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Abstract: In this article, we investigated an age-structured model of malaria transmission dynamics. The population was di-
vided into four parts (susceptible, latent, infectious and recovered) in the first and third patch according to their
epidemiological statuses. In the second patch, it was divided into three parts (susceptible, latent and infectious). We
allowed migrations in all three patches. After determining the RO, the local and global stabilities of the disease-free
equilibrium point were studied. We have shown the existence of an endemic equilibrium point. We ended our study
with numerical simulations.
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1. Introduction

Malaria, a vector-borne disease caused by the bites of infected female mosquitoes, is responsible for approximately
409,000 deaths per year worldwide according to the World Health Organization [1]. Its devastating effects mainly affect
the sub-Saharian region where 94them, children under five years and pregnant women are the most vulnerable groups
wich approximately 670f deaths. Although efforts of the government in different African countries are increasing every
year, malaria remains one of the major public health problems faced by these countries. In the way to understand this
helf problems mathematical models provide useful tools for the comprehension of dynamics of malaria transmission.
Since the paper of Ross and MacDonald [2], various extensions of their models have been published. The model we
propose here extends the ideas in [3] and [4]. The mathematical analysis follows the approaches of [3], [4], [5] and
[6]. The paper is organise of follows: in section 2, we formulate the model. In section 3, we shows the existence
and uniqueness of the solution. Section 4 deals with the analysis of the model by calculating the basic reproduction
number after determining the steady state. In section 5, the existence of the endemic equilibrium point is examined.
We finish our work in section 6 with the numerical simulations and concluate in section 7.
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2 Age-structured three-patch model of malaria transmission dynamics in Chad
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Fig. 1. Flow diagram of malaria transmission in three patches

2. Formulation of the model

This mathematical model will take into account the migrations in the three endemic areas, the effects of acquired
immunity against the disease and the temporary nature of this immunity in the human population. We represent
respectively by S; (¢, a), E; (¢, a), I; (t,a), R; (t, a) for Susceptible, Latent, Infectious, and Withdrawn humans. Similarly,
we note respectively by S,, (¢, @) and I, (f, a) susceptible and infectious mosquitoes. The model parameters are:

¢ N (t,a) and N, (t, a) represent total populations for humans and mosquitoes, respectively.

eI (@)A;(r) and Ty, (a)A; (2) represent the infection forces for humans and mosquitoes respectively.

*I';(a) and 'y, (a) represent the probabilities of becoming infectious to humans and mosquitoes, respectively

e 1; (t) is the total number of infection sources

* ; (a) is the pitting rate.

* b; (a) and by, (a) birth rates for humans and mosquitoes respectively

e 1(a) and p, (a) represent the natural mortality rates imposed on all compartments for humans and mosquitoes,
respectively.

* 1 (a) is the death rate due to the disease.

¢ (1 (a) is the rate of passage from the latent class to that of the infectious.

¢ v;(a) is the transition rate from the infectious class to that of the retired.

* a; (a) is the transition rate from the class of withdrawn to that of susceptible.

*n:1j, e1j, prj (Lj=1,2,3 with [ # j) denote respectively the migration coefficients of susceptible, latent and infec-
tious. We note a,, that of the retired, m = 1 and m = 3.

¢\, is the initial population at patch 1.

We denote by a, the maximum age for the human population.

The general dynamics is shown in the figure as follows:

The black arrows indicate the passage from one class to another in the same patch, the red arrows represent the
migrations of the human population in the different patches and the dotted lines indicate the possibility for the human
or mosquito population to be infected.

This dynamics is governed by the following system of partial differential equations:
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The initial and boundary conditions of the model are:

$1(1,0) = [¥bi(@ N, (t,0)da

I;(t,0) = E;(t,00=0
Ry (£,0) = R3(,0)=0
SUZ(IVO) = NUZ(IVO)
I, (£,0) = 0

and

S$1(0,a) = So(a)

E;(0,a) = Ey(a)
I;0,a) = Ip(a)
4 Ri(0,a) = Ry (a)
R3(0,a) = Ros(a)

Sy, 0,a) = Sy, (@ with 1=1,2,3
IU[ (Ora) = IUO[ (a)

Let N (t,a) = Ny (t,a) + N> (t,a) + N3 (t,a) and N; (t,a) = n;N (t,a), with 1} + o + 3 = 1.

3 3
N(t,a)=) (S;(t,@)+E;(t,a) +I;(t,a) + R\ (t,@) +Rs (t,a), N, (t,a)=) (S, +1,)
=1 =1

and
b(a) =m1by (a) + 2Dz (a) + w3 b3 (@)
Adding all equations in system [1], we get:

(%+%)N(r,a)

(b(@)-p(@)N(t,a) - Y3, (@) I (t,a)
(&+&)vta

(by (@) — py (@) N, (t, a)

The first equation of this system clearly shows that the total population is affected by the disease.

((%+%)Sl(t,a) = by (@) N1 (t,a) + a1 Ry (¢, a) + asR3 (£, a) + 12182 (¢, a) + 13183 (£, a)
—[m2+nz+T1(@) A1 (1) + p(@)] Sy (1, a)

(%+%)E1(t,a) = T1(@) A1 (1) S1(t,a) +€2Ex (t,a) +€31E3(t,a) — [€12 + €13+ P1 (@) + u(a)| Ey (1, a)

(Z+&)nta = pr@E (@ +pal(t,a)+psls(t,a) - [p1z2+p13+71 (@ +p(@ + 1 (@] 1 (1,

2+ R(ta) = Y1(@ I (t,a) - [3a1 +p(@)] Ry (, @)

24+21S(t,a) = ba(a)Nz(t,a)+a1Ry (t,a) +asRs (t,a) + 1281 (¢, @) + 13255 (1, @) + y2 (@) I (1, @)
—[n21+n23+T2(@ A2 (1) + p(@)] S2 (¢, @)

(%+%)E2(t,a) = T2(@A2(t)S2(t,a) +e12F) (t, @) +e32E3 (t,a) — [€21 + €23 + B2 (@) + p(@)] Bz (, @)

(%+%)Iz(t,a) = P2(@) E2(t,a) + p121 (1, @) + p32 I (1, @) — [p21 + p23 + V2 (@) + (@) + p2 (@)] Iz (1, @)

(%+%)S3”’“) = bs(a) N3 (t,a) + a1 Ry (t,a) + asRs (t,a) + 01351 (¢, a) + 12382 (¢, a)

) — [n31+m32 + T3 (@) A3 () + p(@)] S3 (¢, @)

(%Jr%)Es(t,d) = T3(a)A3(t)S3(t,a) +€13E) (,a) +€x3E3(t,a) — [€31 + €32 + P3 (@) + p(a)| E3 (1, a)

(%+%)Is(r,u) = Ps(a) B3 (1,a) + p1s1y (1,4) + p2s Lo (£,a) = [p31 + psa + 3 (@) + p(@) + p (@)] I3 (1, @)

(%+%)RS(I,@ - y3(a) I3 (t,a) - [3az + p(a)| Rs (t, @)

(&+&)s0 o = by, (@) Ny, (t,a) = [Ty, (@) Ay (1) + 1y (@)] So, (1, )

(Z+&)mea = Loy (@)1 () Suy (£,0) = 1y (@) Iy, (8,@)

(2+L)sn @ = by, (@) Ny, (£,@) = [Ty, (@) A2 (D) + 1 (@)] Sy, (1, @)

(%+%)1yz(t,a) = Ty, (@) A2 (£) Sy, (£,a) — iy (@) I, (2, @)

(%+%)Sys(t,a) = by, (@) Ny, (t,a) — [Ty, (@) A3 (8) + 1y (@)] Sy, (2, @)

(%+%)1y3u,a) = Ty, (@) A3 () Sy, (1, @) — iy (@) Iy, (1, @)

D
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The infection strength used in this work is given as in [4]:

01=T1(@A; (1) =Fz(a)f0 +(,01 (a)(

where 0; =

Ni(t,a)
Nul(t,ﬂ)

Il (ty a) +611Vl (tr a)
Ni(t,@)

da

with 1=1,2,3.

For the purpose of the analysis, we introduce the following fractions:

si(t,a)
el (t,a)
ij(t,a)
{ na
r3(t,a)

svl (t; a)

il/l (tr a)

Sl(t,a)
N(t,a)
El(t,a)
N(t,a)
Il(t,ll)
N(t,a)
Ri(t,a)
N(t,a)
R3(t,a)
N(t,a)
Sul(tyﬂ)
Ny(t,a)
Iul(t,ﬂ)

Ny(t,a)

We get the following normalized system:

0 0
(a_t“Lﬁ
0 ol
(E"‘%
a 0
(m+%
0 0
otV oa
ol 0
3t T aa
0 ol
(m+ﬁ
i) 0
(E’L%
0 0
(&Jrﬁ
0 0
(EJF%
ol 0
(m+a
0 0
(m+&
ol 0
(&Jfﬁ
a 0 | ;
ot 3a
ol 0
ot T aa
ol ol
ot t 3a
ol o)
(&Jfﬁ
o , 0);:
(i +)

m1by (@) + ayr1 (8, a) + asrs (¢, a) + 2182 (8, a) + 13183 (1, @)
—[mz+ms+b@+T1(@A () -3, (@) i) (1,a)] 51 (t,a)
I (@) A1 (2) s1(8,a) +ez1e2 (8, a) +e31e3 (8, a)
—lerz+es+ Pr(@) +b(a) - X3, (@) i) (£,a)] e1 (,a)
B1(a) e (t,a) + p21i2 (1, a) + p3113 (£, a)
—[p12+p13+Y1(@ +p1 (@ +b(a) - X3, (@) iy (t,a)] iy (t,a)
y1(@)iy (t,@) = [3ar+b(a@) - X3 w (@) i) (t,a)] r (t,a)
moby (a) + a1 (£, a) + azrs (£, a) +n1281 (£, a) + 13283 (8, a) +y2 (@) iz (£, a)
—[n21+m23+ T2 (@ A2 (1) + b (@) = X7_, pi (@) i (1, @) 52 (1, @)
o (@) A2 (2) 52 (8, a) + €121 (8, a) + €323 (£, @)
—[e21+ €23+ Ba (@) + b(a) - X3_, 1 (@) iy (t,a)] ex (1, @)
B2 (a) ex (1, a) + p12i1 (t, a) + p3213 (£, a)

—[pa1+ P23+ p2 (@) + b(@) +y2 (@) = X7_, w1 (@) iy (£, @) iz (1, @)
m3bz (a) + ayri (t,a) + azrs (t,a) +n1351 (¢, a) +12352 (£, a)
—[ns1+n32+b (@) +Ts(a) A3 (1) - ZL wi(a) i (t,a)] s3(t,a)
I's (@) A3 (1) s3(t,a) +e13e1 (&, a) +ex3ex (t,a)

—[es1 +esa+ 3 (@) +b(a) - X3, (@) iy (1,a)] e3 (1, @)

B3 (a)es (t,a) + p13iy (t,a) + p23iz (£, a)
—[ps1+psa+ps (@ +b(a)+ys(a) - X7, pi (@) iy (t,a)] i3 (t,a)
y3(a)is(t,a)— [3as+b(a)-X_, (@) i) (t,a)] r3 (1, a)
by, (@) = [Ty, (@ Ay (8) + oy (@)] 5y, (£, @)

Ty, (@) A1 (8) sy, (8, @) — py (@) Iy, (£, Q)
by, (@) = [Ty, (@) A2 () + py (@] sy, (£, @)

Ly, (@) A2 () sy, (8, a) — py (@) By, (£, @)
bys (@) = [Ty (@) Ap (1) + iy (@)] 50, (1, @)

Ty, (@) A3 (8) Sy, (8, @) — iy (@) Iy, (£, Q)

2

with the following boundary conditions:

s1(1,0)=Ar;e1(2,0)=;(£,0) =1, (£,00=0

with A+ Ax+A3=1

A; denotes the proportion of the initial population of patch L
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3. Formulation of the model into an abstract Cauchy problem

To show the existence and uniqueness of the solution of the system (2), we first transform it into a non-
homogeneous abstract Cauchy problem that we solve by the theory of Cy-semi-groups.

Consider the Banach space X defined by X = (L' [0, a. [) ' equipped with the norm:

3
loll = XX loisll+ X ([0, |+ |0i]) with (15 e 2,31 x 11,23, 41\ 12,0
1 j =1
where
pla) = (11 (@), 912 (@), 013 (@), P14 (@), P21 (@), P22 (a), P23 (@), P31 (@),

T
¢32(a),p33(a), 34 (a),ps, (@), i, (@),ps, (@),pi, (@),ps, (@),i, (a)) €X

and .|| is a norm on L! [0, a. [. Note

Q: = {(Sl,el,il, Iy, $2,€2, i2r83)e3!i3!r3)sl}l!i1/[)€X+:
0551+e1+i1+r1s1,0532+e2+i251,05s3+e3+i3+r351,05svl+i,,lsl}

with 1=1,2,3.
The normalized system state space where X, = (L [0, a..[) 17 and L} [0, a, [ denotes the positive cone of L' [0, a.[.
Let A be the linear operator defined by

lyy

T
(Ap) (@) = (A11,A12,A13,A14yA21,A22,A23,A31,A32,A33,A34,Asul ,Aj ASUZ’Ai,,Z;As,,SrAiUS)

To determine the components A; ;, we neglect the terms of order two and those which are not multiplied by the terms
s, ey, iy, 17, Sy, and iy, in the system (2), we thus obtain:

0
Ann —( (p“ = (m2+ms+b@)911,0,0,a1014,m21921,0,0,731931,0,0, a3¢34,0,0,0,0,0, 0)

App = (0, "’12 (€12+ €13+ b(@) + b1 (@) 912,0,0,0,€219922,0,0, 31935, 0,0,0,0,0,0,0, 0)
Az = (0,,31 (ﬂ)(mz,—— —(p12+p13+b(@+ (@) +71 (@) 913,0,0,0, p21923,0,0, p31933,0,0,0,0,0,0, 0)
Ana = (0 0,71 (@) 13, — 243 (3a1+b(a))(p14,0 0,0,0,0,0,0,0,0,0,0,0, 0)
Ag1 = (7712(,011,0 0,a1014,— — (n21+n23 + b (@) 921,0,0,732¢031,0,0, 063<P340,0,0y0,0,0)
Agy = (0 €12¢012,0,0,0,— 222 (e21 +€23+ﬁ2(a)+b(a))(p22,0 0,€32032,0,0,0,0,0,0,0, 0)
Agz = (0 0,012¢13,0,0, B2 (a) (,022,—— — (P21 + P23 + 72 (@) + p2 (@) + b (@) 23,0,0, p32¢933,0,0,0,0,0,0, 0)
Az = (7713%011,0 0, 061(/)14,1723(,021,0 0,- (p31 — (n31+n32+ b (@) ¢31,0,0,3¢34,0,0,0,0,0, 0)
Agp = (0 €13¢12,0,0,0,€23¢922, 0,0, — (e31 +e30+ B3 (@) + b (@) 932,0,0,0,0,0,0,0, 0)
Azz = (0 0,013¢913,0,0,0, p23¢23,0,0,— —(p31+ p32 + us (@) +y3 (@) + b(a) ¢33,0,0,0,0,0,0, 0)
Aga = (0 0,0,0,0,0,0,0,0, Y3 (a) P33, — “’34 — Baz +b(@) ¢34,0,0,0,0,0, 0)
45, =(0,0,0,0,0,0,0,0,0,0,0,~ W — by (@ s, 0,0,0,0,0]
q]lvl

A

Ly

=10,0,0,0,0,0,0,0,0,0,0,0,— —y,,(a)(p,VIOOOO)

<ps,,2

A5, =(0,0,0,0,0,0,0,0,0,0,0,0,0,-%522 ~ b,, (@ ¢,,,0,0,0)

i,
M (@gi,,0, 0)

A, = (0,0000000000000
( (ﬂAU3

Asv3 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,— 19,,3(61)(,03Vj )
A4, = (0000000000000000 wlv3—u,,(a)(p,,}3)
Let
B peX\gje ACI[0,a.[:
¢(@eDA) whereD(A) = { ¢ (0) = (b1 (a),0,0,0,b2 (a),0,0,b3(a),0,0,0, by, (@),0, by, (@),0, by, (a),0)

with AC [0, a, [ the set of absolutely continuous functions on [0, a. [.
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We also define a nonlinear operator F: X — X by

mib (a) - [9—11 (Qe13) (@) + 6, (Q(piyl ) (a) — 1 (@) P13 — 2 (@) P23 — U3 (@) <P33] P11

[% (Q13) (@) +64 (Q(Pivl ) (a)] @11+ (11 (@) @13 + 2 (@) P23 + 13 (@) 33] @12
(11 (@) 913 + 12 (@) @23 + p3 (@) P33] P13
(11 (@) 913 + 12 (@) Q23 + p3 (@) P33] P1a

by (a) - [% (Qea3) (@) + 62 (Q(Piyz) (a) — p1 (@) 13 — 2 (@) P23 — 3 (@) <P33] P21
[% (Qp23) (@) + 62 (Qtﬂin) (a)] P21+ [ (@) P13 + P2 (@) P23 + u3 (@) P33] P22
(11 (@) 913 + 12 (@) P23 + p3 (@) P33 ] P23
m3b3 (a) - (% (Q@23) (@) + 63 (Q(Pius) (@) — p1 (@) P13 — W2 (a) P23 — Uz (a) (,033) P31
(Fo) (@) = [% (Qga2s) (@) + 63 (Q(Pivs) (d)] @31+ [ (@) P13 + 2 (@) P23 + 3 (a) P33] P32

(11 (@) @13 + 2 (@) P23 + 3 (@) P33] P33
[11 (@) 13 + 2 (@) P23 + U3 (@) P33 ] P34

by, - [ % (Qou) @ +6:(Qpi,, | @] 0s,,
[9% (Qeur) (@) +6; (Q‘pi,,l) (a)] Ps,y

by, — | & (Qp21) (@ +04(Qps,, ) (@] s,
[e—ll (Qp21) (@) +6, (Q(Piyz) (a)] Psq,

b, — | (Qus1) @+ 61 (Qi,, ) @] s,
[el, (Qa1) (@) +6; (Q(pi,,s) (a)] Ps,,

(Quij) (@ =Fl(a)f0 "o (@@ (@daand (1, j)€{1,2,3} x {1,2,3,4}\ {2,4}
where

S1 (-)t))el (-)t))il ('vt))rl (-»t))sz('yt),ez(-yt))iZ(-)t))sg('yt),e3(-’t))ig(-)t)) ’

u(t) - ( r3 (-r t),svl (-) t),ivl (-) t)vsvg (-v t), il}g (-v t),svg (-) t))ivg (-) t)

We can therefore rewrite the system (2) in this form:

{d%”m = Au(t)+F(u(t)

u = Uy
with
o (@) :( so1 (@), e (@), i01 (@), 101 (@), So2 (), ep2 (@), in2 (@), So3 (@), eo3 (a), ’
0 i03 (a) » 03 (a) » Sv0, (a) ’ il}m (a) » Sv0, (ﬂ) ’ ivoz ((l) » Sv03 (a) ’ iU03 (a)

The following results give the properties of operators A and F:

3

Lemma 1. [[5], [7]] The operator A generates a Cy -semigroup of the bounded linear operators e’# and the space Q

is positively invariant by e/ .
Lemma 2. The operator F is continuously Frechet differentiable on X.

Theorem 3.1.

For each uy € Xy, there are a maximal interval of existence [0, t,qx) and a unique continuous mild solution u (¢, ug) €

X, t €0, tinax) for (3) such that :

t
u(n) = uoe“‘+f AUDE(u (1) dr.
0

Proof. [[5], [6]]
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4. Existence of local and global stabilities of the disease-free equilibrium

4.1. Determining the disease-free equilibrium point
To determine the disease-free equilibrium point, we consider the system (2). The regular state
(s1(@),e1(@),i1(@),r1(a),s2(a),ex(a),iz(a),s3(a),es3(a),iz(@),r3(a), s, (@),ip, (@), Sy, (@), iy, (@), Sy, (@), (@)

of the system (2) satisfying the following system of ordinary differential equations:

Lsi@ = miby (@) + arry (@) + asrs (@) + 12152 (@) + 03153 (a)
—[me+ms+b@+T1 @A (@-TL, (@i (@] 51 (@

Lej(@ = Ti(@M(@)s1(a)+ezner(a)+esies(a)—[erz+e+pr@+b@-X3 wa@i(a)e (a)
Lil@ = Pi(@er(a)+paiz(@)+psiiz(@—[y1(@)+piz+p13+m (@+b(@)-X3_ (@i (@)ii(a)
Lr = y1(@ i (@) - [3a1+b(a) - X3 w (@) i (@)]r (a)
d%Sz (@ = m2by (@) + a1 (@) + azrs (@) +N1282 (@) + 3283 (@) + y2 (@) iz (@)

= [n21+m23+ T2 (@ 7z (@) + b(@) - T3, 11 (@ 11 (@)| 2 (@)
dda er2(@ = Ta(@)Az(a)s(a)+eer (@) +eses(a— [€21 + €23+ B2 (@) + b(a) - Z‘;’:l w (@i (@) ez (a)
da ir(@ = P2(a)ex(a)+ przi1(a)+ psziz(a) — [p21 + P23+ P2 (@) + b(a) +y2 (@) —Z?zlﬂl (@) i;(a)] iz (a)

Lss(a) = msbs (@) + a1r1 (@) + asrs (@) + 11351 (@) + 12352 (a)

| = [n314 152+ s @25 @ + b (@ - X3, (@1 (@)] 53 (@) @

eg (@ = TI3(@As(a)ss(a)+ezer(a)+exzez (@) —[es1+esz+Ps(@)+b(@) - X3 (@) (@)]es(a)

da fLiz(a) = Ps(a)es(a)+pi3i1(a) + pa3iz (a) — [y3(a) + ps1+ p32 + p3 (@) + b (@) - X5, p (@) iy (@)] i3 (a)
Lrsa) = y3(@)iz(a) - [3az+b(a) - X3 w (@) i (@)]r3(a)

ddasul (@ = by (@ = [Ty (@11 (@ + 1y (@) 50, (@)

Liy (@) = Ty, (@) A1 (@) $0, (@) — o (@) iy, (@)

sy (@) = buy (@ = [T, (@ 2 (@) + 1y (@) | 1 (@)

Liy(a) = Ty, (@) A2 (@) Sy, (@) — o (@) iy, (@)

L, (@) = buy (@) = [Ty (@ A5 (@) + 1y (@) | 5, (@)

Liy (@) = Tu, (@) A3 (@) Sy, (@) — o (@) iy, (@)

where

— a+ 1
Ai(a) =f @ (a) (—iz (@) + 0,1y, (a))da
) 0,

with the border conditions: s;(0) = Aj, e;(0) = i;(0) = r;(0) = 0 where A; denotes the proportion of the initial
population of patch 1 with 1=1,2,3.

In the absence of the disease, the force of infection, the transition coefficients from the latent state to the infectious
state, from the infectious state to the recovered state, from the recovered state to the susceptible state, of migrations
for the latent, infectious, recovered, and the mortality rate linked to the disease are zero, we therefore obtain

disl (@ = mbi(a)+n215 (@) +n3153 (@) — [M12+013+b(a)] 51 (a)
Lsy(a) = maba(a)+ 1251 (@) + 13253 (@) — [M21 + 123 + b ()] 52 (@) 5)
Ls3(a) = mabs(a)+n13851 (@) + 12352 (@) — (131 +M32 + b ()] 53 ()
L, (a) = by, (@) — o (@) 50, (@)
By integrating this system, we obtain:
3(1) (@ = Ale—foa+ (n12+n13+b(r))dr+f0a+ e_f":+ (m2+mis+b(m)dr (m1b1 (1) +,72152 () +n3152 (n)) dn
@) = Npen " arensbONry it gy e s DOV (7, by (37) 119 () + 13258 () ©®)
sg (@) = A3e—fo+(1731+1732+b(r))dr+f0a+ e (7731+7132+b(rL)dT (3bs (77)+771351 (77)"‘77233(2) (77)) dn
s?,l (a) = Al,leffo " by(nde + [ e h Ty, L (n)dn

where 1=1,2,3.
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4.2. Determination of reproduction number

To determine the basic reproduction number, we introduce a perturbation around the disease-free equilibrium:

si(t,a)
e;(t,a)
ij(t,a)
2 n(ta
r3(t,a)
Sy, (¢, a)
iy, (t,a)

Sit,a) +s) (a)
e/ (t,a)+ €] (a)
i (t,@) + i) (@)
m1(t,a)+ 1) (a)
73 (t,a) + 1y (a)
5y, (1,0) + 5y, (@)
iy, (t,a) + 19, (@)

where 1=1,2,3. We obtain the following system of equations:

(%+%)‘1(r,a)
L+ 21i0(t,a)
2+ 205 (ta)
2+ 215ta
(%+%)e_2(t,a)
(&+&)nwa
(6%+%)s_3(t,a)

(%+%)e_3(t,a)
(&+&)bwa
(2+&)m0a
55+ 35|50 (@)
L4+ 215, (ta)
24+205,(ta)
%+%)E(t,a)
R )
L4+ 215, (ta)

St a) =5/ (a) M
5, (t,a) =55, (@) e

a171 (1, @) + azT3 (1, a) + 12152 (£, @) + 13153 (1, @)
~(Mm2+m3+b@)F (1,a) - [N @K (@ -3, (@7 (1, @) ) (@)

1 (@)A1 (@) s (D) + €213 (£, @) +€3185 (£, a) — [€12 + €13+ B1 (@) + b (@) &1 (£, @)

Br (@)1 (1,a) + pa1iz (£,4) + 313 (£,a) — [y1 (@) + pr2 + p13 + p1 (@) + b(@)] 11 (2, 4)

= Y1 (@i (t,a) - [Bai + b(@)] T (t,q)

= a7 (t,a) +asTs(t,a) +m2s (8, a) + 03253 (8, a) — (n21 + 123 + b (@) 52 (1, @)
+y2(a) iz (1,a) - [Fz (@2 (@)= X3, i (@)ig (1, a)] s9 (a)

= T2(a)A2(a)s) (1, a) + €121 (1, a) + €383 (1, @) — [€21 + €23 + P (@) + b(a)] €3 (1, q)

= Bo(@)ed (@) +pi2i1 (t,a) + ps2iz (£, @) — [p21 + P23 + p2 (@) + Y2 (@) + b(@)] iz (1, @)

= a7 (ta)+asTs(t,a) +mss (8, a) + 12352 (8, a) — (031 +n32 + b (@) 53 (1, @)

-[rs@Xs@-5, m@i e S @

= T3@A3(a)sd (@) +e3er (£,a) + €238 (t,a) — [e31 + €32+ B3 (@) + b(@)] & (1, @)

= Bs(@e(t,a) +p13i1 (t,@) + pazia (t, ) — [y3 (@) + p31 + ps2 + i3 (@) + b (@) i3 (¢, @)

= Y3 (@) i3 (t,a) - [Bas+ b (@) T3 (t,q)

= by, (@) = py (@) Sy, (£,a) =Ty, (@) A1 () $Y, ()

= Ty, (@) (@A (@) 89, (@) — py (@) iy, (t,a)

= by, (@) — py (@) Sy, (£, @) — Ty, (@) A2 (a) $9, (@)

= Ty, (a) (@) A2 (@) $%, (@) — iy (@) iy, (1, G)

= by (@) — iy (@) Sy, (8,@) = Ty (@) A3 (@) 59, (@)

= Ty, (@) (@) A3 (@) 85, (@) — 11y (@) iy, (£, @)

Consider exponential solutions of the form:

ita=ij(@e'; T(ta)=T(a)eM;

1=1,2,3

el(t,a)=¢j(a)et;
iy, (1,a) =iy, (@) eM; with

)

(8)
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These solutions satisfy the following system of equations:

L5@ = @171 (@) + @272 (@) + 02152 (@) + 03153 (@) — (M2 + 113 + b (@) + 1) 57 (@)
-[n@h-rL w@i@| s @

Lo () T (@T1s) (@) + €213 (@) +€3183 (@) — [e1a+ €13+ f1 (@) + b (@) + A] &1 (@)

Li) (@) B (@er (@) + p21iz (@) + p31is (@) = [y1 (@) + 12 + P13 + 1 (@) + b (@) + A i (@)

L@ = Y1 (@i (@) —[3ar+b(a)+ AT (@)

L5 = a1 (@) +arT2 (@) +01251 (@) + 13253 (@) + (M21 +M23 + b (@) + A1) 2 (@) + 72 (@) 12 (@)

- [ @Te-2, w @i @) @
| @@ = P2 (@255 (@) + €121 (@) + €523(@) = [e21 + €23+ 2 (@) + b(@) + 4] &2 (@

diiz (@ = Pala)ed(a)+pizii (@) + psziz (@) — [p21+ p2s + 2 (@) + Y2 (@) + b(@) + A] iz (@)

L5 = a171 (@) + a2T2 (@) + 71351 (@) + 12352 (@) — (31 + 132 + b (@) + A) 53 (@)
-[B@T-1, m @i @] $@

Lo = T3 (@) T35 (@) +e13€1 (@) +e23€2 (@) — [e31 +e32+ 3 (@) + b(@) + A e3 (@)

Lis(@ = Ps(@es(@) +pisir (@) +p2siz (@) — [ys (@) +ps1+p32 + p3 (@) + b(a) + A] i3 (a)

L7 = y3(@) i3 (t,a) - [Bas+b(a) + A T3 (1, )

45 (@) = by, (@)~ (1o (@ +A) 5y, (@) =T, (@T ), (a)

Liy @ = Ty (@Ts5 (@) — (4o (@) +A) iy, (a)

where

= a+ 1—- — N, (t,a)
T :f (a)(—z (a)+0;i, (a)|da and =—
= ] 0, ! 1y Ny, (1, )
with the following boundary conditions:
51(0)=27(0)=i;(0) =77 (0) =5y, (0) =a(0) =0, withl=123.

We have the following expressions for the latent and infectious classes:

de(@=T(@T;s) (@+X3_ €€ (@)~ [zﬁzlez j+PBi@+Db(a) +A]e7(a) o
di@=pr@e(@+Y3, pjij(a@- [zj?:1 p1j+71(@) + i (@) +b(a) +A] i (a)
where 1=1,2,3 and [ # j. Consider the constants
Wiy & oand
such as
3 . 3 3. 3 3 _ 3 _
Y njej(@=) 7je, Y ejiej(@) =) cje(a) and Y pji@=)pjii(a
j=1 j=1 j=1 j=1 j=1 j=1
where 1=1,2,3 and [ # j. So we can rewrite the expressions for the latent and infectious classes as follows:
#61(@ =T1(@Tis (@) - |23, (e -Ej0) + Br(@ + b(@ + A] el (@ 0
Lija)=pi(@)e (@) - [Zj:] (Pl] le) +y1(@+ (@) +b(a) +7L]i_l(a)
wherel=1,2,3and [ # j.
Following an integration of the system (10), we obtain:
4 _ra
Z@ = Flf (T T 1611+ﬁl(1)+b(1)+/1)d1rl (m) <2 (n) dn an
0

and

— a _ra(y3 _y3 5
i (a):fo e h (Zj:lplj Zj:1P11+Yl(r)+,u1(T)+b(r)+/1)drﬁl(n)_l(n) dn 12)



10 Age-structured three-patch model of malaria transmission dynamics in Chad
By using (11) into (12), we obtain:
(@) = F_lfa e—fn“(2§=1pzj—2§=1pTzwl(r)+uz(r)+b(r)+/l)drﬁl (n) f” e—ff(z?dez,-—2§=1§+ﬁz(r)+b(r)+1)drrl e s? O dtdn (13)
0 0
To simplify writing the expression for (13), we reverse the order of integration using region equivalence:
{n¢),0=sn=<a0=<({<n}={n{),(<n<a0<(=<a}
and changing the integration borns, we obtain:

— —_[ra a a _ ra(y3 =BT —(My3 T
i (a):rlj(; e—f( (b(r)M)drrl (C)S? (of( e b (Zj=1(pz, p]z)+}'z(r)+uz(r))dre f((zjzl(elj e,l)+ﬁ1(r))drﬁl(n) dnd(

By permuting the variables 1 and ¢, we obtain :

_ __ra a a _ ra(s3 L _r¢(s3 o
i (a):rlfo e—fn (b(r)+l)drrl(n) s? (n)f e f(():j=1(m] sz)+Yz(r)+u/(T))dre fn(2j=1(611 €Jl)+ﬁz(r))drﬁl(o dcdn (14)
n

We have

J— p— a a
iVl (a) = ]"1/0 e_fr/ (llu(r)+7t)drrv1 (77) S?;l (n) dn (15)

By inserting (14) and (15) in the expression of T';, we obtain :

— J— a _ [a(y3 e
T, = Flfom @1 (a) (%foa e*fn (b(r)+/1)drrl(n) S(l) (77) fﬂae f( (ijl(m] le)+Yz(T)+H1(T))dT

e h(Ealeygepm)arg o e (16)
+Hlf0a e—fn“(ﬂv(TH/l)dTFVl (77) S?;l (n) dn] da
By dividing (16) by T; (like T; # 0), we get the characteristic equation
1 = f0a+ 01 (@ Bllfo e_fn“(h(r)+/l)drrl (77) S? (n) fna e_f(“(zj!ﬂ(plj—pTl)+Yl(T)+ﬂl(T))dT
¢ (Sl pm)arg o aran (17)
+0, e KDL, ()50 () dn) da
Denote the right term of (16) by G;(1), i.e,
G = [T pi@|g foe Jye@+hdrp, (m)s; () fy AT
1
R Tl po)dr g o g an (18)

+0, foa e—fnﬂ(ﬂu(THA)dTrw (77) ng (n) dn] da

We define the basic reproduction number by Ré =R! (0) = G4(0), i.e,

a _[a[y3 07
Ré = A" 1@ gi,foa e (b(r))drrl(n)fnae Il (ijl(m] P/z)ﬂ’z(r)wz(r))dr
( J—
Xe_f” (Z?=1(Elj_ejl)"'ﬁl('[))d'[ﬁl © d(dT)

+0; [o' e hy (o@drp () dn] da
The reproduction number is influenced only by the migration of infectious and latent as evidenced by its expression.

It makes it possible to study the local and global asymptotic stability of the disease-free equilibrium . Let’s note that
Ry = maxR(l) where 1=1,2,3
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4.3. Local stability of the disease-free equilibrium

Theorem 4.1.
The disease-free equilibrium point of the (2) is locally asymptotically stable (La.s.) if Ry < 1 and unstable if Ry > 1.

Proof. Itis obvious to see that G;()L) <0, lim G;(A) =0and Alim G (1) = +00. We know that the equation ([eq:17])

A—+o0
has a unique negative solution A* if, and only if, G;(0) < 1, hence, Ry < 1. Also, it admits a unique real positive (or zero)

solution if G;(0) > 0 ,hence, Ry > 1 (G;(0) = 1). To show that A* is the dominant real part of the solutions of G;(1) we
consider A = x + iy an arbitrary complex solution of the equation (18). Note that :

1=G;(A) = |G(x+iy)| < G;(x)

which indicates that R, (1) < A*. This proves that the disease-free equilibrium point is locally asymptotically stable if
Ry <1, and unstable if Ry > 1. O

Local stability in one subpopulation while the situation is unstable in the other is not possible because through
migration the latent, infectious compartments will not be empty. This situation does not allow stability in one sub-
population if the situation in the other is unstable. In other words if Ré < 1 does not mean to say that we have stability
in the patch 1, because if R(l) > 1, through migration we will have the presence of latents, infectious and retired in this
subpopulation and vice versa.

4.4. Global stability of the disease-free equilibrium

In this subsection we study the asymptotic behavior of the equilibrium point without disease if Ry < 1. Let us first
note that as y; and i; are bounded functions and the borns of the integral are finite, there is a positive constant C
which satisfies the relation:

a 3
Osf Y wm@it-a+t,1)dr<C 19)
1 =1

We have the following result:

Theorem 4.2.
The disease-free equilibrium point of the (2) is globally asymptotically stable if Ry <1 and C <In (RLO)

Proof. The proof of the theorem consists in showing that i; (¢,a) — 0; e; (t,a) — 0; r; (t,a) — 0 and s; (¢, a) — A;, when
t — +o0o. We can summarize the system (2) as follows:

(2+&)sta = by (@) + arr (£ a) + asrs (t,a) + [y2 (@) iz (£, @) si1=2]
~ (23, (i -70) + P @+ T @A (0 - T3, @ i1 (1, @) 515, @)

(&+L)ata = T@LOsEa-[2, (€-80)+Bi@+b@-Ti, m@i(t,a) e (t,0)
Proof.d (2+2)uta = B@eta- |3, (oy-P7)+11(@+m(@+b@-E m @i 10| ia

(%+% Im(t,a) = Ym(@im(t, @)= [3a;+b(@) - X3 w1 (@) i) (t,a)] 1 (£, @)

L4005, (ta = by, (@) — [Ty, (@) A1 (8) + py (@)] s, (£, )

L+, (ta) = Ty, (@) A (8) sy, (t, @) — oy (@) iy, (£, @)

CHONE i 01@ (g1 (6, + 011y, (1, @)

(20

with1=1,2,3 (I # j) and m=1,3. By solving the latent evolution equation of the system (20) by the method of charac-
teristics, we obtain the following system of ordinary differential equations:

da

dt
1 1
da _ de;(t,a)
! T @A Ds(6,@)= L3, (e17-71)+B@+b(@)-X3_, m(@iy(,0)|er(t,0) (21)
di _ de;(t,a)
 _

L@ (D51(6,@)= | £3_, (e1j-E71) +i(@+b(@)-T3, (@i (t,a) | ei(t,0)
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The first equation of the system (21) leads to the solution t - a = c which is the characteristic curve, while the second
and third equations of (21) give respectively :

delbd  — Ty (@) Ay (1) sy (t, @) — [Z, (ej-€)+pr@+b@-X3 1m(a)il(t,a)]el(t,a) (22)

and

dej(t,a)
dt

For next steps, we use only the solution of the equation (22), we obtain :

a _ ra(y3 T _y3 i (t—
e (t,a):\/(; e fq ():j:](é'l] €]l)+ﬁl(T)+b(T) Zl=1l~ll(T)ll(t a+T,T))dTFl (T])/ll [t—a+n) Sl(t-d-i*’f],f])dﬂ,ifﬂft 24)

=T (@A (1) s;(t,a)— e (t,a) (23)

3
Z €1j—€j1)+Pi(a) +b(a) - Zuz(a)u(t a)
j=1 =1

By proceeding in the same way, on the equations reflecting the evolution of the infectious in the system (20), we
obtain:

a _ rafy3 L _v3 Pore
il(t’a):fo e fg (ijl(m] 0j1)+Y 1@+ (1) +Db(7) Yoo M (@i (e a+r,r))d1ﬁl(o e(t—-a+0,difast 25)

By using (24) into (25), we obtain:

i|(t,a) = f e {( j= lpl] 0;1)+Y1(0)+ (1) +b(1)— Zl lpl(r)il(t—a+r,r))drﬁl(()

e —fl(z3 (e1j-€77)+B1 (D +b(@)-X5_, W (@ij(t-a+t T)) T (26)
x fg e Im\Ei=STETRL 1=t B T (A (t-a+n)si(t—a+nn)dndl,if a<t
After reversing the order of integration using the following domain equivalence:
{n,0),0sn<a0<{<n={n0),(<n<ad<{<a}
and by permuting the integration borns, (26) becomes:
Lt = f° oln Tl m@it-a+t,n)dr , —fna(zf;_l(elj—§)+ﬁz(r)+b(r))dr T () A (1= atn) s (¢ - atn.n)
27
% f e_ ¢ ( =1 (15— Pﬂ)ﬂ’l(T)+#z(r)+b(r))drﬁ O dndl,ifast @7
Similarly we obtain
a a
iy, (t,a) = fo el @At (A (£ - a+n) sy, (t—a+n,n)dn (28)

By injecting the equations (27) and (28) into the

as 1
A1 (1) =f 1 (a)(—iz(t, a)+0,iy, (1, a)),
0 0

we obtain :

A = 0a+ 01 (a) &foﬂ efn“Z?:1yl(r)il(t—a+r,r)dre*fn“(2?:1(eljfﬁhﬁl(rﬂb(r))dr
I

Ti(m)A(t—a+n)s (t—a+nn)
xfie S5 (Pu*pTz)+yz<r>+m<ﬂ+b(”)””ﬁ ) dndt @

+0, [y e —Jy p@dr o M)A (t—a+n)s (t—a+17, )dn]da

Using the fact that s; (t—a+n,n)<A; and s, (t—a+n,1)<A;, we obtain:

A (6 < A, f0a+ @1 (a) glfoa efnaz?zl/‘tl(T)il(t*llJrTyT)dTe_fqa(Z:;:](elj_rjl)+ﬁl(7)+b(T))dTrl (n) A (t— a+n)
1
(30)
_ (My3 D7 a
anae Je (ijl(Pl] p,l)+y1(r)+,ul(T)+h(r))drﬂl O dndl +Qlfoa e_fn uy(r)drryl (77) A (t— ‘H'n) dn] da

By using the suplimit of (30), using the relation (19) and Fatou’s lemma, we obtain:

lim JLI (=< eCR?lirnsupAl €3]

As eCRO < 1, we then have limsupA,; (f) = 0 and, according to (27) and (28), i; (t,a) — 0 and i,, (£,a) — 0 when
t — +o0o. Thus, ¢;(t,a) — 0 wher{?f»o+oo. Using the fact that
sit,a)+e(t,a)+iy(t,a)+r(t,a)=N; and sy, (,a)+iy (t,a) =7y,
we obtain s; (¢, a) — A; because r; (t,a) — 0 when ¢ — +o0. This completes the proof of the theorem. O
Similar to local stability, migration flow prevents us from having the global stability of the disease-free equilibrium
in one subpopulation if it is not in the other.



N. Madjissembaye et al. / Int. ]. Adv. Appl. Math. and Mech. 11(2) (2023) 1-19 13
5. Existence of the endemic equilibrium

In this section, we will demonstrate the existence of a single endemic equilibrium point.
The existence of this point is given by the following result:

Theorem 5.1.
The unique endemic equilibrium point is of the form

E" = (s] (a),e] (a),i] (@),r5 (a@),s; (a),e; (a),i; (a),s; (a),e3 (a),i3 (@),r; (@),s;, (@),i, (a),s,,(a),i,, (@),s;, (@),i, ()
when R(I] > 1, which corresponds to the case where the disease persists in the three subpopulations where I=1,2,3.
Proof.

E* =(s] (a),e] (a),i] (@),r; (a),s; (a),e; (a), i) (a),s; (a),e5 (a),i3 (@),r3 (a),s,, (a),i, (a),s,,(a),i,, (a),s;, (a),i,, ()

satisfies the following system of differential equations:

Lsi@ = miby(a)+arry (@) +asrs (@) - [Z?zl(mj—n_jl)+b(a)+rl(am;* -5 @i (a)] 5@
+(y2(@) i3 (@) if 1=2)
%e; (@) = Li(@A]s] (@)— [Z‘?zl (€1 —€1) +Br(@+Db(a) - X3, i (@) i} (a)] e (@)

ij(a) = Bi(a)e; (a)— [Z?Zl (o1j—Pj0) +vi(@+p (@) +b@ -3 p(a)if (a)] i (@)
Ym (@) iy, (@)= [3a;+b(a) - Y3, w(a)if @] ry, (@)
= mabs (@) +ayr] (@) +asr} (@) +ys (@i - [zfj.zl (mj ~T51) + D@+ T3 (@A — X3, (@i} (a)] 53 (a)

A
§|&§'l&§~|&
& 3

oy

23

| |

%s:l (a) = by, (@) = [Ty, (@A} + iy (@)] 57, (@)
%i;z (@) = Ly (@A s}, (@) — py (@) iy, (@)
A= @ (ki @+0,i}, (@) da

(31D
with1=1,2,3 and I # j and m=1,3. The edge conditions satisfy: s; (0) = A; = s;, (0), €; (0) = i; (0) = r; (0) = 0 where

A; denotes the proportion of the initial population of patch L
By integrating the system (31), we obtain:

_ra 3 e T *_yv3 .
i@ = A b (Zes (T} - i @)ar

by (n)+ X5, aary (n) + (2 (n) i3 (n) iflzz)]

a 3 —_— * 3 e (32)
xeif'l (Zj:1(mjfnﬂ]vtb(r)vtl“l(r)/ll X3 m@i )drdn
a a — -
el (a) :f L QA s @) s (Z?ﬂ(elj—fjl)+ﬁl(T)+b(T)—Z?:1UI(T)II )drd(' (33)
0
il* @ - faﬁl (n) e; (17) e—fnu()j:l(plj_Tﬂ)+YI(T)+ulqum_z?:lpl(r)if)drdn, (34)
0
; “ o (o = I (Bairb@-Ei, pi i} ) dr
r (a) :fo yi(n)if (n)e 1=1 i dn, (35)
a * a a ra *
s;z (a) = Ale—fo (Fv, ™A +uu(ﬂ)d7 +f by, (1) e_f” fo (Fvl ™A +uu(r))d7dn (36)
0
and
“ [ med
i @= [T )75, () e TRy @)

By using (33) into (34), we obtain:
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i@ = [ i) [T 4757 © e KTy T posbn-sh o o) gy

xe~ F (22 (or=P) i@+ @+b-E3, @i} @) dr dn

Similarly, to calculate the inner integral, let’s reverse the order of integration and use the equivalence of regions:
{n,¢),0=n=<a0<(=n}={n{),(<n=<a0<(=<a}
A change of integration bounds we then obtain:
@ = @Ay @ e KT pe T i o)
y f(a B (77) e—f,,”(2§=1(pzj—pTz)ﬂq(T)+u1(r)+b(r)—2?:1ul(r)i,* (T))drdnd(

and permuting 77 and ¢ variables , we obtain :

_r¢(y3 T _y3 %
ir@ = JeTim)Ayst (n)e (53, leyy =)+ B +b @) -E, (0} (7)) dr 8
% fnaﬁl 4 e‘f(a(zi"ﬂ(PU_pT’)ﬂ,l(T)H”(T)H)(T)_Z?:lW(T)il*m)drd(dn

By using (37) and (38) into the expression of 17, we obtain :

L9 ()5t (n) e~ SB35 oo

AL = LT era
% f'la e f(a(ziﬂ(plj_pTl)+71(T)+H1(T)+b(r)—2?:1 w @i} (T)]dr d¢dn (39)
+6; fg“rvz (Tl) /1; S;l (7]) eifn Hv(T)den] da

4 e -k
1= [ or@|g fi'Ti(m)s; (n)e‘fn(Z?ﬂ(flf‘efl)+’3””+”(”‘2?=1'”””z @)ar

<[ BI)e R0 oy i@+ i@+ b@ -5, i} @)dr 4 cdn (40)
+elf0arvl (77) s:l (Tl) effnﬂuu(r)drdn] da
Let G, ()L}“) the function given by the right-hand side of the equation (40), we deduce the existence of an endemic
equilibrium point when the equation (40) admits a positive solution. For /1;‘ =0, we obtain 5;‘ (a) = s? (a) and sjl (a) =
sgl (a) so the basic reproduction number is given by:

RY = 2 gu(@) | & T ()0 (n) 5 (Eimlet T b S peni)ar

« fna 1) e*j}a(zi:l(Plj*Tﬂ)+Yl(T)+ﬂl(T)+b(T)*Z?=1#Z(T)il* (T))deCdU 41)
00Ty ()5, ()5 PO ) da

vl

To complete the proof of the existence of the endemic equilibrium state, it suffices to show that the equation (40)
admits a positive solution. Since G; (0) = Ré > 1 and,

ij(@<1,andi, (a)<1

we deduce from (40) that for }L;‘ > 0 and 6, constant:

A6 ) =@ [ ) (o) B om0 Ko
% [21Q) e—f(“(zﬁzl(sz—PTz)Wz(er(r)+b(r)—2§;1#z(r)i;(r))drdCdn (42)
# 01T (), () e 0 an] da < T i g1 (@ da
So for /1;‘ # 0, starting from the relation (42), we obtain:

07 +1 1
01 A

a+
Gy (A)) < f @i (a)da (43)
0
The right hand side of (43) tends to zero when A; tends to infinity. However G} (/L}*) =1 admits a unique solution
in the interval [0, +oo[. Moreover, if /1}k > Oa" ¢ (a) da then has G; (JL;‘) < 1. Hence the equation (40) admits a unique
solution in the interval ]0, foa* @1 (@) da[ which proves the existence of a single point of endemic equilibrium. O
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Table 1. parameter values and their dimensions

Parameters
High transmission Medium transmission low transmission References
I';(a) 0.022 0.017 0.012 [2,14, 8]
Iy, (@ 0.48 0.36 0.24 [2, 10, 16]
@) (a) 0.40 0.325 0.25 [2, 10, 16]
b; (a) 0.00011 0.0000825 0.000055 [2,10]
by, (a) 0.13 0.13 0.13 [2,10]
u(a) 0.033 0.033 0.033 [2,10]
o (@) 0.052 0.052 0.052 [2, 10, 16]
uy(a) 0.00009 0.000054 (0.000018 [2,10]
B (@) 0.1 0.1 0.1 [2,10]
v (a) 0.00351 0.00351 0.00351 [10]
a;(a) 0.00055 0.001625 0.0027 [10]
[
nj j=113% (mj ~7j1)=-0.277% 3, (n —ﬁj,):o.N% 3, (nij-7j1)=033%  Estimation
€]j Z?:l (elj —Ejl):—0.135% Z?:l (elj —Ejl)ZO.OSS% Z?:l (elj —Ejl]:0.165% Estimation
pij 3, (p,j ~Pji)=-0135% 3, (p,j ~P1)=0.085% 3 (p1j~Pj1)=0165%  Estimation
Ny 0,033 0,033 0,033 [2, 16]
N; 5453 983 3235656 2467055 [20]
Malaria prevalence [37,4 - 83] [12,9 - 27,7] [1,3 - 6,3] [21]
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Fig. 2. Evolution of the human population of latent when Ry = 0.7 < 1.

6. Numerical simulations

In this section, we propose numerical simulations which aim to illustrate the asymptotic behavior of the number
of latent and infected individuals as a function of the basic reproduction numbers R(l) as predicted by the properties
from Section 4.

The parameters used for the simulation are given in the following table:

The curves of Figures 2 and 3 are obtained by choosing the values of the parameters such that Ry = 0.7 < 1. For
these two figures, we used the same parameters above to follow the evolution of exposed and infectious individuals
for each zone.

It appears from these curves that the most exposed population class is that of children under five (5) years of age.
This could be explained by the fact that living individuals in this age group have no temporary immunity against the
disease.
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Fig. 4. Evolution of the human population of exposed and infectious when Ry = 0.7 < 1.

Figures 4, 5 and 6 show the evolution of these same individuals (exposed and infectious), but each patch separately.

These figures were obtained using the high, medium, and low transmission parameters, respectively. The curves in
Figures 4 and 5 show that the number of individuals affected by malaria is growing up: the disease is endemic in the
age group of children. The curve in Figure 6 corresponds to the situation in which there is extinction of the disease in
the long term.

The curves of Figures 7 and 8 show the asymptotic behavior of the variation in the number of malaria cases in the
first two patches for Ry > 1. An endemic equilibrium is reached and is stable as stated by Theorem 6.
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Fig. 5. Evolution of the human population of exposed and infectious when Ry = 0.605 < 1.
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Fig. 6. Evolution of the human population of exposed and infectious when Ry = 0.58 < 1.
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Fig. 8. Evolution of exposed and infectious when Ry = 13.58 > 1.
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7. Conclusion

We studied a three-patch age-structured model applied to the transmission dynamics of the malaria. We have
divided the population into three areas according to its epidemiological status, and we have allowed migration in all
patches. Numerical simulations show that for each figure, the These curves illustrate that when Ry < 1, the disease
is more prevalent in children than in adults. We notice through these figures that beyond 30 years the more the age
advances, the disease becomes less important. This is because these individuals have acquired some partial immunity.
For Ry > 1, Figures 7 and 8 show that the disease still persists in the regions of high and medium transmission in the
patch 1 and 3.
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