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Abstract: A given environment state of contamination is due to the presence of polluting agents. The earth’s atmosphere pollu-
tion is a typical issue that has many consequences: climate changes, certain animal species disappearance, the ozone
layer gradual destruction,the ice caps melting of ... In addition to environmental damage, atmospheric pollution can
also have consequences for human health. These phenomena can be represented by mathematical models. In most
cases, these models use a system of partial differential equations for which no analytical solution is sometimes known.
Hence,in a given domain, the importance of numerical methods. In this paper, our objective is to numerically solve
an air pollution problem in a bounded domain of two-dimensional space.

Concerning numerical study, two numerical methods will be used: the finite difference method and the finite element
method.

The error estimates and numerical simulations of the model will be performed in order to carry out a comparative
study of these two methods.
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1. Introduction

The objective of this work is to analyze a mathematical model of pollution. We propose a numerical approach for
this analysis based on two numerical methods. The older one is the finite difference method and the other one is the
finite element method, which is very well known and adapted to complex problems. The structure of our article is as
follows:

The first part deals with the mathematical analysis of the model problem: This part is divided into two sections.
The first is devoted to the presentation of the model object. In the second part we will proceed to the mathematical
analysis of the model. We will use the variational formulation of the model in the linear case to establish the existence
and the uniqueness of the solutions in spaces that we will determine.

The second part is dedicated to the numerical study: This part includes two sections devoted to the two numerical
methods chosen. In each of them, we will first recall the principles and then apply these methods to the model prob-
lem. In the first section we will present the different numerical schemes obtained by finite difference method, as well
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as the results of consistencies and stabilities. The second section deals with the finite element approach of the model.
The third part will be devoted to numerical simulations: In this part we will present the results of numerical simula-
tions, in particular the estimates of errors obtained by using each of the two methods. This will be done by varying the
time step and the number of nodes of the mesh.

Finally we will end with a synthesis and a conclusion.

2. Mathematical analysis of the problem

2.1. Model presentation

Q=[0;T] x C is a bounded domain of sufficiently regular boundary. Let us consider the model:

u=u, inas, (1
u(r,0) = up

{ % +div(eu)+ou=puAu+f, on[0;T]xC,
e the intial condition is : u(r,0) = ugy
e Cisa circular type domain with boundary S
e ris a point in three-dimensional space with coordinatesx; ,x, et xs.
* u(r;t) is the concentration of the pollutant at the time ¢ and the point r.
¢ a is the air velocity.
e g = cte> 0 is the specific rate of deterioration of the pollutant.

e uis the horizontal diffusion coefficient where > 0

¢ f(r;t) is the intensity function of the pollution source.

2.2. Theoretical analysis of the problem

2.2.1. Variational formulation of the problem

We assume that the source term f € L?(0, T, H~'(C)) and ug € L?(C). Recall that H~'(C) denotes the dual of H'(C).
Consider a test function v € H'(Q) and <; > the scalar product on H'(C). The variational formulation is then given by:

fau(r,t) vdr+f aVu(r,t)vdr+Uf u(r,t)vdr:pf Au(r,t)vdr+ffvdr
c Ot C C C C

Using Green’s formula, we obtain:

ou(r, t oul(r, t
fﬂvdr+f aVu(r, t)vdr+of u(r, t)vdr+,uf Vu(r, t)VUdr:f utr )vde+f fvdr
c Ot C o c oc On C
We can put the problem in the form:
{ <940, v>+alt,u(®),v) =< f(t),v>, pptel0;T] @
u(0) = ug
a(t,u; v) = [caVuvdr +o [ouvdr +p [ VuVvdr
_ ou 3)
L) = [3c S4vde+ [ fvdr
The previous formulation can be put in the form:
ou
<E(t),v>+a(t,u,v):L(v) 4)

2.2.2. Functional framework of the model

In the very general abstract setting, we can establish the existence and uniqueness of a weak solution by using the
J.L.Lions theorem [1, 11] which plays a rule comparable to the Lax-Milgram theorem for parabolic problems.
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2.2.3. Existence and uniqueness of the solution

Theorem 2.1.
For f € L2(0, T, H™'(C)) and uy € L?(C), there exists a unique solution u to the formulation (4) such that:

{ ue 20, T; H(C)nC(, T; H>(C)n HY () )

du e 12(0, T; HY(C))

Proof. We must show that the form L(.) is continuous and the form a(.;.) is bilinear, continuous, coercive:
1. the integral being linear, we can trivially conclude that the form a(.;.) is bilinear,

2. continuity of a(;.):
la(u; )| < |all [ Vu.vdr|+o| [ouvdr|+ pl| [ VuVvdr|
Using Holder’s inequality, we deduce that:
la(u; V)| < |allVull iz vl 2oy + ollull 2 o)1Vl 2y + #IVUll g2 ) IVVI 2

Considering that: ||ull g1 ¢y = lull 2c) + IVul z2(c

lullpzic) < Ml ooy and vl 2oy < 1Vl ey
IVulzcy < lullgr ey and VYl 2oy vl g

we have: |a(u; V)| < (lal+ o+ Wl ull gy 10 g e

Then we conclude: |a(u; v)| < cllull g ) |Vl g2 ) with ¢ = |a] + o + p and therefore a(;.) is continuous.

3. continuity of L(.):

From (3), using the Cauchy-Schwarz inequality, we obtain the inequality:

ILW)| =1 fe frdrl+] e % (u)del

|L(v)| = ||f||L2(C) I V”LZ(C) + ||g_Z||L2(aC) ||Y0V||H1/2(ac)

According to the trace theorems: 3¢, >0/ || g—’,‘l lr260) = callul g2 (¢

Jes >0/ llyovliguzgey < csllvll g e

We deduce:

|L(v)| = ||f||L2(C) + C4C5 "u“HZ(C) I U”HI(C)

This allows us to conclude: |L(v)| = cgllvll g1y with ¢g = | fll 2(c) + cacs ll ull gz(c)
And therefore that L is continuous on H2(C) n H}(C)

4. coercivity of a(.;.):
a(w;u) = [ca.Vuudr+o [ utdr + pr(Vu)zdr

use H 2 (00C), let’s consider the trace application yy. There exists at least one bearing R such that ug = yo(R).
Let’s say = u — R. The problem (4) become:

{ a(w,v) = [caVuvdr +o [ uvdr +p [ VuVvdr

Lus(v) = [ fvdr — [oaVusvdr —p [ VusVvdr ©

Then

: — 7l
{Fmd ue Hy(C) 0

a(u, v) = Lys(v)

We took va¢ = 0 (in the vector space associated with the affine space to which u) because u45¢ being known
(= us), we don't need to consider non-zero functions v on dC (it is intuitive and it is justified during the"strong
problem-weak problem" equivalence). See [26]

We need to control the convection term to establish coercivity.
Let’s say: B(u, v) = [ a.Vuvdr
diva = 0,by integrating by parts we have:
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JeaVuvdr = - [, aVvudr + [y unvde = - [ aVvudr

It can be seen that 8(u, v) is antisymmetric and therefore:

B, w =0

In addition: o [ W*dr + p [ (V)2dr = min(w; o) x [ [ [ul?dr + [ |(VW)?|dr]
Let’s say: 0 = min(y; o)

We deduce: a(w; ) = 0| u||H1(C)

Hence the form a(.;.) is coercive on H(} (©).

3. Numerical resolution of the model

This part is devoted to the numerical solution of the problem. The partial differential equations are solved in an
approximate way, using numerical methods.
The problem is discretised by representing functions by a finite number of values, thus passing from a continuous to
a discrete framework. In our study, we will use the following two numerical methods:

¢ the finite difference method [1, 5]
¢ the finite element method [1, 35]

We will restrict our study to the case of dimension two space.

3.1. The finite difference method

3.1.1. Explicit finite difference scheme in dimension two

The generalization to the two-dimensional case of the explicit scheme gives us:

ntl_yn. ul o—ul . —ult. ull,| —2ul +u
i,j i,j i+1,j i-1,j i,j+1 i,j—1 n _ i+1,j i-1,j
R T R S I A A B
u’. 2u +u 8)
_M i,j+1 i,j-1 _ n
(Ay)2 i,j
where @ is the velocity vector of components (a1; az).
If we group the different terms together, we get:
n+1 _ a1At n
[1 oAt — 2(cx+cy)] ( Y +cx) l+1'j+(2Ax +Cx)ui—l,j ©)
_ @At arAt n
+( 28y +CJ’) 1]+1+(2Ay +CJ’) i,j— 1+Atfi,j
s _ uAt _ uAT
With: ¢, = e etcy = 2

By reasoning analogously to the case of dimension one space (see [1, 11]), the scheme is consistent and stable in L*
norm with the CFL condition:

At[0+2p(ﬁ+ﬁ)] <1 (10)

where: Ax < 2£ ko Ay< o< Al

To solve the system of evolution of the system, we put the diagram in the form:

wlth = Auj;+ Bufly) s+ Cull ) s+ Dul s, Bl +ALf] ¢8))
with:
A=1-0At—2(cs+cy), B=—T180 Lo
- X Y/ - ZAx X
a;At ar At
C: +Cx, = - +Cy
2Ax 2Ay
a At

= +c
2Ay y
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ie(l;Ietje(l;]]
The (Dirichlet) boundary conditions are then: ug;j, ury1;j, Ui;0, Uo;j+1-
The problem can be put in the form:

U™ = MU" +V + At f" (12)

where M is a matrix (I * J; I = J). It is a block matrix of the form:

M Mg 0 - 0
Mg Me My
M: 0 '.‘ '.. '.' 0
: Mg M. My
0 -~ 0 Mg M,
Each block is of size J * J, with:
CcC 0 -0 B 0 0
Mg = sMa=|
0 . 0
0 0 C 0 0 B
and
D 0 0
A D
M, = 0
E A D
0 -0 E A

Recall the column vectors:

Cu0,1 +Eu1,0

CLL()'Z

U1 ’
U o Cug,]+Du1J+1

’ Eu2,0
0
uyj :
Uz 1 )
0

Du
u"= and V = 2J+1

U gy ELL3'0

0
Ur-1,y
u[,l 0
Dujq,711
y Buji1,10+Eugg
I,
J Bujii2
Buji1,5+Dup

3.1.2. Implicit finite difference scheme in dimension two

The generalization to the two-dimensional case of the implicit scheme gives us:

n+1 n n+1 n+1 n+1 n+1 n+1 n+l n+1
I NS e/ W L 13 i N 1 N W S B By W
Y; 17 2Ax 27 2ay ij —H ax)?
mel gynely g nel (13)
_ i,j+1 i,j i,j-1 :f.nj*—l
i,

(Ay?
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After grouping the different terms, we obtain:

n+1
u;

a At n+1 _ oAt n+1 a At n+1
1+0At+2(cx+cy) +( > Ax cx)ui+1'j+( DA% Cx)ui—l,j + ( 28y cy)ul.J.Jr1

axAt n+l _ ,n n+1
28y CJ’)ui,j—l =u AL

)

+(—

_ uAt _ uAt
Where ¢y = Bz and ¢y = e
By posing:
a1 At aiAt
6;15 = X 9)25 = —Cx
2A 2Ax
1 a2At 2 as At
Y= oA —cyande ~2A —¢y
we have:

n+l1 1. ,n+1 2 n+l 1. ,n+1 2. n+l _ n n+1
Uj i L+oAt+2(cx +cy) +9xui+1,j+9xui—1,j+9yui,j+l+0Yui,]'—1 - ul',]'+Atfi»j

Vector formulation
We will match each table of values to u?j , the vector (U)ken,ny defined by:

Ul =up
k € [1, N] (with N = I]) bijectively related to the pair (i, j) € [1,I] x [1, J] by :
k=i+(-1I
We can move on to the vector formulation of the problem (15):
UPH L+ oAt +2(cx+c) + 0, UL + 03U + 0, UL + 05U = UL + Arfit!

we can write the problem in the form:
n+l _ ryn n+l
MU, ™ =U; +Atf;

where M € RV*N is a block tridiagonal matrix:

F 0
F
M= )
E D F
0 -~ 0 E D
In such a way that V(i, j) € [2,1 - 1]?
My i1 =05,
M -1 =62,
Mk,kzl""z(cx"‘cy)»
Mi i1 =6y,
M =065,

lets pose 0y,, = 1 + oAt +2(cx + ¢), we finally obtain diagonal blocks D:

Ory 6, 0 - 0
05 Oy 0,

D: O '.‘ '.. '.' 0
; - 05 04y 0,
0 - 0 6 6

and the extra-diagonal blocks E et F:

197

(14)

(15)

(16)

17
(18)
19)
(20
21
(22)
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62 0 -+ 0 6L 0 - 0
E= 0 " |and F= 0

S (] A (]

0 - 0 0% 0 - 0 0L

The conditions at the edges are as follows:

up;=up;=us(l,y),vj

n n .
Ui =U; ;= us(x;,1),Vi

The initial data is discretized by:

u?,j = uO(xiryj)vVi,j

3.1.3. Alternate directions

However, it can be seen that the computational cost of the previous scheme is very high on the machine because
of the weight of the resulting matrix [1]. This is the reason why the implicit scheme is often replaced by a general-
ization to several space dimensions of one-dimensional schemes obtained by a technique of alternating directions
(also called splitting of operators). The idea is to solve, instead of the two-dimensional equation, alternately the two
one-dimensional equations [1]:

a—u+a1—+au—u62—u:£
ot 0 0x% 2
and
a—u+a2—+au—y62—u:1—0
ot 0 oy 2
— a1
(a=(a2))

the average of which gives the two-dimensional equation.
For example, by using a Crank-Nicholson scheme in each direction for a A¢/2 time step, we obtain the Peaceman-
Rachford inspired alternating directions scheme:

1 1 1 1 1 1
n+3 n n+3 n+z n n 1 n+z n+y n+y
u. . “—-u'l. e T ul. —ul. 1 u, °.—2u. . .
i,j i,j i+1,j i-1,j i,j+1 i,j—1 a Vl+2 g n o _ i+1,j i,j i-1,j
A "M T eax A1 aay  tyly T Tyl T H 107 (23)
. —2u +ul fm%
P i -1 _ i
H 38y =3
1 1 1 1 1 1
n+l_, "2 n+l _ o n+l ute e 1 A PP SR
ij i +a ij+1° M1 ta i+l,j Yi-1,j +gun+1+gu"+§ _ i+1,j ij i-1,j
At 27 8Ay 27 8Ax 4%, T e 4(Ax)? (24)
n+l _on+l ., n+l n+y
L Hign 2upru fs
4(Ay)? -2

It is easy to verify that this scheme is precise of order 2 in space and 1 in time and unconditionally stable . It is
therefore convergent [1, 31].
Each of the two steps (23) and (24) consists of solving a tridiagonal system, which is done by direct elimination using
a given algorithm.
The two systems to be solved will be written in the following general form:

A By Gt =D Bl 4 Fy gl + G

iUyt DUy = iUy o B Uy E g g+ G 25)
1 1 1

roon+l Ion+l roon+l _ oy 03 ;. Nts ;7 Nty /

AjjUijrtBijui e + Gty o =Dy juy By gy 7+ Epu i+ G (26)
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The first tridiagonal system is to be solved for each row. The second is to be solved for each column.
For a point A inside the domain, we have for the first system:

YTBAx 4(Ax)?
Bij=—+24+H (28)
YA 4 2(a02
ay M
RS U , 29
b7 gax T aaw? @9
ay H
L0 S 30
“TBAy  A(Ay)? oo
1
Ej=—tl-H 31)
TTAr 4 2(Ay)2
ay H
Fi=—— 4+ —— 32
YT 8Ay  4(Ay)? o
n+l
f‘i i 2
J
Gij= — (33)
and for the second:
/ a2 H
-2 2 34
i~ "8Ay  4(Ay)? (34)
1 o u
Bl .=—+— , 35
WA 4 2002 (85)
' az H
=2 __F 36
L] SAJ/ 4(Ay)2 (36)
a2 M
D, =——+——, 37
LT gAx | 2(Ax)2 (37
1 o u
El , = — = — , 38
BITAL 4 2002 (38)
/ az |
P 39
0T T 8Ax | 2(Ax)? (39)
+1
fij®
i
Gij= > (40)
A Dirichlet boundary condition on the point (i, j) is written:
A j=0, (41)
Bij=1, (42)
Ci,j=0, (43)
D; =0, (44)
E;j =0, (45)
F; =0, (46)
Gi,j = us, (47)

3.2. Finite element method - Lagrangian triangular finite elements of degree one: P1 finite elements

3.2.1. Approximation space description

In the finite element method, the construction of the discrete subspace requires the prior discretisation of the Q
domain into simple geometric elements.
Let Q be an open of R? and let us consider a Q mesh formed by K triangles checking the following criteria:

* the K c Q elements of the mesh must cover the domain, that means their union is equal to Q

e the intersection of two distinct elements must satisfy:

@,
KnK' =<{ acorner,
a side.

We denote by I'j, the set of all these elements; I'j, is called triangular mesh or triangulation of Q



200 Resolution and numerical simulation of a pollution model in a bounded domain of the atmosphere

* $=38j,...,Sy is a finite set of N distinct points of K

¢ Pisafinite-dimensional vector space of real functions defined on K, and such that S is P-unisolvent (so dim P =
N).

A finite Lagrange element is a triplet (K,S,P)
Let (K, S, P) be a finite Lagrangian element. The local basis functions of the element are the N functions p;(i =
1,...,N) of P such that

pi(aij)zaij,ISi,jSN.

We call the interpolation operator (or P-interpolation) on S the operator mx which, to any function v defined on K,
associates the function ng v of P defined by :
N
ngv =Y viaj)pi

i=1
nx v is therefore the only element of P that takes the same values as v on the points of S [8, 18, 30].
3.3. Application to the model problem

The study area considered is: L2(0, T; H' (C)) n C(0, T; H*(C) n H'(C)) , then:
r=(x,y) € H*Q)nH'(Q) cH' (Q)

3.3.1. Semi-discretization in space

Consider VNV (V =Uy, Vi, with dimVy, = Np) and Q = TuJ where J = 0Q. We introduce a simple auxiliary function
taking the values imposed on the edge: u;,5q = 1s and by posing u = uy, + ugs, we have:

0
fﬂvdr+f aVuhvdr+af uhvdr+pf VupVvdr =
1% 1%

ffvdr—f HVusvdr—af usvdr—uf VusVvdr
v v v v

where up =Y e Uip; €t uy p = us =35 Us(Xi, yi)P;. Let's pose v = ¢p; we obtain

(f gb(p]dr)u(t)+(f aV(pgb]dr+af gb(p]dr+pf VoiVidr)u;(1)] =

iel
| roiar-3| [ @veisar-o [ eigjdr-u[ veivgdriust.y
Vi ie] "IV Vi Vi
This leads to the system:
MU'()+RU(t) =
{U(O)zUo “8)
Mi,j:f bigp;dr
Vi

Ri,jzf a’vq)igbjdrmf qb,-(pjdr+uf VoiVeidr

Bj:thf(/)jdr— . [V} aV(p(p]drﬂff (p<p]dr+pf ViV jdrius(x;, yi)
i€ ]

Let I be a triangulation or lattice corresponding to V and K < T’, on an element K of the mesh we have:
$irk (x,y) = AX(x, y) and therefore:

K _ K2 K
M ]—[K)Li AKar
R{(jszmfAfdrwf )Lf/lj?drwf vAKvAKdr
4o Jk K K /
K _ K - K3 K Ky K K K 1.
B! —/Kf/ljdr—Z[ @Al )Ljdr+afK)Li )Ljdr+ufKV/1i vaAKar|us(x, yi)

ie]
Let us then determine these three matrices:
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¢ For the mass matrix MK
Let us recall the exact 1ntegrat10n formulas:

K
fa{?drzu
K 3

K

[trar-1
K
f/lK/le LY

12

a1!a2!a3!
2+a;+az+as)!

f()tf)“l AHEAH@dr = K|
K

where |K] is the area of the triangle K. We then deduce the matrix:

211

K
ijzllzl 121/
112

¢ For the stiffness matrix RK
We can write: RK = NK + O'MK + ,uAK

1. Let’s determine AK

Consider the trlangle K with corners S; (x1, 1), S2(x2, ¥2) et Ss(x3, y3)
Using the change of variables:(x, y)T = Fx(X,7) , we obtain:

A, y) = A (Fr(%,9) = 1i(%, )

and
BAIK 6/1Kax+ﬁa__)7 %6_2_'_%6_?
vaAK=| @x [=| 9x ox T 9y ox | _[ 9z ox T 9y ox
P A | T oAf gz 0Af oy || dAiox , oAy 07
ay 3% oy T 3y oy ax dy © 9y dy
_6/1,V GA,V
© 0% 0y y
we deduce:
oA; O1; oA; OA 0A; OA; OA; 0A;
VA{VAS = i vzt + L vy + (L0 P T gsvy
0x aAl Xl 0y aAl | (02 0y 0y GA)

on the other hand:
1 - 1 _
e P N el
— X3 2IK|\ x2—x1

2|K|
So:
Vi = - 2= S1S;
IVl AKE [(y3— y1)* + (x1 — x3)°] = 4|K|2| 18317
o2 = 2 32 5S,
IVl 4|K|2 (1= y2)" + (2 —x1)7] = 4|K|2| 152/?
and
ViVy=- 4|K|2[(y3 Y (y2 = y1) + (x3 = x1) (%2 — x1)] 4|K|251333152
Substituting (51),(52) and (53) into (50), we obtain:
1 0A;01; oA; 0 1 01, 0A; 07, 04;
VAKVAK = 15,8, T Moy o ) 5.855: 5,
2KP oz oz ! sl 0y a“' 152 TaKP ox 97 oy ox 1o

201

(49)

(50)

(61

(52)

(53)

(54)

A (1=1,2, 3) designating the base functions on the reference element, after integration we obtain the

elements a of the matrix AK Finally we have:

|5253| 51835587 51528553
51535352 |5153|2 §51538281
518:5:85 51835:51 1518312

k _ b
i T 7K

(55)
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2. MlK i is known, it remains to determine N lK]
K _ | =v1K9K
Ni —fK aVi; )Lj dxdy

— a . 1 1
we pose @ = ! , knowing that: VAK = %Vx + %Vy, we deduce:
as i X y

EVAK—a[ai\i( - )+07l;( - )]+a[071;(x —x)+071;(x —-x)] =71
i_lafhyl ayh}’z 262130y21—l

— K
hencef (xWLf/lfdxdy:Tif Afdxdyzuri
K K 3

after determination of the elements an i of the matrix N in’ we have:

T1 T1 T1
K
]\]lKJZu To T2 T2
T3 T3 13
hence:
< a1(y2—y3)+az(xz—x2) ai(y2—y3)+az(x3—x2) ai(yz2—ys3)+az(x3—x2)

=— | ei(y3—y1)+aza(x1 —x3) ai(y3—y1)+az(x1—x3) ai(y3—y)+az(x;—x3) |. (56)

i,j
ar(y1—y2) taz(x2—x1) ay(yr—y2)+az(x2—x1) ai(yy—y2)+az(xe —x1)

On the triangle T of vertices S9(0,0), $9(1,0) et S5(0,1) (reference triangle) we find:

1 1 1
1 2 1
MmT == PR . 67)
R B o
12 12 6
1 -1 _1
2 T2
T _|[_1 1
Ai’j— ? 2 (1J (58)
-2 0 3
;1 —(a1+az) —(a1+az) —(ar+az)
Ni,j = E a1 aq a . 59)
a2 a2 an
Recall that:

T T T T
R Ni,j"'UMi,j +,uAl.,j

ij =

* Let’s determine B;

B]K:fo/l;(dr—Z[ KEVAfxlfdr+afI(/1f)L§dr+u/KV/1fV/l§<dr]us(xi,yi)
ie]

=F,—-0F—-F3—uF,
1. Itis assumed that f is analytically known and sufficiently simple:
F =f firKAK daxdy
x J
hence:

Fi = fiM}; (60)
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F, :Zf Af}tfdxdy.us(xi,%')
ie] /K

we find the coefficients already calculated for the matrix MIKJ For a triangle (I, J, K;,,;) whose side IJ be-
longs to the edge and whose corner K;,; is inside the domain, we obtain a unique contribution to the K;,;

component:
us,1
Fa = (Mikyy o My Mickiy,) | Us,J |- (61)
0

where i, j, ki are the internal numbers of the triangle corresponding to the indices I, J, Kj ;-

3.
B=Y a’mﬁ%f dxdyus(x;,y;)
ieJYK
based on the previous reasoning, we find:
us,1
F3 = (nikim’ njkim’ nkkint) usj |- (62)
0
4,
Fy= Z[ VAKVAK dxdyus(xi, yi)
ieJ/K !
we have:
us,1
Fy = (ajk;,,» Ajking Akkip) | UST |- >
0

3.3.2. Complete discretization in space and time

We will apply the time schemes already presented in the case of finite difference discretization to obtain a complete
discretization of the problem.
The explicit Euler scheme, whose stability depends on a very severe condition on the time step, is not adapted to our
problem. We will then adopt the implicit scheme since it is unconditionally stable.
This leads to the scheme:
Un+1 _ Uﬂ
M—
At

+RU™!' =B
Either

(M+AtR U™ = MU" + AtB (64)

4. Numerical simulation

We will consider the case where the source term does not have a fixed position in the domain in dimension two of
space which will be of rectangular type with L=I=1 for our case. We will consider an analytical solution from which we
can generate the source term, the edge conditions and the initial condition, while being careful to respect the regular-
ity rules and the working space established during the mathematical analysis of the problem.

Considering the homogeneous case, in order to search for solutions verifying the boundary conditions, we first de-
termine the diffusion eigenmodes by using the method of variable separations. The eigenmodes are the following
functions [12]:

Up,q(t; x;y) = sin ( (Zp; D7 %) sin( (2q42— br %)a—mwﬁﬂwmwm (65)
which verify the homogeneous boundary conditions.

The general diffusion solution is then a linear combination of these modes.

We can then represent the eigenmode for p =0, g = 0 and L = 1 by adapting it to our problem by generating the source

term f. Let then be the model problem on the domain Q x [0; T] where Q = [0;1] x [0;1]

Let’s consider the solution:

T T 2
ult; x;y) = sin(Ex) sin(Ey)e*(TuﬂT)t
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the source term is given by:

T T 1 VA T 72
; : — (5 p+o)t
X, )t)=|-(ajcos—xsin—-y+azsin—xcos—y)|e "2
f( Y ) 2( ! 2 Zy 2 2 2 )

with the initial condition: u(x, y,0) = u(x, y,t) =sin Fxsing y
and the conditions at the edges:
u0,y,1)=0

u(x,0,t)=0

T 2
u(l,y, t) =sin Eye_(T’”U”

T 2

u(x,1,1 =sin Exe*‘%’“"“

We will use Matlab software to perform finite difference and finite element simulations.
4.1. Error Estimates

The CFL condition is given by:

At[a+2,u )] <1 (66)

( 1 . 1
(Ax)?  (Ay)?
It can be seen that this condition is very strict regarding the choice of the different discretization steps.

We will consider the following values:a; =5, a2 =10, u=0.5, 0 = 1.

4.1.1. When the CFL condition is satisfied
1. By the finite difference method: Euler explicit

Table 1. Table of error estimates for N = 650

M? 100 121 225 256 289 324
L°E 0.0032 0.0032 0.0027 0.0026 0.0024 0.0022
L*°E 0.0276 0.0259 0.0208 0.0196 0.0185 0.0174

Table 2. Table of error estimates for N = 700

M? 100 121 225 256 289 324
L°E 0.0032 0.0032 0.0028 0.0026 0.0025 0.0023
L*°E 0.0277 0.0260 0.0209 0.0197 0.0186 0.0176

Table 3. Table of error estimates for N=750

M? 100 121 225 256 289 324
L’E 0.0032 0.0032 0.0028 0.0027 0.0025 0.0024
L*°E 0.0278 0.0261 0.0209 0.0198 0.0187 0.0177

Table 4. Table of error estimates for NV = 800

M? 100 121 225 256 289 324
L°E 0.0032 0.0032 0.0028 0.0027 0.0026 0.0025
L*°E 0.0279 0.0262 0.0210 0.0199 0.0188 0.0178

2. With finite elements

Under the same conditions we have the following error tables:
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Table 5. Table of error estimates for N = 650
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M? 100 121 225 256 289 394
I’E 7.8840e-5 7.7118e-5 6.9223e-5 6.7598e-5 6.5523e-5 6.3405e-5
L*°E 8.8640e-4 8.8608e-4 8.3587e-4 8.2137e-4 8.0619e-4 7.9039e-4
Table 6. Table of error estimates for N = 700
M? 100 121 225 256 289 324
I’E 6.9680e-5 6.8159e-5 6.1541e-5 5.9755e-5 5.7922e-5 5.6049e-5
L*°E 7.9367e-4 7.8671e-4 7.4306e-4 7.3041e-4 7.1715e-4 7.0333e-4
Table 7. Table of error estimates for N = 750
M? 100 121 225 256 289 324
I’E 6.1701e-5 6.0326e-5 5.4429e-5 5.2840e-5 5.1209e-5 4.9540e-5
L*°E 7.0787e-4 7.0003e-4 6.6173e-4 6.5060e-4 6.3892e-4 6.2672e-4
Table 8. Table of error estimates for N = 800
M? 100 121 225 256 289 324
I’E 5.4664e-5 5.3418e-5 4.8123e-5 4.6699¢-5 4.5277e-5 4.3740e-5
L*°E 6.3067e-4 3.2374e-4 5.8887e-4 5.8000e-4 5.6963e-4 5.5879e-4
4.1.2. If the CFL condition is not satisfied
In this case we have the following conditions:
2 o N-— 2
M 24—;0rN50+4uM .
By setting the smallest value of N to 300, we have M? < 150.5.
We vary the number of nodes M? from 225 to 1600.
1. By the finite difference method: Euler explicit
Table 9. Table of error estimates for N = 300
M? 225 400 625 900 1225 1600
I’E 2.1906e-4 0.1173 8.5897e+04 8.9762e+13 8.5315e+24 2.0578e+37
L*°E 0.0070 0.1630 199.1878 7.9483e+06 2.6602e+12 4.2928e+18
Table 10. Table of error estimates for N = 400
M? 225 400 625 900 1225 1600
I’E 6.9170e-04 1.3595e-04 2.7236 1.0938e+07 2.3131e+16 2.1657e+27
L*°E 0.0109 0.0090 0.7777 2.3090e+03 1.2711e+08 4.2002e+13
2. With finite elements
Table 11. Table of error estimates for N = 300
M? 225 400 625 300 1225 1600
L%E 2.3754e-04 1.5003e-04 1.1797e-04 9.0410e-05 6.7562e-05 2.1820e-05
L°°E 0.0028 0.0019 0.0016 0.0013 0.0011 0.0009
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Table 12. Table of error estimates for N = 400

M? 225 400 625 900 1225 1600
L°E 1.3578e-04 1.1221e-04 9.0025€e-05 6.9988e-05 5.2668e-05 1.5579e-05
L*°E 0.0029 0.0014 0.0012 0.0010 8.4198e-04 3.5127e-04

4.2. Simulations

4.2.1. Ifthe CFL is satisfied

Witha; =5,a,=10,u=05eto=1

Synthetic solution

Synthetic solution

Finite elements

Fig. 1. solutions for M? =324, N = 650

Synthetic solution

Finite elements

x10*

Fig. 2. solutions for M? =324, N = 700

4.2.2. The CFL condition is not satisfied

Finite elements

Fig. 3. solutions for M? =324, N = 800

Euler explicit
>
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R
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2002020505
(RIS
R0 XIS

5N

1. After analysis of the results recorded in tables (1) - (4) for finite differences and tables (5) - (8) for finite elements,
it appears that if the CFL condition (66) is respected, the finite element method gives us very satisfactory results
with very low errors, when the time and space steps increase. The finite difference method converges by varying
the number of nodes with a fixed time step. However, it should be noted that the error values obtained by the
finite element method are smaller than those obtained by the finite difference method when we compare the
tables for a given time step value.
Moreover, by reading the tables in columns (which implies that we fix the time step by varying the space steps),
we can see that the errors in finite differences vary in a very slight way but still increase, while they decrease

with the second method.
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Synthetic solution Finite elements x10* Euler explicit
=

S

7 SO
19999008

SN
SIS
KOS RIRRN

Fig. 4. solutions for M? =324, N =900

Synthetic solution Finite elements 10° Euler explicit 10

Fig. 5. solutions for M? = 1225, N = 300

Moreover, by analyzing tables (9) and (10), we can say that the errors decrease as long as the CFL condition is
respected. However, if we leave the framework of this condition, we can observe a rapid increase of the errors
found: the solution blows up.

With the finite element method, by observing tables (11) and (12), the situation does not change whether the
CFL condition is respected or not. The errors decrease and have very low values compared to those observed
for the first method.

We could add that given the very low values of the errors found, the finite element method reveals an efficiency
for the resolution of such problems.

2. The graphs below allow us to observe the approximate solutions obtained using the finite element and finite
difference methods and to compare them to the synthetic solution.
We have first fixed the space step to 324 and varied N. Thus in each case, the synthetic solution obtained after
implementation in Matlab environment is represented on the left and on the right the solutions obtained by the
finite element method and the finite difference method (in order).
Figures (1) - (4) show that the solutions obtained by both methods converge to the synthetic solution. However,
we can notice that the finite element method is more accurate than the finite difference method. The observa-
tion is not the same on figure (5) where we can see that the solution explodes in finite differences when the CFL
condition is not respected.

5. Conclusion

In this paper the resolution and the numerical simulation of a pollution model in a bounded domain of the atmo-
sphere in dimension two of space using the variational formulation has been done, after the study of the existence and
uniqueness of the solution. Two numerical methods were used: the finite difference method and the finite element
method.

At the end of this study, it was found that the finite element method is more suitable and more efficient for the numer-
ical solution of our problem.

References

[1] Allaires.G, Frangois Alouges, Analyse variationnelle des équations aux dérivées partielles, Ecole Polytechnique,
2016.
[2] Arada Nadir, Méthode des éléments finis, Cours univJijel.



208 Resolution and numerical simulation of a pollution model in a bounded domain of the atmosphere

[3] Azé].D .-B. Hiriart-Urruty, Analyse variationnelle et optimisation, Univ Toulouse, 2009.
[4] Basu.S, R. Pollack, M. E Roy, Algorithms in real algebraic geometry. Algorithms in mathematics. Vol.10, Springer-
verlag, 2003.
[5] B.B. Pandita, V.S. Kulkarni, Finite difference approach for non-homogeneous problem of thermal stresses in carte-
sian domain, Int. J. Adv. Appl. Math. and Mech. 3(2) (2015) 100-112
[6] Becker. ThorstenW, Boris J. P. Kaus, Numerical Modeling of Earth Systems, Lecture notes for USC GEOL557, 2018.
[7] Ben Belgacem. E Equations d’évolutions paraboliques, Enit-Lamsin et Utc-Umac, 1999.
[8] Bendali. A, Méthode des éléments finis, Insa Toulouse , 2013.
[9] Bernardi Christine, Yvon Maday, Francesca Rapetti, Discrétisations variationnelles de problemes aux limites ellip-
tiques, Springer, 2004.
[10] Bonnet. M, Introduction a l'analyse numérique, Note CEA, 1982.
[11] Brézis Haim, Analyse Fonctionnelle. Théorie et applications, Masson, 1987
[12] BUFFAT Marc, Méthode numériques pour les EDP en Mécanique, UFR de Mécanique, Université Claude Bernard,
Lyon 1, 2008.
[13] Cuilliere Jean-Christophe, Introduction a la méthode des éléments finis, 2éme édition. DUNOD, 2016.
[14] Demailly Jean-Pierre, Analyse numérique et équations différentielles, EDP Sciences, 2006.
[15] Dhatt Gouri, Gilbert Touzot, Une présentation de la méthode des éléments finis .Tome 1, Lavoisier, 1984.
[16] Em Alexandre, Jean-Luc Guermond, Theory and Practice of Finite Elements, Springer , 2004.
[17] Evans.C.Lawrence, Partial Differential Equations.Vol. 19, American Mathmatical Society, 1997.
[18] Fortin Andre, Les éléments finis. De la théorie a la pratique, Ecole Polytechnique de Montréal, 2011.
[19] Goncalves Eric, Résolution numérique, Discrétisation des EDP et EDO, Univ Grenoble, 2005.
[20] Guermond Jean Luc, Mécanique des fluides numérique, Ecole des printemps, 1993.
[21] Guinot Vincent, Bernard Cappelaere, Méthodes numériques appliquées, Polytech'monpellier STE, 2006.
[22] Hritonenko Natalie, Yuri Yatsenko, Mathematical Modeling in Economics, Ecology and the Environment. Vol.88,
Springer Optimization and Its Applications, 2013.
[23] Kruoch Gael, Mémoire de Master 2, FAST/UAM, 2021.
[24] Langtangen Hans Petter, Svein Linge, Finite difference computing zith PDESs, Springer Open, 2010.
[25] Laurent-Gengoux. B, Analyse des équations aux dérivées partielles, Ecole Centrale Paris, 2007.
[26] Leborgne Gilles, Approximation variationnelle de problemes aux limites elliptiques et éléments finis, Cours de
I'ISIMA, 2003
[27] Lions.J.L, Optimal Control of Systems Governed by Partial Differencial Equations, Springer-verlag Berlin Heidel-
berg, 1971.
[28] Lions Jacques-Louis, E.Magenes, Problemes aux limites non homogenes. I, Annales de I'institut Fourier, 1961.
[29] Magnus Alphonse, Equations aux dérivées partielles 2, Cours univ.catholique de Louvain, 2009.
[30] Manet Vincent, Méthode des éléments finis, Creative Commons, 2014.
[31] Mohammad Aslefallah, Davood Rostamy, Khadijeh Hosseinkhani, FSolving time-fractional differential diffusion
equation by theta-method, Int. J. Adv. Appl.Math. andMech. 2(1) (2014) 1 - 8
[32] Moirreau.B, Cours de DEA Analyse Numérique, Note de cours, 2004.
[33] Moustapha Djibo, Mémoire de Master 2, FAST/UAM, 2013.
[34] Munnier. A, Espaces de Sobolev et introduction aux équations aux dérivées partielles, Cours univ Henri Poincaré,
2008.
[35] NajatJaleel Noon, Fully discrete formulation of Galerkin-Partial artificial diffusion finite element method for cou-
pled Burger’ problem, Int. J. Adv. Appl.Math. andMech. 1(3) (2014) 56 - 75
[36] Oudin Hervé, Introduction a la méthode des éléments finis, Centrale Nantes, 2011.
[37] Rakotoson Jean Emile, Jean Michel Rakotoson, Analyse Fonctionnelle appliquée aux Equations aux Dérivées Par-
tielle. Théorie et applications, Presse Universitaire de France, 1999.
[38] Récan. M, Application de la méthode des différences finies a la simulation des transferts dans les eaux souterraines,
BRGM, 1986.
[39] Rezzolla Luciano, Finite-difference Methods for the Solution of Partial Differential Equations, Notes of Institute of
theorical Physics, Frankfurt, 2018.

Submit your manuscript to JAAMM and benefit from:

» Rigorous peer review

» Immediate publication on acceptance

» Open access: Articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » editor.ijjaamm@gmail.com



mailto:editor.ijaamm@gmail.com

	Introduction
	Mathematical analysis of the problem
	Numerical resolution of the model
	Numerical simulation
	Conclusion
	References

