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1. Introduction

The biological population model plays an important role in the biological sciences in the interpretation of the
spreading rate of viruses and parasites as well as in the identification of fragile species within an ecosystem. This
model, which arises in many important physical phenomena, has been solved using a variety of methods which
include the variational iteration method [1], the Adomian decomposition method [2], the homotopy perturbation
method [3] and homotopy perturbation transform method [4], to mention but a few.

This paper exploits the well-documented accuracy of the semi analytic iterative method (SAIM), first proposed by
Temimi and Ansari [5], to find solutions to the standard biological population model (BPM). This method has been
used for solving all kinds of linear and nonlinear ordinary and partial differential equations, as well as higher-order
integrodifferential equations [5–7]. More recently it has been applied to solution of the KdV equation [7]. To the best of
the author’s knowledge, this method has not been applied to the solution of the two-dimensional standard biological
population model.

The rest of the paper is organized as follows: Section 2 gives the problem formulation, while Section 3 describes the
proposed method of solution. In Section 4 the results of numerical experiments based on a selection of test prob-
lems are presented and compared with the exact solution and solutions from previous methods used in the literature.
Finally, Section 5 presents some conclusions.
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2. Problem Formulation

Consider the two-dimensional fractional biological population model (FBPM)

∂αu

∂tα
= ∂2u2

∂x2 + ∂2u2

∂y2 + f (u), t ∈ [0,∞), 0 <α≤ 1, (1)

subject to the initial condition

u(x, y,0) = h1(x, y), (2)

where f (u) = hua(1− r ub). In equation (1), u denotes the population density (i.e., the number of minimal species
per unit volume at position (x, y) and time t ), f represents the population supply due to births and deaths of species,
h, r, a, b are real numbers, and h1 is the initial condition. Settingα= 1 reduces the FBPM (1) to the standard biological
population model (SBPM)

∂u

∂t
= ∂2u2

∂x2 + ∂2u2

∂y2 +hua(1− r ub), t ∈ [0,∞) (3)

which is the focus of this paper. Thus, we apply the SAIM to the solution of the standard nonlinear BPM of the form
(3) which may be written in compact form as

ut = u2
xx +u2

y y +hua(1− r ub), (4)

subject to the initial condition (2).

3. Description of the Proposed Method

The SAIM was used by Yassein [8] to solve higher order integro-differential equations and by Yassein and Aswhad [7]
to solve KdV equations. The method was also used by Kasumo [9, 10] in the solution of the Klein-Gordon, Korteweg-de
Vries and Burgers equations. This method uses an iterative approach together with analytical computations to pro-
vide a solution of a modified reformulated linear problem. The SAIM was inspired by the homotopy analysis method
(HAM) which is a general approximate analytical approach for obtaining convergent series solutions of strongly non-
linear problems [6]. The SAIM offers several advantages over existing methods such as Picard’s successive approxi-
mations method (SAM) and the ADM in that it is very easy to implement since it avoids the complicated calculation
of Adomian polynomials for the nonlinear term in the ADM or Lagrange multipliers in the VIM, thus demanding less
computational work [11]. In this paper we propose to use the SAIM to solve the standard biological population model
of the form (4), with the initial condition (2), which can be expressed as

Lu = Nu, (5)

with the condition B
(
u, ∂u

∂t

)
= 0, where L is a linear operator defined by Lu = ut , N is the nonlinear operator given by

Nu = u2
xx +u2

y y +hua(1− r ub) and B is the boundary operator. The main requirement of the SAIM is that L should
be the linear part of the differential equation, though it is possible to add some linear parts to N in order to simplify
the analysis. Assuming that u0(x, y, t ) is an initial guess of the solution u(x, y, t ), we take it to be the solution of the
equation

L[u0(x, y, t )] = 0 with B

(
u0,

∂u0

∂t

)
= 0. (6)

Note that

u0(x, y, t ) = u(x, y,0) = h1(x, y).

To generate the next iteration to the solution, we solve the equation

L[u1(x, y, t )] = N [u0(x, y, t )] with B

(
u1,

∂u1

∂t

)
= 0. (7)

Continuing in this manner leads to a simple iterative procedure which is effectively the solution of a linear set of
problems, i.e.,

L[un+1(x, y, t )] = N [un(x, y, t )] with B

(
un+1,

∂un+1

∂t

)
= 0, (8)

from which the general iterative formula for solving the standard BPM (4) is

un+1(x, y, t ) = un+1(x, y,0)+L−1 {−N [un(x, y, t )]
}

, (9)

where L−1 = ∫ t
0 (·)d s. Thus the solution to the problem (4) with initial condition (2) is given by

u(x, y, t ) = lim
n→∞un(x, y, t ).
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4. Test Examples

In this section we study a selection of test problems illustrating the applicability of the SAIM for solving BPMs. All
the computations associated with these examples were performed using a Samsung Series 3 PC with an Intel Celeron
CPU 847 at 1.10GHz with 6.0GB internal memory and 64-bit operating system (Windows 8).

All the figures were constructed using MATLAB R2016a. The results are presented in tables and figures accompa-
nying the discussion.

Example 4.1.
Consider the BPM (Zellal and Belghaba [1]):

ut = u2
xx +u2

y y +hua(1− r ub), (10)

with initial condition u(x, y,0) =p
x + y +x y . For a = 1, r = 0, this BPM has exact solution u(x, y, t ) =p

x + y +x yeht .
Thus, our BPM of interest here is

ut = u2
xx +u2

y y +hu. (11)

To solve (11) using the SAIM, we rewrite it in operator-theoretic form as

Lu = Nu,

where Lu = ut and Nu = u2
xx +u2

y y +hu. The primary problem involves finding the initial approximation by solving
the equation

L[u0(x, y, t )] = 0, with u0(x, y,0) =√
x + y +x y . (12)

Using the initial condition, the solution of the primary problem is

u0(x, y, t ) = u0(x, y,0) =√
x + y +x y .

The general recursive relation for solving (11) is

L[un+1(x, y, t )] = N [un(x, y, t )], with un+1(x, y,0) =√
x + y +x y , (13)

i.e.,

un+1(x, y, t ) = un+1(x, y,0)+
∫ t

0

[
u2

nxx
+u2

ny y
+hun

]
d s. (14)

From the recursive relation, we have the approximations

u0(x, y, t ) =√
x + y +x y ,

u1(x, y, t ) =√
x + y +x y +

∫ t

0

[
u2

0xx
+u2

0y y
+hu0

]
d s =√

x + y +x y(1+ht ),

u2(x, y, t ) =√
x + y +x y +

∫ t

0

[
u2

1xx
+u2

1y y
+hu1

]
d s =√

x + y +x y

(
1+ht + (ht )2

2

)
,

u3(x, y, t ) =√
x + y +x y +

∫ t

0

[
u2

2xx
+u2

2y y
+hu2

]
d s =√

x + y +x y

(
1+ht + (ht )2

2
+ (ht )3

6

)
,

and so on, i.e.,

u(x, y, t ) =√
x + y +x y

(
1+ht + (ht )2

2!
+ (ht )3

3!
+·· ·

)
=√

x + y +x yeht ,

which is the exact solution of (10) with a = 1, r = 0. This result was also obtained by Zellal and Belghaba [1] using the
variational iteration method with He’s polynomials (VIMHP). The results are shown in Table 1 (for −20 ≤ x, y ≤ 20) and
Figure 1 (for 0 ≤ x, y ≤ 20).
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Table 1. Comparison of approximate and exact solutions for Example 4.1 (h =−1, t = 2)

(x, y) u(x, y, t ) uSAIM(x, y, t )
(−20,−20) 2.567806457 2.567806457
(−16,−16) 2.025513049 2.025513049
(−12,−12) 1.482523749 1.482523749

(−8,−8) 0.937630346 0.937630346
(−4,−4) 0.382785986 0.382785986

(0,0) 0 0
(4,4) 0.663004776 0.663004776
(8,8) 1.210475572 1.210475572

(12,12) 1.754145756 1.754145756
(16,16) 2.296715916 2.296715916
(18,18) 2.838816851 2.838816851

  

u(
x,

y,t
)

Fig. 1. Comparison of approximate and exact solutions for the BPM in Example 4.1 for 0 ≤ x, y ≤ 20 and a fixed t = 2

Example 4.2.

Consider the BPM (4) with a = b = 1, h = −1, r = − 8
9 subject to the initial condition u(x, y,0) = e

1
3 (x+y) (Shakeri and

Dehghan [2], Roul [3]), i.e.,

ut = u2
xx +u2

y y −u

(
1+ 8

9
u

)
. (15)

The exact solution of (15) is u(x, y, t ) = e
1
3 (x+y)−t . Rewriting (15) as

Lu = Nu,

where Lu = ut , Nu = u2
xx +u2

y y −u
(
1+ 8

9 u
)
, the general recursive relation is given by

L[un+1(x, y, t )] = N [un(x, y, t )], with un+1(x, y,0) = e
1
3 (x+y). (16)

We use the iteration

un+1(x, y, t ) = un+1(x, y,0)+
∫ t

0

[
u2

nxx
+u2

ny y
−un

(
1+ 8

9
un

)]
d s (17)

to obtain the successive approximations

u0(x, y, t ) = e
1
3 (x+y),

u1(x, y, t ) = e
1
3 (x+y) +

∫ t

0

[
u2

0xx
+u2

0y y
−u0

(
1+ 8

9
u0

)]
d s = e

1
3 (x+y)(1− t ),

u2(x, y, t ) = e
1
3 (x+y) +

∫ t

0

[
u2

1xx
+u2

1y y
−u1

(
1+ 8

9
u1

)]
d s = e

1
3 (x+y)

(
1− t + t 2

2

)
,

u3(x, y, t ) = e
1
3 (x+y) +

∫ t

0

[
u2

2xx
+u2

2y y
−u2

(
1+ 8

9
u2

)]
d s = e

1
3 (x+y)

(
1− t + t 2

2
− t 3

6

)
,
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and so on, leading to the solution

u(x, y, t ) = e
1
3 (x+y)

(
1− t + t 2

2
− t 3

6
+·· ·

)
= e

1
3 (x+y)e−t = e

1
3 (x+y)−t .

This is the exact solution also obtained using the ADM [2] and the HPM [3]. Table 2 and Figure 2 shows the results for
t = 2 and −20 ≤ x, y ≤ 20.

Table 2. Comparison of approximate and exact solutions from SAIM and HPM for Example 4.2 (h =−1, t = 2)

(x, y) u(x, y, t ) uSAIM(x, y, t )
(−20,−20) 0.000000219 0.000000219
(−16,−16) 0.000003154 0.000003154
(−12,−12) 0.000045399 0.000045399

(−8,−8) 0.000653392 0.000653392
(−4,−4) 0.009403563 0.009403563

(0,0) 0.135335283 0.135335283
(4,4) 1.947734041 1.947734041
(8,8) 28.03162489 28.03162489

(12,12) 403.4287935 403.4287935
(16,16) 5806.113346 5806.113346
(20,20) 83561.09612 83561.09612

  

Fig. 2. Comparison of approximate and exact solutions for the BPM in Example 4.2 for −20 ≤ x, y ≤ 20 for a fixed t = 2

Example 4.3.
Consider the BPM (4) with a = 1, r = 0 (Shakeri and Dehghan [2], Roul [3], i.e.,

ut = u2
xx +u2

y y +hu, (18)

subject to the initial condition u(x, y,0) = p
x y and with exact solution u(x, y, t ) = p

x yeht . Here, Lu = ut , Nu =
u2

xx +u2
y y +hu. Since the primary problem Lu0 = 0, with u0(x, y,0) =p

x y , has a solution u0(x, y, t ) =p
x y , equation

(18) can be solved using the general iterative scheme

un+1(x, y, t ) = un+1(x, y,0)+
∫ t

0

[
u2

nxx
+u2

ny y
+hun

]
d s. (19)
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Thus, the first four approximations are

u0(x, y, t ) =p
x y ,

u1(x, y, t ) =p
x y +

∫ t

0

[
u2

0xx
+u2

0y y
+hu0

]
d s =p

x y(1+ht ),

u2(x, y, t ) =p
x y +

∫ t

0

[
u2

1xx
+u2

1y y
+hu1

]
d s =p

x y

(
1+ht + (ht )2

2

)
,

u3(x, y, t ) =p
x y +

∫ t

0

[
u2

2xx
+u2

2y y
+hu2

]
d s =p

x y

(
1+ht + (ht )2

2
+ (ht )3

6

)
,

and so on. Since u(x, y, t ) = limn→∞ un(x, y, t ), the solution to (18) is

u(x, y, t ) =p
x y

(
1+ht + (ht )2

2
+ (ht )3

6
+·· ·

)
=p

x yeht ,

the exact solution also obtained using the HPM [3] and the ADM [2]. Table 3 and Figure 3 compare the results from
the SAIM with the exact solution for h = 0.2, t = 2 and −20 ≤ x, y ≤ 20.

Table 3. Comparison of approximate and exact solutions for Example 4.3 (t = 2)

(x, y) u(x, y, t ) uSAIM(x, y, t )
(−20,−20) 29.83649395 29.83649395
(−16,−16) 23.86919516 23.86919516
(−12,−12) 17.90189637 17.90189637

(−8,−8) 11.93459758 11.93459758
(−4,−4) 5.967298791 5.967298791

(0,0) 0 0
(4,4) 5.967298791 5.967298791
(8,8) 11.93459758 11.93459758

(12,12) 17.90189637 17.90189637
(16,16) 23.86919516 23.86919516
(20,20) 29.83649395 29.83649395

  

u(
x,

y,t
)

Fig. 3. Comparison of approximate and exact solutions for the BPM in Example 4.3 for −20 ≤ x, y ≤ 20 and t = 2

Example 4.4.
Consider the BPM (4) with a = b = 1 (Zellal and Belghaba [1]), i.e.,

ut = u2
xx +u2

y y +hu(1− r u), (20)

subject to the condition u(x, y,0) = e

√
hr
8 (x+y). This equation has exact solution u(x, y, t ) = e

√
hr
8 (x+y)+ht and can be

rewritten as:

Lu = Nu,
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with Lu = ut , Nu = u2
xx +u2

y y +hu(1− r u). The initial problem yields the solution u0(x, y, t ) = e

√
hr
8 (x+y), so that the

first four iterations give the approximations

u0(x, y, t ) = e

√
hr
8 (x+y),

u1(x, y, t ) = e

√
hr
8 (x+y) +

∫ t

0

[
u2

0xx
+u2

0y y
+hu0(1− r u0)

]
d s = e

√
hr
8 (x+y)(1+ht ),

u2(x, y, t ) = e

√
hr
8 (x+y) +

∫ t

0

[
u2

1xx
+u2

1y y
+hu1(1− r u1)

]
d s = e

√
hr
8 (x+y)

(
1+ht + (ht )2

2

)
,

u3(x, y, t ) = e

√
hr
8 (x+y) +

∫ t

0

[
u2

2xx
+u2

2y y
+hu2(1− r u2)

]
d s = e

√
hr
8 (x+y)

(
1+ht + (ht )2

2
+ (ht )3

6

)
,

which approximates the exact solution

u(x, y, t ) = e

√
hr
8 (x+y)+ht .

Table 4. Comparison of approximate and exact solutions for Example 4.4 (t = 0.2, h =−1, r =− 8
9 )

(x, y) u(x, y, t ) uSAIM(x, y, t )
(−20,−20) 0.000001326 0.000001326
(−16,−16) 0.000019083 0.000019083
(−12,−12) 0.000274654 0.000274654

(−8,−8) 0.003952791 0.003952791
(−4,−4) 0.056888238 0.056888238

(0,0) 0.818730753 0.818730753
(4,4) 11.7831043 11.7831043
(8,8) 169.5814485 169.5814485

(12,12) 2440.601978 2440.601978
(16,16) 35124.93888 35124.93888
(20,20) 505515.1733 505515.1733

These results are in agreement with those obtained by Zellal and Belghaba [1] using VIMHP, by Roul [3] using the
HPM and by Shakeri and Dehghan [2] using the ADM, for h =−1, r =− 8

9 . Table 4 and Figure 4 show the results. More
iterations would result in smaller errors, hence better accuracy of the SAIM.

Example 4.5.
As a final example, we solve the general BPM (4) with a = b = 1, r = 0, h 6= 0 (Mayembo et al. (2019)), i.e.,

ut = u2
xx +u2

y y +hu, (21)

subject to the initial condition u(x, y,0) =√
cos x cosh y . The exact solution is u(x, y, t ) =√

cos x cosh yeht . We rewrite
(21) as

Lu = Nu,

where Lu = ut , Nu = u2
xx +u2

y y +hu. The first few iterations of the SAIM give the approximations

u0(x, y, t ) =
√

cos x cosh y ,

u1(x, y, t ) =
√

cos x cosh y +
∫ t

0

[
u2

0xx
+u2

0y y
+hu0

]
d s =

√
cos x cosh y(1+ht ),

u2(x, y, t ) =
√

cos x cosh y +
∫ t

0

[
u2

1xx
+u2

1y y
+hu1

]
d s =

√
cos x cosh y

(
1+ht + (ht )2

2

)
,

and so on. This is an approximation to the exact solution u(x, y, t ) = √
cos x cosh yeht (Mayembo et al. [12]).

If the initial condition is changed to u(x, y,0) = √
sin(θx)cosh(θy), the exact solution would be u(x, y, t ) =√

sin(θx)cosh(θy)eht , as in Zellal and Belghaba [1], with h = 1. For the initial condition u(x, y,0) = √
sin x sinh y ,

the exact solution for h = 1 is u(x, y, t ) =√
sin x sinh yet , as in Roul [3]. The results are shown in Table 5 and Figure 5.
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u(
x,

y,t
)

u(
x,

y,
t)

(a) 

(b) 

Fig. 4. Comparison of approximate and exact solutions for the BPM in Example 4.4 for h =−1, r =− 8
9 and −20 ≤ x, y ≤ 20 (a) for a

fixed t = 0.2; (b) for different time values

Table 5. Comparison of approximate and exact solutions from SAIM for Example 4.5 (t = 2)

(x, y) u(x, y, t ) uSAIM(x, y, t )
(−1,−1) 6.746859788 6.746859788

(−0.8,−0.8) 7.132639817 7.132639817
(−0.6,−0.6) 7.308843539 7.308843539
(−0.4,−0.4) 7.373276892 7.373276892
(−0.2,−0.2) 7.38807083 7.38807083

(0,0) 7.389056099 7.389056099
(0.2,0.2) 7.38807083 7.38807083
(0.4,0.4) 7.373276892 7.373276892
(0.6,0.6) 7.308843539 7.308843539
(0.8,0.8) 7.132639817 7.132639817

(1,1) 6.746859788 6.746859788

5. Conclusion

In this paper, the semi analytic iterative method has been applied to determine exact or closed-form solutions to
the standard nonlinear biological population model subject to given initial conditions. The work has further served
to demonstrate the ability of this method to produce exact to near-exact solutions to nonlinear biological population
models and has confirmed the method’s suitability for solving these types of partial differential equations. Future work
could explore the use of other methods, such as Haar wavelets, modified simple equation, splines, etc. for solution of



16 An Efficient Iterative Scheme for Solving the Standard Biological Population Model

  

Fig. 5. Comparison of approximate and exact solutions for the BPM in Example 4.5 for h = 1, t = 2 and −1 ≤ x, y ≤ 1

biological population models.
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