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Abstract: The tensor structures of triangulated categories in derived categories of ètale sheaves with transfers are considered,
taking the tensor product of categories X ⊗Y = X ×Y , in the category Cork (finite correspondences category) being
this the product of the underlying schemes on k. Likewise, is constructed from a total tensor product on the category
PSL(k), the generalizations on derived categories using pre-sheaves and contravariant/covariant functors on additive
categories to define the exactness of infinite sequences and resolution of spectral sequences of modules in triangu-
lated derived categories of objects in∆n ×A1, for morphism of A1 - homotopy. Then through a motives algebra which
inherits the generalized tensor product is defined a triangulated category whose motivic cohomology is a hypercoho-
mology from the category Smk ,which has implications in the geometrical motives applied to a bundle of geometrical
stacks to field theory. Then we can consider the motives in the hypercohomology to the category DQFT. The mean
result will be the creation of theorem that incorporates a 2-simplicial decomposition of ∆3 × A1, in four triangular
diagrams of derived categories from Smk , which come from a derived category of geometrical motives of DQFT.
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1. Introduction

The principal goal is obtain commutative diagrams of derived categories of motives, considering that the prob-
lem on the determination of a diagram of schemes in quantum field theory no necessary is commutative, even the
general problem results non-symmetric, and much of the evolved rings are not commutative, which carry us to work
the tensor structure of derived categories from the category PSL(k), to obtain the generalizations on derived cate-
gories using pre-sheaves and contravariant and covariant functors on additive categories to define the exactness of
infinite sequences and resolution of spectral sequences, in a symmetrical context developed to obtain a motives co-
homology. Likewise through a motives algebra which inherits the generalized tensor product is defined a triangulated
category whose motivic cohomology [1-3] is a hypercohomology from the category Smk , which has implications in
the geometrical motives applied to a bundle of geometrical stacks in field theory, in a way symmetric (for example
from the geometrical Langlands ramification, after of work certain ∞ −algebras, the quantum field equations in this
context has solutions in a dual space considering the category of vector spaces SpecSymmT [4]), which can see it re-
flected in the algebraic context through commutatively between categories with these tensor structures [5]. Then this
means that we can consider the motives in the hypercohomoloy to the category DQFT, where this hypercohomology
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is constructed from étale (or Lichtenbaum) motivic cohomology H p,q
L (X ,Q), which is defined to be the étale hyper-

cohomology of the complex Q(q)). However considering of fact, that some context inside the quantum field theory
requires a Zariski topology, finally our hypercohomology can be described to the category DQFT, through motives of
a hypercohomology from the category Smk , defined as [2, 5]:

Hom
DM

e f f
g m(k)

(m(X ),Q(q)[p]) ∼= H•
Ni s (X ,Q(q)) =Hp,q (XNi s ,Q(q)), (1)

which comes from the hypercohomology

H p,q
L (X ,Q) =Hp,q (X ,Q), (2)

The category PSL(k), is Abelian [1] and therefore has enough injectives and projectives that can be used to create
the conditions for the invariant presheaves of homotopy required to realization of the commutative diagrams in A1

−homotopy of morphisms in the category Smk , of finite schemes X , and Y . Likewise from a simplicial complex and its
correspondence with a corresponding diagram of A1 −morphisms in a category, can be determined a general diagram
that can be induced to the category DQFT, from a scheme of associated motives to a scheme X . A simplicial complex
candidate can be ∆3, which has the correspondence (figure 1):

Fig. 1. 2-Simplicial decomposition of ∆3 × A1.

Likewise, we will be used this to obtain a general diagram that can be induced to the category DQFT, as mentioned
before, from a scheme of associated motives to a scheme X , (which is the class m(X ) of C∗Ztr (X ), which is clearly

modulus A1 −homotopy in an approximate triangulated category DMe f f ,−
Ni s (k,R), 1 constructed from the derived cat-

egory of PSL(k).
As was shown in different previous works [5, 6], the geometrical motives required in our research are a result of embed-

ding the derived category DM−
g m(k,R), (geometrical motives category) in the category DMe f f ,−

ét (k,Z/m), considering
the category of smooth schemes on the field k.

2. Derived triangulated categories with structure by pre-sheaves ⊗L, and ⊗tr
L,ét

The tensor product of the derived category of bounded above complexes of étale sheaves of R −modules ⊗tr
L,ét ,

preserves quasi-isomorphisms [7, 8]. Also the category of bounded above complexes of étale sheaves of R −modules
with transfers is a tensor triangulated category [9, 10].

In particular, and by a motives algebra in the derived category of étale sheaves of Z/m −module with transfers, the
operation

m → m(1) = m ⊗tr
L,ét Z/M(1), (3)

is inversible. Then ∀ E ,F , are bounded above complexes of locally constant étale sheaves of R −module E⊗tr
L,ét F , is

quasi-isomorphic to E ⊗LR F , which is their total tensor product of complexes of étale sheaves of R −modules. Indeed,
we consider the morphism f : E → E ′, of bounded above complexes of presheaves of R −modules with transfers. Then
in particular for étale sheave we have Eét → E

′
ét , then we have

E ⊗tr
L,ét F → E

′ ⊗tr
L,ét F,

1 This category has the total tensor product inherited from the total tensor product of PSL(k).
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is quasi-isomorphism of F . Now if F , is a locally complete étale sheaf of R −modules then E
′ ⊗tr

L,ét F,→ E ⊗tr
L,ét F ,

is a quasi-isomorphism for every étale sheaf with transfers E . But ⊗ ∼= ⊗L, in ℘, and using the a natural mapping of
presheaves given by λ : hX ⊗tr

ét hY → hX⊗tr
ét Y , where every hXi = R(Xi ), having the right exactness of ⊗R,, and ⊗tr

ét , and

being E ,F , are bounded above complexes of locally constant étale sheaves of R −module then E ×tr
L,ét F → E ⊗LR F , is a

quasi-isomorphism.
Similarly as with the étale sheaves, a presheaf with functors F , is a Nisnevich sheaf with transfers if its underlying
presheaf is a Nisnevich sheaf on Sm/k. Clearly every étale sheaf with transfers is a Nisnevich sheaf with transfers. In
motives withQ −coefficients with transfers we have the result:

Lemma 2. 1. Let F , be a Zariski sheaf ofQ −modules with transfers. Then F , is also an étale sheaf with transfers.
Proof.[3].�

Then is deduced from theorem that characterizes the Nisnevich sheaves [2, 3 ,9] whose category ShNi s (Cork ), and
the before lemma 3. 1, the following corollary.

Corollary 2. 1. If F , is a presheaf ofQ −modules with transfers then FNi s = Fét .

For other side, the construction of a derived category as such DMe f f .−
Ni s (k,R), is parallel to the construction of

DMe f f .−
ét (k,R). If k admits regularizations of singularities then DMe f f .−

ét (k,R), allows us to extend motivic cohomology
to all schemes of finite type as a cdh, hypercohomology group.

If Q ⊆ R, we will show that DMe f f .−
Ni s (k,R), and DMe f f .−

ét (k,R), are equivalent. Likewise, D− = D−(Shét (Cork ,R)),
is a derived category which is a tensor triangulated category. The same is applicable in the Nisnevich topology for
derived category D−(ShNi s (Cork ,R)).

Likewise, ∀ C ,D ∈℘, and therefore in Ch−R(A ), we have:

C ⊗tr
L,Ni s D ∼= (C ⊗tr

L D)Ni s , (4)

In particular the derived category D−, of bounded above complexes of Nisnevich sheaves with transfers is a tensor
triangulated category under ⊗tr

L,Ni s . Then by the proposition that says that hX = Rtr (X ), [3] is projective if

Rtr (X )⊗tr Rtr (Y ) = Rtr (X ×Y ), (5)

Then we have in the motives context

m(X )⊗tr
L,Ni s m(Y ) = m(X ×Y ), (6)

Likewise, we can to define the category DMe f f
g m (k,R), to be the thick subcategory of DMe f f .−

Ni s (k,R), generated by the

motives m(X ), where X , is smooth over k. Objects in DMe f f
g m (k,R), are the effective geometric motives, which will be

the objects that we require in our motivic cohomology, that we obtain for resolution of the decomposing of X × A1 in
A1 −homotopy of morphisms in the category Smk .

3. Fundamental Backgrounds

Under the consideration realized in the book chapter [11] and the motivic cohomology treatment given in [2, 3, 9,

and 13] as the embedding theorem in DMe f f
ét (k), we can consider the following triangulated diagram:

Smk → DMe f f
ét (k) (7)

m ↘ ↓ I d ,

DMe f f
ét (k)

which has implications in the geometrical motives applied to a bundle of geometrical stacks in mathematical
physics, as has been studied and showed in [8, 11, 12].

We consider the derived category to quantum field theory DQFT, as the characterized by the motives in a hyperco-
homology from the category Smk , [5, 6].
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Theorem 3. 1 (F. Bulnes). Suppose that M, is a complex Riemannian manifold with singularities. Let X , and Y , be
smooth projective varieties inM 2. We know that solutions of the field equations dda = 0, [4,-6] are given in a category
Spec(Smk ), (see [4]). Solution context of the quantum field equations for dda = 0, are defined in hypercohomology on
Q −coefficients fr m the category Smk , defined on a numerical field k, considering the derived tensor product ⊗tr

ét , of
presheaves. Then the following tensor triangulated diagram is true and commutative:

DQF T (8)

i ↙ ↘ F,

MDg m(Q) → MD(Dy )

Proof.[8].�

The category DMe f f
g m (k,R), has a tensor triangulated structure and the tensor product of its motives is m(X ) ⊗

m(Y ) = m(X ×Y ). Remember that the triangulated category of geometrical motives DMg m(k,R), is defined formally
inverting the functor of the Tate objects, which are objects of a motivic category called Tannakian category [6].

We enunciate the following result important in the technical detail of the topologies required to DQFT.

Theorem 5. 2. IfQ⊆ R, then

ω : DMe f f .−
Ni s (k,R) → DMe f f .−

ét (k,R), (9)

is an equivalence of tensor triangulated categories.
Proof.[6].�

We want to apply the considerations of before sections to give a tensor triangulated category to a quantum version
of motivic cohomology on étale Sheaves, from ∆3 −simplicial that shows the A1 −homotopy in an approximate trian-

gulated category DMe f f .−
Ni s (k,R), which for every Nisnevich sheaf with transfers that is an étale sheaf with transfers, is

a category DMe f f .−
ét (k,R). The Nisnevich detail in the derived category is due to the importance in motivic homotopy

theory of that the objects of interests are "spaces", which are simplicial sheaves of sets on the big Nisnevich site that
is the category Sm/k.

Fig. 2. 2-Simplicial decomposition of ∆3 × A1, for DQFT.

In reality we consider two topologies for aspects of localization and covering.
We have the following commutative diagram in the geometrical motives context that are useful to link the derived
category DQFT.

2 Singular projective varieties useful in quantization process of the complex Riemannian manifold. The quantization condition
compact quantizable Käehler manifolds can be embedded into projective space.
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4. Result

Lemma 4. 1. The following diagram is commutative

Smk i ′−→DMe f f
g m (k)σ−→DMg m(k) i←−DQF T (10)

m ↘ l I d σ↙ l∼= ↙ F,

DMe f f
g m (k)∼=−→DM(DY )

We consider the following aspects before of the demonstration.
We say that a diagram in Cork , is homotopy commutative if every pair of composites f , g : X → Y , with the same
source and target are A1 −homotopic. Any homotopy invariant presheaf with transfers identifies A1 −homotopic
maps, and converts a homotopy commutative diagram into a commutative diagram.

Proof. Then we apply the Theorem 21. 6, and the lemma 21. 7 pages 177, 178 [3]. The strong fact is con-
sider that all category in the diagram (10) which is Cork . is homotopy commutative, being every pair (i , f ), with
source and target A1 −homotopic mappings. Likewise, i ′ = i , from m : Smk → DMe f f− (k) and the embedding σ, is
a specific mapping which is fitting into a homotopy commutative diagram in Cork . Further the composition DQFT

i−→DMg m(k)σ−→DMe f f
g m (k), is zero (see lemma 21.9 [3, 13]).

The details of this demonstration can be obtained considering the proposition 11. 15, applied to the exterior triangles
of diagram (10). Also results very helpful the fact of the singular homology [14] to start Cork /A1 −homotopy. �

5. Applications

This help us to have a quantum field theory of simplicial geometry and construct a model crystallographic Universe
on the simplicial frameworks and establish morphism of homotopy commutative relations which can induce to a hy-
percohomology to the solution of some field equations and gravitational aspects, at least in mocroscopic level. For
example, some of the field theories as the Schwinger-Dyson equation in three-dimensional simplicial quantum grav-
ity, novedous triangle relations and absense of Tachyons in Liouville string field theory [15], where could be contained
in a derived category of form DM(DY ), or the diagrams of the Polyakov string theory [16] can be used the simplicial
geometry and its decomposition in trangulated diagrams of schemes belonging to the category Smk , and morphisms
between schemes of the category Cork , all with the total tensor product on the category PSL(k), to obtain the gener-
alizations on derived categories using pre-seaves and contravariant and covariant functors on additive categories to
define the exactness of infinite sequences and resolution of spectral sequences. From a point of tensor structure, the
advantages from the studies of tensor triangulated category to a quantum version considering a motivic cohomology
on étale sheaves is the factorization algebras in quantum field theory, where is necessary consider the combined ob-
servation measures from many components with an commutative property for their diagrams between their derived
categories. Also the development of the called homotopy quantum field theory, takes elements of our morphisms in
homotopy and the characterization of a total tensor product between multiplicity modules in interacting process of
many particles or fields.

Fig. 3. For space-time topological objects in physics and biology, Michel Planat, Marcelo M. Amaral, David Chester, Klee Irwin
propose a type of algebraic processing based on schemes in which the discrimination of singularities within objects is based on
the space-time-spin group SL(2,C) [17, 18]. Such topological objects possess an homotopy structure encoded in their
fundamental group and the related SL(2,C), multivariate polynomial character variety contains a plethora of singularities
somehow analogous to the frequency spectrum in time structures[17].
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