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1. Introduction

Recently, there have been so many studies of the sequences of numbers in the literature that concern about subse-
quences of the Horadam numbers and generalized Tribonacci numbers such as Fibonacci, Lucas, Pell and Jacobsthal
numbers; Tribonacci, Tribonacci-Lucas, Narayana, third order Jacobsthal and third order Jacobsthal-Lucas numbers.
The sequences of numbers were widely used in many research areas, such as physics, engineering, architecture, nature

and art. The ratio of two consecutive Fibonacci numbers converges to the Golden section (ratio), αF = 1+p5
2 ; which

appears in modern research, particularly physics of the high energy particles or theoretical physics. Another exam-

ple, the ratio of two consecutive Tribonacci numbers converges to the Tribonacci ratio, αT = 1+ 3p
19+3

p
33+ 3p

19−3
p

33
3 .

One last example, the ratio of two consecutive Padovan numbers converges to the Plastic ratio, αP (which is given
in (1) below), which have many applications to such as architecture, see [53]. For a short introduction to these three
constants, see [62].

Padovan (Cordonnier) numbers, Perrin (Padovan-Lucas) numbers and Van der Laan numbers are defined, respec-
tively, by the third-order recurrence relations

Pn+3 = Pn+1 +Pn , P0 = 1,P1 = 1,P2 = 1,

En+3 = En+1 +En , E0 = 3,E1 = 0,E2 = 2,

Rn+3 = Rn+1 +Rn , R0 = 1,R1 = 0,R2 = 1, or R0 = 0,R1 = 1,R2 = 0.

For historical background issues on these particular cases of generalized Padovan sequences, see [68].
Edouard Lucas [51] in 1876 introduced the sequence En (Perrin sequence, see for example [56]) and the sequence

En was also discussed by Lucas in 1878 (American Journal of Mathematics, vol 1, page 230ff), who noted that if p is a
prime then p divides En . This is an immediate consequence of Fermat’s Little Theorem, and as such is a necessary but
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not sufficient condition for primality (for a proof see [57]). Subsequently (1899) the same sequence was mentioned
by R. Perrin [60]. There are some other papers on the sequence En after Perrin’s works, see [26, 40, 52]. The most
extensive (published) treatment of this sequence was given in an excellent paper by Bill Adams and Dan Shanks in [2].
Shanks and Adams referred (called) to this as Perrin’s sequence.

Originating and naming of {Pn} is rather less straightforward. Termed by Steward [80] (and Broadhurst and Kreimer
[9] with the initial condion P0 = 0,P1 = 0,P2 = 1) as the Padovan numbers in honour of the contemporary architect
Richard Padovan, these numbers seemingly have a more extensive origine. The sequence {Pn} seems to have been
first discovered in 1924 by a French architecture student, Gérard Cordonnier and independently, the {Pn} were redis-
covered by Dom Hans van der Laan (see [68]).

The characteristic equation associated with Padovan, Perrin, Van der Laan sequences is x3 − x − 1 = 0 with roots
α,β and γ in which

α=
(

1

2
+

√
23

108

)1/3

+
(

1

2
−

√
23

108

)1/3

' 1.32471795724 (1)

is called plastic number (or plastic ratio or plastic constant or silver number) and

lim
n→∞

Pn+1

Pn
= lim

n→∞
En+1

En
=α.

The plastic number is used in art and architecture. Richard Padovan studied on plastic number in Architecture and
Mathematics in [58, 59]. The “plastic number” made popular by Richard Padovan. Padovan pointed out that the plas-
tic number was invented by a French architectural student, Gérard Cordonnier, in 1924 and by a Dutch Benedictine
monk-architect, Hans van der Laan, in 1928. Pastic number was originally studied by G. Cordonnier in 1924. However,
Hans van der Laan was the first who explained how it relates to the human perception of differences in size between
three-dimensional objects and demonstrated his discovery in architectural design. Laan’s main premise was that the
plastic number ratio is “truly aesthetic in the original Greek sense, i.e. that its concern is not ‘beauty’ but clarity of
perception” (see [58]). Cordonnier described applications to architecture, using the name radiant number and in
1958 he gave a lecture tour that illustrated the use of the plastic number in many existing buildings and monuments.
Marohnić and Strmećki [53] constructed the Plastic number in a heuristic way, explaining its relation to human per-
ception in three-dimensional space through architectural style of Dom Hans van der Laan. Note that plastic number
is a morphic number, see [1] for details. For more details on plastic number, see [5, 38, 79, 85, 87].

Recently, these sequences ({Pn} ,{En} ,{Rn} ) have been studied extensively by many authors, see for instance [3, 8,
15, 27, 36, 46, 49, 66, 69, 73, 74, 80, 86, 89]. See also web pages [54–56] for Padovan numbers.

Kaygisiz and Bozkurt [43] defined k sequences of generalized order-k Perrrin numbers. Kaygisiz and Sahin [44]
defined generalized Van der Laan and Perrin Polynomials, and generalizations of Van der Laan and Perrin Numbers.

Many researchers have studied matrix representations of number sequences. In [92] and [94], Yilmaz and Taskara
developed the matrix sequences that represent Padovan and Perrin numbers. Şahin [64] defined and studied gener-
alized Perrin and Cordonnier matrices using the associated polynomials of Perrin and Cordonnier numbers. Kaygisiz
and Sahin [45] calculated terms of associated polynomials of Perrin and Cordonnier numbers by using determinants
and permanents of various Hessenberg matrices. In [90] authors gave matrix representation of Perrin sequences. See
also [66, 72–74] for Padovan Q-matrix and related matrices. In [16], Cereceda provided some determinantal represen-
tation of the Padovan numbers by using the Hessenberg matrices.

The Padovan numbers and their properties have been studied by some other authors too, see for example,
[4, 6, 10, 18, 19, 21–23, 28–35, 39, 42, 63, 81, 82, 84, 91, 93, 96]

It is the aim of this paper to define and to explore some of the properties of generalized Padovan numbers and
is to investigate, in details, four particular case, namely sequences of Padovan, Perrin, Padovan-Perrin and modified
Padovan numbers {Pn}, {En}, {Sn} and {An}, respectively. Before, we recall the generalized Tribonacci sequence and its
some properties.

The generalized Tribonacci sequence {Wn(W0,W1,W2;r, s, t )}n≥0 (or shortly {Wn}n≥0) is defined as follows:

Wn = r Wn−1 + sWn−2 + tWn−3, W0 = a,W1 = b,W2 = c, n ≥ 3 (2)

where W0,W1,W2 are arbitrary complex (or real) numbers and r, s, t are real numbers.
This sequence has been studied by many authors, see for example [11, 12, 17, 24, 25, 50, 61, 65, 67, 77, 78, 88, 95].
The sequence {Wn}n≥0 can be extended to negative subscripts by defining

W−n =− s

t
W−(n−1) − r

t
W−(n−2) + 1

t
W−(n−3)

for n = 1,2,3, ... when t 6= 0. Therefore, recurrence (2) holds for all integer n.
As {Wn} is a third order recurrence sequence (difference equation), it’s characteristic equation is

x3 − r x2 − sx − t = 0 (3)
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whose roots are

α = α(r, s, t ) = r

3
+ A+B

β = β(r, s, t ) = r

3
+ωA+ω2B

γ = γ(r, s, t ) = r

3
+ω2 A+ωB

where

A =
(

r 3

27
+ r s

6
+ t

2
+
p
∆

)1/3

, B =
(

r 3

27
+ r s

6
+ t

2
−
p
∆

)1/3

∆ = ∆(r, s, t ) = r 3t

27
− r 2s2

108
+ r st

6
− s3

27
+ t 2

4
, ω= −1+ i

p
3

2
= exp(2πi /3)

Note that we have the following identities

α+β+γ = r,

αβ+αγ+βγ = −s,

αβγ = t .

If ∆(r, s, t ) > 0, then the Equ. (3) has one real (α) and two non-real solutions with the latter being conjugate complex.
So, in this case, it is well known that generalized Tribonacci numbers can be expressed, for all integers n, using Binet’s
formula

Wn = b1α
n

(α−β)(α−γ)
+ b2β

n

(β−α)(β−γ)
+ b3γ

n

(γ−α)(γ−β)
(4)

where

b1 =W2 − (β+γ)W1 +βγW0, b2 =W2 − (α+γ)W1 +αγW0, b3 =W2 − (α+β)W1 +αβW0.

Note that the Binet form of a sequence satisfying (3) for non-negative integers is valid for all integers n, for a proof of
this result see [37]]. This result of Howard and Saidak [37] is even true in the case of higher-order recurrence relations.

In this paper we consider the case r = 0, s = t = 1 and in this case we write Vn =Wn . A generalized Padovan sequence
{Vn}n≥0 = {Vn(V0,V1,V2)}n≥0 is defined by the third-order recurrence relations

Vn =Vn−2 +Vn−3 (5)

with the initial values V0 = c0,V1 = c1,V2 = c2 not all being zero.
The sequence {Vn}n≥0 can be extended to negative subscripts by defining

V−n =−V−(n−1) +V−(n−3)

for n = 1,2,3, .... Therefore, recurrence (5) holds for all integer n.
(4) can be used to obtain Binet formula of generalized Padovan numbers. Binet formula of generalized padovan

numbers can be given as

Vn = b1α
n

(α−β)(α−γ)
+ b2β

n

(β−α)(β−γ)
+ b3γ

n

(γ−α)(γ−β)

where

b1 =V2 − (β+γ)V1 +βγV0, b2 =V2 − (α+γ)V1 +αγV0, b3 =V2 − (α+β)V1 +αβV0. (6)

Here, α,β and γ are the roots of the cubic equation x3 −x −1 = 0. Moreover

α =
(

1

2
+

√
23

108

)1/3

+
(

1

2
−

√
23

108

)1/3

= 1.32471795724

β = ω

(
1

2
+

√
23

108

)1/3

+ω2

(
1

2
−

√
23

108

)1/3

γ = ω2

(
1

2
+

√
23

108

)1/3

+ω
(

1

2
−

√
23

108

)1/3
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Table 1. A few generalized Padovan numbers

n Vn V−n

0 V0 ...
1 V1 V2 −V0
2 V2 −V2 +V1 +V0
3 V1 +V0 V2 −V1
4 V2 +V1 V1 −V0
5 V2 +V1 +V0 −V2 +2V0
6 V2 +2V1 +V0 2V2 −V1 −2V0
7 2V2 +2V1 +V0 −2V2 +2V1 +V0
8 2V2 +3V1 +2V0 V2 −2V1 +V0

where

ω= −1+ i
p

3

2
= exp(2πi /3)

Note that

α+β+γ = 0,

αβ+αγ+βγ = −1,

αβγ = 1.

The first few generalized Padovan numbers with positive subscript and negative subscript are given in the follow-
ing Table 1. Now we define four special cases of the sequence {Vn}. Padovan (Cordonnier) sequence{Pn}n≥0, Perrin
(Padovan-Lucas) sequence {En}n≥0, Padovan-Perrin sequence {Sn}n≥0 and modified Padovan sequence {An}n≥0 are
defined, respectively, by the third-order recurrence relations

Pn+3 = Pn+1 +Pn , P0 = 1,P1 = 1,P2 = 1,

En+3 = En+1 +En , E0 = 3,E1 = 0,E2 = 2,

Sn+3 = Sn+1 +Sn , S0 = 0,S1 = 0,S2 = 1,

An+3 = An+1 + An , A0 = 3, A1 = 1, A2 = 3.

Note that the case Vn = Rn , R0 = 1,R1 = 0,R2 = 1 (or Vn = Rn , R0 = 0,R1 = 1,R2 = 0) is called the sequence of the Van
der Laan numbers, in the literature.

The sequences {Pn}n≥0, {En}n≥0, {Sn}n≥0 and {An}n≥0 can be extended to negative subscripts by defining

P−n = −P−(n−1) +P−(n−3) (7)

E−n = −E−(n−1) +E−(n−3) (8)

S−n = −S−(n−1) +S−(n−3) (9)

A−n = −A−(n−1) + A−(n−3) (10)

for n = 1,2,3, ... respectively. Therefore, recurrences (7), (8), (9) and (10) hold for all integer n.
Note that Pn and Sn are two variants of the same sequence in [71]. In fact, the following are basically all variants of

the same sequence in [71] which Pn and Sn belong: A000931, A078027, A096231, A124745, A133034, A134816, A164001,
A182097, A228361 and probably A020720 (however, each one has its own special features and deserves its own entry).
En is the sequence A001608 in [71]and An is the sequence A276276 in [71].

Next, we present the first few values of the Padovan, Perrin, Padovan-Perrin and modified Padovan numbers with
positive and negative subscripts: For all integers n, Padovan, Perrin, Padovan-Perrin and modified Padovan numbers
(using initial conditions in (6)) can be expressed using Binet’s formulas as

Pn = αn+4

(α−β)(α−γ)
+ βn+4

(β−α)(β−γ)
+ γn+4

(γ−α)(γ−β)
,

En = αn +βn +γn ,

Sn = αn

(α−β)(α−γ)
+ βn

(β−α)(β−γ)
+ γn

(γ−α)(γ−β)
,

An = (3α+1)αn+1

(α−β)(α−γ)
+ (3β+1)βn+1

(β−α)(β−γ)
+ (3γ+1)γn+1

(γ−α)(γ−β)
,
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Table 2. The first few values of the special third-order numbers with positive and negative subscripts.

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13
Pn 1 1 1 2 2 3 4 5 7 9 12 16 21 28

P−n 0 1 0 0 1 −1 1 0 −1 2 −2 1 1
En 3 0 2 3 2 5 5 7 10 12 17 22 29 39

E−n −1 1 2 −3 4 −2 −1 5 −7 6 −1 −6 12
Sn 0 0 1 0 1 1 1 2 2 3 4 5 7 9

S−n 1 −1 1 0 −1 2 −2 1 1 −3 4 −3 0
An 3 1 3 4 4 7 8 11 15 19 26 34 45 60

A−n 0 1 2 −2 3 −1 −1 4 −5 4 0 −5 9

respectively. Note that Pn ,Sn and An can be written as

Pn = αn+5

2α+3
+ βn+5

2β+3
+ γn+5

2γ+3
,

Sn = αn+1

2α+3
+ βn+1

2β+3
+ γn+1

2γ+3
,

An = (3α+1)αn+2

2α+3
+ (3β+1)βn+2

2β+3
+ (3γ+1)γn+2

2γ+3
.

2. Generating Functions

Next, we give the ordinary generating function
∞∑

n=0
Vn xn of the sequence Vn .

Lemma 2.1.

Suppose that fVn (x) =
∞∑

n=0
Vn xn is the ordinary generating function of the generalized Padovan sequence {Vn}n≥0. Then,

∞∑
n=0

Vn xn is given by

∞∑
n=0

Vn xn = V0 +V1x + (V2 −V0)x2

1−x2 −x3 . (11)

Proof. Using the definition of generalized Padovan numbers, and substracting x2 ∑∞
n=0 Vn xn and x3 ∑∞

n=0 Vn xn from∑∞
n=0 Vn xn we obtain

(1−x2 −x3)
∞∑

n=0
Vn xn =

∞∑
n=0

Vn xn −x2
∞∑

n=0
Vn xn −x3

∞∑
n=0

Vn xn

=
∞∑

n=0
Vn xn −

∞∑
n=0

Vn xn+2 −
∞∑

n=0
Vn xn+3

=
∞∑

n=0
Vn xn −

∞∑
n=2

Vn−2xn −
∞∑

n=3
Vn−3xn

= (V0 +V1x +V2x2)−V0x2

+
∞∑

n=3
(Vn −Vn−2 −Vn−3)xn

= V0 +V1x +V2x2 −V0x2

= V0 +V1x + (V2 −V0)x2.

Rearranging above equation, we obtain

∞∑
n=0

Vn xn = V0 +V1x + (V2 −V0)x2

1−x2 −x3 .

The previous lemma gives the following results as particular examples.
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Corollary 2.1.
Generated functions of Padovan, Perrin, Padovan-Perrin and modified Padovan numbers are

∞∑
n=0

Pn xn = 1+x

1−x2 −x3 ,

∞∑
n=0

En xn = 3−x2

1−x2 −x3 ,

∞∑
n=0

Sn xn = x2

1−x2 −x3 ,

∞∑
n=0

An xn = 3+x

1−x2 −x3 ,

respectively.

3. Obtaining Binet Formula From Generating Function

We next find Binet formula of generalized Grahaml numbers {Vn} by the use of generating function for Vn .

Theorem 3.1.
(Binet formula of generalized Padovan numbers)

Vn = d1α
n

(α−β)(α−γ)
+ d2β

n

(β−α)(β−γ)
+ d3γ

n

(γ−α)(γ−β)
(12)

where

d1 = V0α
2 +V1α+ (V2 −V0),

d2 = V0β
2 +V1β+ (V2 −V0),

d3 = V0γ
2 +V1γ+ (V2 −V0).

Proof. Let

h(x) = 1−x2 −x3.

Then for some α,β and γ we write

h(x) = (1−αx)(1−βx)(1−γx)

i.e.,

1−x2 −x3 = (1−αx)(1−βx)(1−γx) (13)

Hence 1
α , 1

β , ve 1
γ are the roots of h(x). This gives α,β, and γ as the roots of

h(
1

x
) = 1− 1

x2 − 1

x3 = 0.

This implies x3 −x −1 = 0. Now, by (11) and (13), it follows that

∞∑
n=0

Vn xn = V0 +V1x + (V2 −V0)x2

(1−αx)(1−βx)(1−γx)
.

Then we write

V0 +V1x + (V2 −V0)x2

(1−αx)(1−βx)(1−γx)
= A1

(1−αx)
+ A2

(1−βx)
+ A3

(1−γx)
. (14)

So

V0 +V1x + (V2 −V0)x2 = A1(1−βx)(1−γx)+ A2(1−αx)(1−γx)+ A3(1−αx)(1−βx).
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If we consider x = 1
α , we get V0 +V1

1
α + (V2 −V0) 1

α2 = A1(1− β
α )(1− γ

α ). This gives

A1 =
α2(V0 +V1

1
α + (V2 −V0) 1

α2 )

(α−β)(α−γ)
= V0α

2 +V1α+ (V2 −V0)

(α−β)(α−γ)
.

Similarly, we obtain

A2 = V0β
2 +V1β+ (V2 −V0)

(β−α)(β−γ)
, A3 = V0γ

2 +V1γ+ (V2 −V0)

(γ−α)(γ−β)
.

Thus (14) can be written as

∞∑
n=0

Vn xn = A1(1−αx)−1 + A2(1−βx)−1 + A3(1−γx)−1.

This gives

∞∑
n=0

Vn xn = A1

∞∑
n=0

αn xn + A2

∞∑
n=0

βn xn + A3

∞∑
n=0

γn xn =
∞∑

n=0
(A1α

n + A2β
n + A3γ

n)xn .

Therefore, comparing coefficients on both sides of the above equality, we obtain

Vn = A1α
n + A2β

n + A3γ
n

where

A1 = V0α
2 +V1α+ (V2 −V0)

(α−β)(α−γ)
,

A2 = V0β
2 +V1β+ (V2 −V0)

(β−α)(β−γ)

A3 = V0γ
2 +V1γ+ (V2 −V0)

(γ−α)(γ−β)
.

and then we get (12).
Note that from (6) and (12) we have

V2 − (β+γ)V1 +βγV0 = V0α
2 +V1α+ (V2 −V0),

V2 − (α+γ)V1 +αγV0 = V0β
2 +V1β+ (V2 −V0),

V2 − (α+β)V1 +αβV0 = V0γ
2 +V1γ+ (V2 −V0).

Next, using Theorem 3.1, we present the Binet formulas of Padovan, Perrin, Padovan-Perrin and modified Padovan
sequences.

Corollary 3.1.
Binet formulas of Padovan, Perrin, Padovan-Perrin and modified Padovan sequences are

Pn = (α+1)αn+1

(α−β)(α−γ)
+ (β+1)βn+1

(β−α)(β−γ)
+ (γ+1)γn+1

(γ−α)(γ−β)
,

En = αn +βn +γn ,

Sn = αn

(α−β)(α−γ)
+ βn

(β−α)(β−γ)
+ γn

(γ−α)(γ−β)
,

An = (3α+1)αn+1

(α−β)(α−γ)
+ (3β+1)βn+1

(β−α)(β−γ)
+ (3γ+1)γn+1

(γ−α)(γ−β)
,

respectively.

We can find Binet formulas by using matrix method with a similar technique which is given in [47]. Take k = i = 3
in Corollary 3.1 in [47]. Let

Λ =
 α2 α 1
β2 β 1
γ2 γ 1

 ,Λ1 =
 αn−1 α 1
βn−1 β 1
γn−1 γ 1

 ,

Λ2 =
 α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

 ,Λ3 =
 α2 α αn−1

β2 β βn−1

γ2 γ γn−1

 .
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Then the Binet formula for Padovan numbers is

Pn = 1

det(Λ)

3∑
j=1

P4− j det(Λ j ) = 1

Λ
(P3 det(Λ1)+P2 det(Λ2)+P1 det(Λ3))

= 1

det(Λ)
(2det(Λ1)+det(Λ2)+det(Λ3))

=
2

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
/

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .

Similarly, we obtain the Binet formula for Perrin, Padovan-Perrin and modified Padovan as

En = 1

Λ
(E3 det(Λ1)+E2 det(Λ2)+E1 det(Λ3))

=
3

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+2

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣
/

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .

and

Sn = 1

Λ
(S3 det(Λ1)+S2 det(Λ2)+S1 det(Λ3))

=
∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣/

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣ .

and

An = 1

Λ
(A3 det(Λ1)+ A2 det(Λ2)+ A1 det(Λ3))

=
4

∣∣∣∣∣∣
αn−1 α 1
βn−1 β 1
γn−1 γ 1

∣∣∣∣∣∣+3

∣∣∣∣∣∣
α2 αn−1 1
β2 βn−1 1
γ2 γn−1 1

∣∣∣∣∣∣+
∣∣∣∣∣∣
α2 α αn−1

β2 β βn−1

γ2 γ γn−1

∣∣∣∣∣∣
/

∣∣∣∣∣∣
α2 α 1
β2 β 1
γ2 γ 1

∣∣∣∣∣∣
respectively.

4. Simson Formulas

There is a well-known Simson Identity (formula) for Fibonacci sequence {Fn}, namely,

Fn+1Fn−1 −F 2
n = (−1)n

which was derived first by R. Simson in 1753 and it is now called as Cassini Identity (formula) as well. This can be
written in the form∣∣∣∣ Fn+1 Fn

Fn Fn−1

∣∣∣∣= (−1)n .

The following theorem gives generalization of this result to the generalized Padovan sequence {Vn}n≥0.

Theorem 4.1 (Simson Formula of Generalized Padovan Numbers).
For all integers n, we have∣∣∣∣∣∣

Vn+2 Vn+1 Vn

Vn+1 Vn Vn−1

Vn Vn−1 Vn−2

∣∣∣∣∣∣=
∣∣∣∣∣∣

V2 V1 V0

V1 V0 V−1

V0 V−1 V−2

∣∣∣∣∣∣ . (15)

Proof. (15) is given in Soykan [76].
The previous theorem gives the following results as particular examples.
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Corollary 4.1.
For all integers n, Simson formula of Padovan, Perrin, Padovan-Perrin and modified Padovan numbers are given as∣∣∣∣∣∣

Pn+2 Pn+1 Pn

Pn+1 Pn Pn−1

Pn Pn−1 Pn−2

∣∣∣∣∣∣=−1

and ∣∣∣∣∣∣
En+2 En+1 En

En+1 En En−1

En En−1 En−2

∣∣∣∣∣∣=−23

and ∣∣∣∣∣∣
Sn+2 Sn+1 Sn

Sn+1 Sn Sn−1

Sn Sn−1 Sn−2

∣∣∣∣∣∣=−1

and ∣∣∣∣∣∣
An+2 An+1 An

An+1 An An−1

An An−1 An−2

∣∣∣∣∣∣=−19

respectively.

5. Some Identities

In this section, we obtain some identities of Padovan, Perrin, Padovan-Perrin and modified Padovan numbers.
First, we can give a few basic relations between {Pn} and {En}.

Lemma 5.1.
The following equalities are true:

En = −2Pn+4 +4Pn+3 −Pn+2, (16)

En = 4Pn+3 −3Pn+2 −2Pn+1,

En = −3Pn+2 +2Pn+1 +4Pn ,

En = 2Pn+1 +Pn −3Pn−1,

En = Pn −Pn−1 +2Pn−2,

and

23Pn = −2En+4 +3En+3 +9En+2,

23Pn = 3En+3 +7En+2 −2En+1,

23Pn = 7En+2 +En+1 +3En ,

23Pn = En+1 +10En +7En−1,

23Pn = 10En +8En−1 +En−2.

Proof. Note that all the identities hold for all integers n. We prove (16). To show (16), writing

En = a ×Pn+4 +b ×Pn+3 + c ×Pn+2

and solving the system of equations

E0 = a ×P4 +b ×P3 + c ×P2

E1 = a ×P5 +b ×P4 + c ×P3

E2 = a ×P6 +b ×P5 + c ×P4

we find that a =−2,b = 4,c =−1. The other equalities can be proved similarly.
Note that all the identities in the above Lemma can be proved by induction as well.
Next, we present a few basic relations between {Pn} and {Sn}.
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Lemma 5.2.
The following equalities are true:

Sn = 2Pn+4 −Pn+3 −2Pn+2,

Sn = −Pn+3 +2Pn+1,

Sn = Pn+1 −Pn ,

Sn = −Pn +Pn−1 +Pn−2,

and

Pn = Sn+4,

Pn = Sn+2 +Sn+1,

Pn = Sn+1 +Sn +Sn−1,

Pn = Sn +2Sn−1 +Sn−2.

Now, we give a few basic relations between {Pn} and {An}.

Lemma 5.3.
The following equalities are true:

An = −Pn+4 +3Pn+3 −Pn+2,

An = 3Pn+3 −2Pn+2 −Pn+1,

An = −2Pn+2 +2Pn+1 +3Pn ,

An = 2Pn+1 +Pn −2Pn−1,

An = Pn +2Pn−2,

and

19Pn = −3An+4 + An+3 +9An+2,

19Pn = An+3 +6An+2 −3An+1,

19Pn = 6An+2 −2An+1 + An ,

19Pn = −2An+1 +7An +6× An−1,

19Pn = 7An +4An−1 −2An−2.

Next, we present a few basic relations between {En} and {Sn}.

Lemma 5.4.
The following equalities are true

23Sn = 5En+4 +4En+3 −11En+2,

23Sn = 4En+3 −6En+2 +5En+1,

23Sn = −6En+2 +9En+1 +4En ,

23Sn = 9En+1 −2En −6En−1,

23Sn = −2En +3En−1 +9En−2.

and

En = Sn+4 −Sn+3 +2Sn+2,

En = −Sn+3 +3Sn+2 +Sn+1,

En = 3Sn+2 −Sn ,

En = 2Sn +3Sn−1.

Next, we give a few basic relations between {An} and {En}.
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Lemma 5.5.
The following equalities are true

19En = −28An+4 +22An+3 +27An+2,

19En = 22An+3 − An+2 −28An+1,

19En = −An+2 −6An+1 +22An ,

19En = −6An+1 +21An − An−1,

19En = 21An −7An−1 −6An−2,

and

23An = −14En+4 +21En+3 +17En+2,

23An = 21En+3 +3En+2 −14En+1,

23An = 3En+2 +7En+1 +21En ,

23An = 7En+1 +24En +3En−1,

23An = 24En +10En−1 +7En−2.

Now, we present a few basic relations between {Sn} and {An}.

Lemma 5.6.
The following equalities are true

An = Sn+4 +2Sn+2,

An = 3Sn+2 +Sn+1,

An = 3Sn+2 +Sn+1,

An = Sn+1 +3Sn +3Sn−1,

An = 3Sn +4Sn−1 +Sn−2,

and

19Sn = 4An+4 +5An+3 −12An+2,

19Sn = 5An+3 −8An+2 +4An+1,

19Sn = −8An+2 +9An+1 +5An ,

19Sn = 9An+1 −3An −8An−1,

19Sn = −3An + An−1 +9An−2.

We now present a few special identities for the modified Padovan sequence {An}.

Theorem 5.1.
(Catalan’s identity) For all integers n and m, the following identity holds

An+m An−m − A2
n = (Pn+m +2Pn+m−2)(Pn−m +2Pn−m−2)− (Pn +2Pn−2)2

= −P 2
n −4PnPn−2 −4P 2

n−2 +Pm+nPn−m +2Pm+nPn−m−2

+2Pm+n−2Pn−m +4Pm+n−2Pn−m−2.

Proof. We use the identity

An = Pn +2Pn−2.

Note that for m = 1 in Catalan’s identity, we get the Cassini identity for the modified Padovan sequnce

Corollary 5.1.
(Cassini’s identity) For all integers numbers n and m, the following identity holds

An+1 An−1 − A2
n = (Pn+1 +2Pn+1−2)(Pn−1 +2Pn−1−2)− (Pn +2Pn−2)2

= Pn−1Pn+1 −P 2
n −4PnPn−2 +4Pn−1Pn−3 +2Pn+1Pn−3 +2P 2

n−1 −4P 2
n−2.
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The d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities can also be obtained by using An = Pn + 2Pn−2.The next
theorem presents d’Ocagne’s, Gelin-Cesàro’s and Melham’ identities of modified Padovan sequence {An}.

Theorem 5.2.
Let n and m be any integers. Then the following identities are true:

(a) (d’Ocagne’s identity)

Am+1 An − Am An+1 = (Pm+1 +2Pm+1−2)(Pn +2Pn−2)− (Pm +2Pm−2)(Pn+1 +2Pn+1−2).

(b) (Gelin-Cesàro’s identity)

An+2 An+1 An−1 An−2−A4
n = (Pn+2+2Pn+2−2)(Pn+1+2Pn+1−2)(Pn−1+2Pn−1−2)(Pn−2+2Pn−2−2)−(Pn+2Pn−2)4.

(c) (Melham’s identity)

An+1 An+2 An+6 − A3
n+3 = (Pn+1 +2Pn+1−2)(Pn+2 +2Pn+2−2)(Pn+6 +2Pn+6−2)− (Pn +2Pn−2)3

= (Pn+1 +2Pn−1)(Pn+2 +2Pn)(Pn+6 +2Pn+4)− (Pn +2Pn−2)3.

Proof. Use the identity An = Pn +2Pn−2.

6. Linear Sums

The following proposition presents some formulas of generalized Padovan numbers with positive subscripts.

Proposition 6.1.
If r = 0, s = 1, t = 1 then for n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Vk =Vn+3 +Vn+2 −V2 −V1.

(b)
∑n

k=0 V2k =V2n+1 +V2n −V1.

(c)
∑n

k=0 V2k+1 =V2n+2 +V2n+1 −V2.

Proof. Take r = 0, s = 1, t = 1 in Theorem 2.1 in [75].
As special cases of above proposition, we have the following four corollaries. First one presents some summing

formulas of Padovan numbers (take Vn = Pn with P0 = 1,P1 = 1,P2 = 1).

Corollary 6.1.
For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Pk = Pn+3 +Pn+2 −2.

(b)
∑n

k=0 P2k = P2n+1 +P2n −1.

(c)
∑n

k=0 P2k+1 = P2n+2 +P2n+1 −1.

Second one presents some summing formulas of Perrin (Padovan-Lucas) numbers (take Vn = En with E0 = 3,E1 =
0,E2 = 2).

Corollary 6.2.
For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Ek = En+3 +En+2 −2.

(b)
∑n

k=0 E2k = E2n+1 +E2n .

(c)
∑n

k=0 E2k+1 = E2n+2 +E2n+1 −2.

Third one presents some summing formulas of Padovan-Perrin numbers (take Vn = Sn with S0 = 0,S1 = 0,S2 = 1).
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Corollary 6.3.
For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Sk = Sn+3 +Sn+2 −1.

(b)
∑n

k=0 S2k = S2n+1 +S2n .

(c)
∑n

k=0 S2k+1 = S2n+2 +S2n+1 −1.

Fourth one presents some summing formulas of modified Padovan numbers (take Vn = An with A0 = 3, A1 = 1, A2 =
3).

Corollary 6.4.
For n ≥ 0 we have the following formulas:

(a)
∑n

k=0 Ak = An+3 + An+2 −4.

(b)
∑n

k=0 A2k = A2n+1 + A2n −1.

(c)
∑n

k=0 A2k+1 = A2n+2 + A2n+1 −3.

The following proposition presents some formulas of generalized Padovan numbers with negative subscripts.

Proposition 6.2.
If r = 0, s = 1, t = 1 then for n ≥ 1 we have the following formulas:

(a)
∑n

k=1 V−k =−2V−n−1 −2V−n−2 −V−n−3 +V2 +V1.

(b)
∑n

k=1 V−2k =−V−2n+1 +V1.

(c)
∑n

k=1 V−2k+1 =−V−2n −V−2n−1 +V2.

Proof. Take r = 0, s = 1, t = 1 in Theorem 3.1 in [75].
From the above proposition, we have the following corollary which gives sum formulas of Padovan numbers (take

Vn = Pn with P0 = 1,P1 = 1,P2 = 1).

Corollary 6.5.
For n ≥ 1, Padovan numbers have the following properties.

(a)
∑n

k=1 P−k =−2P−n−1 −2P−n−2 −P−n−3 +2.

(b)
∑n

k=1 P−2k =−P−2n+1 +1.

(c)
∑n

k=1 P−2k+1 =−P−2n −P−2n−1 +1.

Taking Vn = En with E0 = 3,E1 = 0,E2 = 2 in the last proposition, we have the following corollary which presents
sum formulas of Padovan-Lucas numbers.

Corollary 6.6.
For n ≥ 1, Perrin (Padovan-Lucas) numbers have the following properties.

(a)
∑n

k=1 E−k =−2E−n−1 −2E−n−2 −E−n−3 +2.

(b)
∑n

k=1 E−2k =−E−2n+1.

(c)
∑n

k=1 E−2k+1 =−E−2n −E−2n−1 +2.

From the above proposition, we have the following corollary which gives sum formulas of Padovan-Perrin numbers
(take Vn = Sn with S0 = 0,S1 = 0,S2 = 1).

Corollary 6.7.
For n ≥ 1, Padovan-Perrin numbers have the following properties.
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(a)
∑n

k=1 S−k =−2S−n−1 −2S−n−2 −S−n−3 +1.

(b)
∑n

k=1 S−2k =−S−2n+1.

(c)
∑n

k=1 S−2k+1 =−S−2n −S−2n−1 +1.

From the above proposition, we have the following corollary which gives sum formulas of modified Padovan num-
bers (take Vn = An with A0 = 3, A1 = 1, A2 = 3).

Corollary 6.8.
For n ≥ 1, modified Padovan numbers have the following properties.

(a)
∑n

k=1 A−k =−2A−n−1 −2A−n−2 − A−n−3 +4.

(b)
∑n

k=1 A−2k =−A−2n+1 +1.

(c)
∑n

k=1 A−2k+1 =−A−2n − A−2n−1 +3.

7. Matrices related with Generalized Padovan numbers

Matrix formulation of Wn can be given as Wn+2

Wn+1

Wn

=
 r s t

1 0 0
0 1 0

n  W2

W1

W0

 . (17)

For matrix formulation (17), see [41]. In fact, Kalman give the formula in the following form Wn

Wn+1

Wn+2

=
 0 1 0

0 0 1
r s t

n  W0

W1

W2

 .

We define the square matrix A of order 3 as:

A =
 0 1 1

1 0 0
0 1 0


such that det A = 1. From (5) we have Vn+2

Vn+1

Vn

=
 0 1 1

1 0 0
0 1 0

 Vn+1

Vn

Vn−1

 (18)

and from (17) (or using (18) and induction) we have Vn+2

Vn+1

Vn

=
 0 1 1

1 0 0
0 1 0

n  V2

V1

V0

 .

If we take V = P in (18) we have Pn+2

Pn+1

Pn

=
 0 1 1

1 0 0
0 1 0

 Pn+1

Pn

Pn−1

 . (19)

We also define

Bn =
 Pn−2 Pn−1 Pn−3

Pn−3 Pn−2 Pn−4

Pn−4 Pn−3 Pn−5


and

Cn =
 Vn−2 Vn−1 Vn−3

Vn−3 Vn−2 Vn−4

Vn−4 Vn−3 Vn−5


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Theorem 7.1.
For all integer m,n ≥ 0, we have

(a) Bn = An

(b) C1 An = AnC1

(c) Cn+m =CnBm = BmCn .

Proof.

(a) By expanding the vectors on the both sides of (19) to 3-colums and multiplying the obtained on the right-hand
side by A, we get

Bn = ABn−1.

By induction argument, from the last equation, we obtain

Bn = An−1B1.

But B1 = A. It follows that Bn = An .

(b) Using (a) and definition of C1, (b) follows.

(c) We have

ACn−1 =
 0 1 1

1 0 0
0 1 0

 Vn−3 Vn−2 Vn−4

Vn−4 Vn−3 Vn−5

Vn−5 Vn−4 Vn−6


=

 Vn−4 +Vn−5 Vn−3 +Vn−4 Vn−5 +Vn−6

Vn−3 Vn−2 Vn−4

Vn−4 Vn−3 Vn−5

=
 Vn−2 Vn−1 Vn−3

Vn−3 Vn−2 Vn−4

Vn−4 Vn−3 Vn−5

=Cn .

i.e. Cn = ACn−1. From the last equation, using induction we obtain Cn = An−1C1. Now

Cn+m = An+m−1C1 = An−1 AmC1 = An−1C1 Am =CnBm

and similarly

Cn+m = BmCn .

Some properties of matrix An can be given as

An = An−2 + An−3

and

An+m = An Am = Am An

and

det(An) = 1

for all integer m and n.

Theorem 7.2.
For m,n ≥ 0 we have

Vn+m =Vn−2Pm +Vn−3Pm+1 +Vn−4Pm−1. (20)

Proof. From the equation Cn+m = CnBm = BmCn we see that an element of Cn+m is the product of row Cn and a
column Bm . From the last equation we say that an element of Cn+m is the product of a row Cn and column Bm . We
just compare the linear combination of the 2nd row and 1st column entries of the matrices Cn+m and CnBm . This
completes the proof.

Remark 7.1.
By induction, it can be proved that for all integers m,n ≤ 0, (20) holds. So for all integers m,n, (20) is true.

Corollary 7.1.
For all integers m,n, we have

Pn+m = Pn−2Pm +Pn−3Pm+1 +Pn−4Pm−1, (21)

En+m = En−2Pm +En−3Pm+1 +En−4Pm−1, (22)

Sn+m = Sn−2Pm +Sn−3Pm+1 +Sn−4Pm−1, (23)

An+m = An−2Pm + An−3Pm+1 + An−4Pm−1. (24)
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8. Conclusions

Sequences have been fascinating topic for mathematicians for centuries and the sequences of numbers were widely
used in many research areas, such as physics, engineering, architecture, nature and art. Sequences of integer number
such as Fibonacci, Lucas, Pell, Jacobsthal are the most well-known second order recurrence sequences. The Fibonacci
numbers are perhaps most famous for appearing in the rabbit breeding problem, introduced by Leonardo de Pisa in
1202 in his book called Liber Abaci. The Fibonacci sequences are a source of many nice and interesting identities. A
similar interpretation exists for Lucas sequence. For rich applications of these second order sequences in science and
nature, one can see the citations in [48].

As a third order sequence, we introduce the generalized Padovan sequence (it’s four special cases, namely, Padovan,
Perrin, Padovan-Perrin and modified Padovan sequences) and we present Binet’s formulas, generating functions, Sim-
son formulas, the summation formulas, some identities and matrices for these sequences.

Third order sequences have many applications. As mentioned in Introduction, the plastic number is used in art
and architecture and Richard Padovan studied on plastic number in Architecture and Mathematics in [58, 59].

We now present some other applications of third order sequences.

• For the applications of Padovan numbers and Tribonacci numbers to coding theory see [70] and [7], respectively.

• For the application of Padovan numbers to Gaussian numbers, see [82].

• For the application of Pell-Padovan numbers to quaternions and groups see [83] and [20], respectively.

• For the applications of third order Jacobsthal numbers and Tribonacci numbers to quaternions see [14] and [13],
respectively.

• For the application of Tribonacci numbers to special matrices, see [8].

As future works, we plan to study on the other third order and higher order generalized sequences.
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[64] Şahin, A., On the Generalized Perrin and Cordonnier Matrices, Commun. Fac. Sci. Univ. Ank. Sér. A1 Math. Stat.
66(1), 242–253, 2017. DOI: 10.1501/Commua1_0000000793

[65] Scott, A., Delaney, T., Hoggatt Jr., V., The Tribonacci sequence, Fibonacci Quarterly, 15(3), 193–200, 1977.
[66] Seenukul, P., Netmanee, S., Panyakhun, T., Auiseekaen, R., Muangchan, S., Matrices which have similar properties

to Padovan Q -Matrix and its generalized relations, SNRU Journal of Science and Technology 7(2), 90-94, 2015.
[67] Shannon, A., Tribonacci numbers and Pascal’s pyramid, Fibonacci Quarterly, 15(3), pp. 268 and 275, 1977.
[68] A. G. Shannon, A.G., Anderson, P.G., Horadam A.F., Properties of Cordonnier, Perrin and Van der Laan numbers,

International Journal of Mathematical Education in Science and Technology, 37(7), 825–831, 2006.
[69] Shannon, A.G., Horadam, A.F., Anderson, P.G., The Auxiliary Equation Associated With The Plastic Number,

NNTDM 12(1), 1-12, 2006.
[70] Shtayat, J., Al-Kateeb, A., An Encoding-Decoding algorithm based on Padovan numbers, arXiv:1907.02007, 2019.
[71] Sloane, N.J.A., The on-line encyclopedia of integer sequences, http://oeis.org/
[72] Sompong, S., Wora-Ngon, N., Piranan, A., Wongkaentow, N., Some Matrices with Padovan Q-matrix Property, AIP

Conference Proceedings 1905, 030035, 2017. https://doi.org/10.1063/1.5012181
[73] Sokhuma, K., Padovan Q-Matrix and the Generalized Relations, Applied Mathematical Sciences, 7(56), 2777-2780,

2013.
[74] Sokhuma, K., Matrices Formula for Padovan and Perrin Sequences, Applied Mathematical Sciences, 7(142), 7093-

7096, 2013.
[75] Soykan, Y., Summing Formulas For Generalized Tribonacci Numbers, Universal Journal of Mathematics and Ap-

plications, 3(1), 1-11, 2020. DOI: https://doi.org/10.32323/ujma.637876
[76] Soykan, Y., Simson Identity of Generalized m-step Fibonacci Numbers, Int. J. Adv. Appl. Math. and Mech. 7(2),

45-56, 2019.
[77] Soykan, Y. Tribonacci and Tribonacci-Lucas Sedenions. Mathematics 7(1), 74, 2019.
[78] Spickerman, W., Binet’s formula for the Tribonacci sequence, Fibonacci Quarterly, 20, 118–120, 1982.
[79] Spinadel, V.W., Buitrago, A.R., Towards van der Laan’s Plastic Number in the Plane, Journal for Geometry and

Graphics, 13(2), 163-175, 2009.
[80] Stewart, I., Tales of a Neglected Number, Mathematical Recreations, Scientific American, 274(6), 102–103, 1996.
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