 for 0 ≤ x ≤ 1 and t = 1; (b) Space-time surface plot
for 0 ≤ x, t ≤ 1

4. Conclusion

This paper has used the semi analytic iterative method to obtain exact or closed-form solutions to the classical gas
dynamics equation. The results show the ability of this method to produce exact to near-exact solutions to nonlinear
GDEs and has confirmed the suitability of this method for solving these and other types of nonlinear PDEs.
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