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Abstract: Amidst the nationwide flooding triggered by the rainy season compounded by El Niño, this study endeavors to devise
a sophisticated mathematical model geared towards enhancing the efficiency of open circular channels. Focusing on
key parameters like depth, velocity, and pressure within the context of incompressible, Newtonian, and steady flow
dynamics, we aim to meticulously analyze their interplay. By delving into the impact of depth on flow characteristics,
the influence of pressure on velocity, and the modulation of Reynolds and Froude numbers on velocity, our investiga-
tion unveils crucial insights. Leveraging MATLAB, we meticulously derive numerical solutions and visually represent
our findings through insightful graphs. Given the inherent non-linearity of the governing equations; the continuity
and momentum equations of motion. We used the finite difference method for the resolution. This robust model
holds promise for diverse applications spanning water supply, treatment facilities, and irrigation networks, offering a
comprehensive tool for optimizing operational efficiency.

MSC: 35Qxx • 65Mxx

Keywords: Mathematical Modelling • Open Channels • Finite Difference

© 2024 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The long rains and the ongoing El Nino have caused severe floods in the northern and southern regions of the
country. The crisis stems from unprecedented flooding after a recent region-wide recovery from severe drought. In
Mombasa County, water flows from the highlands to the lowlands, causing the overflow of already existing channels,
which in turn results in floods and excess water remaining stagnant. Moreover, even during average rainfall, some
informal settlements remain vulnerable to flooding, further emphasizing the urgent need for channels to be designed
that can efficiently handle stormwater to prevent urban flooding and redirect excess water to agricultural lands. To
address this issue, robust measures for modeling efficient channels to provide a pathway for stormwater to be safely
conveyed away from urban areas should be adapted.
The classification of a channel as open or closed is determined by the state of its top; an open channel has an uncov-
ered top, while a closed channel, also known as a conduit, has a covered top. Rivers and streams are open channels,
while pipes and tunnels are closed channels. Open channels can be constructed with different cross-sections, such
as trapezoidal, rectangular, and circular.
Research in open channel flow is a widespread area of study, encompassing investigations into both natural channels
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such as rivers and human-made structure such as irrigation canals. In the realm of open-channel flows, gravity,
viscosity and inertia are the primary forces in play, each contributing significantly to the dynamics. The exploration
of open channels has been a topic of discourse for an extended period. The following are some of the previous studies
that have been done.

[1] Did modeling of fluid flow in open channel with circular cross-section.They investigate the effects of the flow
depth, the cross section area of flow, channel radius, slope of the channel, roughness coefficient and energy coeffi-
cient on the flow velocity as well as the depth at which flow velocity is maximum. The Saint Venant partial differential
equations of continuity and momentum governing free surface flow in open channels are highly nonlinear and there-
fore do not have analytical solutions. The Finite Difference Approximation method was used to solve these equations
because of its accuracy, stability and convergence. It was established that for a given flow area, the velocity of flow
increases with increasing depth and that the velocity is maximum slightly below the free surface. Moreover, increase
in the slope of the channel and energy coefficient leads to an increase in flow velocity whereas increase in roughness
coefficient, flow depth, radius of the conduit and area of flow leads to a decrease in flow velocity.

[2] Investigated the heat and mass transfer characteristics of non-Newtonian fluids, particularly in the context of
physiological fluids modeled as couples stress fluids. The study delved into the intricate dynamics of two-dimensional
non-Newtonian flow, attributing it to the metachronal wave generated by the synchronized oscillation of cilia, fine
hair-like structures affixed to opposing walls within a channel. Through the derivation of a closed-form solution
for the nonlinear differential equations governing the system, facilitated by convective boundary conditions. The
investigation revealed the profound impact of a strong magnetic field on the fluid velocity, which diminishes for the
base fluid but accelerates with increased cilia length. The interplay of parameters such as the Brinkman number,
influencing energy addition, and the Biot number, affecting temperature profiles, underscores the complexity of the
phenomenon. Furthermore, the Hartmann number emerges as a crucial factor, dictating the expansion and resistance
of boluses within the channel.

[3] Focused on designing a circular open canal for a pisciculture system, where control over velocity and water
height is maintained through the inlet and outlet system, ensuring continuous flow. By maintaining constant water
volume and velocity, the system provides fish with a conducive environment. Utilizing Computational Fluid Dynamics
(CFD), the canal flow is simulated, extracting parameters through numerical solutions of the Navier-Stokes equations.
Implementing the outlet along the water movement path minimizes adverse suction effects, while modifications to
the inlet, including guide vanes, facilitate the continuous flow of clean water, reducing turbulence. This integrated
approach ensures optimal canal performance and water quality for pisciculture operations.

[4] Analyzed the interaction between very-large-scale motions (VLSMs) and secondary currents (SCs) in open-
channel flows over ridge-covered fully rough beds. Using long-duration experiments and stereoscopic particle image
velocimetry, the researchers explored a range of ridge spacings. In the absence of ridges, the flow exhibited quasi-
two-dimensional behavior with prominent VLSM spectral signatures. However, when ridges were introduced, two
distinct SC cells formed between neighboring ridges, effectively suppressing VLSMs. This suggests that ridge-induced
SCs either absorb the energy of VLSMs or dominate their formation. Additionally, velocity spectra uncovered a novel
feature associated with the meandering of alternating low- and high-momentum flow regions linked to instantaneous
SC manifestations. Further analyses, including two-point velocity correlations and proper orthogonal decomposition,
supported this observation, hinting at the instability arising from inflection points in the spanwise distribution of
streamwise velocity within SC cells. These findings offer valuable insights into bed friction dynamics in open channels,
suggesting potential fluctuations in friction factors based on the presence or absence of SCs and VLSMs.

[5] Did "Experimental Analysis of Sediment Incipient Motion in Rigid Boundary Open Channels," and the re-
searchers conducted experiments to investigate the initiation of sediment motion in open channels with rigid bound-
aries. They employed various methodologies, likely including controlled flow rates and sediment sizes, to observe
the conditions under which sediment particles first begin to move. By analyzing the results, which likely involved
measuring critical shear stress or flow velocities required for particle entrainment, the researchers aimed to provide
insights into the fundamental mechanics of sediment transport in such channels, contributing to the understanding
of erosion processes in natural and engineered environments.

[6] Studied the flow characteristics of sharp-crested side circular orifices in irrigation systems focusing on both
free and submerged flow conditions. The research aimed to analyze these characteristics through both analytical
and experimental methods and to establish relationships for the coefficient of discharge under these conditions. The
computed discharges based on the developed relationships closely matched the observed values, with discrepancies
within ±5% for free orifices and ±10% for submerged orifices. The study also found that the discharge through side
orifices is particularly sensitive to the head above the center of the orifice. Additionally, the research identified various
parameters influencing jet angles and proposed relationships to predict these angles under different flow conditions.

[7] Investigated the impact of vegetation patches on turbulent flow properties in marine ecosystems using numer-
ical simulations. The research was conducted through computational fluid dynamics (CFD) with ANSYS FLUENT,
focusing on how circular vegetation patches of varying densities affect flow velocity, discharge capacity, and energy
fluxes. The study employs Reynolds averaged Navier-Stokes equations and a Reynolds stress model (RSM) to analyze
turbulent flow features near emergent and submerged vegetation patches. Results show that increasing vegetation
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density decreases flow velocity and turbulent characteristics, fostering stability in aquatic ecosystems by promoting
sediment deposition and supporting vegetation growth.

[8] Investigated time-dependent ferrofluid flow in a square enclosure with an open circular pipe by considering
a variable magnetic field from an external source. Water-based ferrofluid with Fe3O4 nanoparticles was used, in-
corporating magnetohydrodynamics (MHD) and ferrohydrodynamics (FHD). The Incompressible Smoothed Parti-
cles Hydrodynamics (ISPH) method was applied for solving equations. Parameters like Hartmann number, magnetic
number, solid volume fraction, and heated part location on the inner pipe were studied. Increasing the Hartmann
number from 0 to 30 reduced maximum stream function values by 74.3%, and placing the heated part at the bottom
right of the inner pipe enhanced heat transfer compared to other configurations.

[9] Conducted direct numerical simulation of open-channel flow over a regular pattern of spheres, focusing on fully
rough flow regime at specific Reynolds numbers. It extends previous research on transitionally rough flow and aims
to compare results with experiments. Statistical analysis of the flow field in the roughness sublayer and logarithmic
region reveals that flow behavior near the roughness elements is influenced by both Reynolds number effects and
geometric features, while farther from the wall, traditional roughness concepts apply. The roughness function is com-
puted, expected to depend on relative submergence. Flow-roughness interaction primarily occurs above the virtual
origin of the velocity profile, with maximum form-induced velocity fluctuations at sphere crests.

[10] Investigated convective heat transfer and entropy generation in slip flow of non-Newtonian power-law fluids
through microchannels. It focused on both parallel-plate and circular geometries under uniform heat flux condi-
tions. Using analytical methods, the study solved governing equations for fully developed laminar flows, considering
non-linear slip boundary conditions and viscous dissipation. The analysis yielded closed-form solutions for veloc-
ity profiles, temperature distributions, Nusselt number, entropy generation rate, and Bejan number, dependent on
parameters such as slip coefficient, power-law index, and Brinkman number. Results showed that increasing slip
coefficient enhances Nusselt number and reduces average entropy generation rate. The impact of slip coefficient on
Bejan number is influenced by Brinkman number. Lower values of power-law index or Brinkman number improve mi-
crofluidic system performance. Parallel-plate microchannels generate more entropy compared to circular ones under
the same conditions. Viscous dissipation significantly affects heat transfer and entropy generation, highlighting its
importance in designing thermally efficient microfluidic devices using non-Newtonian fluids.

[11] Focused on accurately predicting shear stress distribution in open channels, crucial for stable erodible-bed
channels and sediment transport studies. Despite its importance, there’s limited research on using entropy methods
for this purpose. This study employs Tsallis entropy to estimate shear stress in open channels, using mean and max-
imum shear stresses across the channel cross-section. Prediction uncertainty is calculated, and the distribution of
prediction error is analyzed before and after data normalization. The results show satisfactory performance of the
Tsallis entropy model, with 95% Confidence Bounds closely matching observed shear stress values.

[12] Provided a thorough review of open-channel hydraulics, including theories, equations, and practical applica-
tions. The author delves into various subjects, including flow resistance, energy equations, uniform flow, progressively
variable flow, and unsteady flow, focusing on using the Saint Venant equations to analyze unsteady open-channel
flow. Chaudhry discusses the problems caused by channel form, roughness, and irregularity and provides techniques
for solving the momentum and the continuity equation.
[13] Gave a thorough understanding of open channel hydraulics’ concepts, theories, and practical applications. They
also reviewed computational approaches and cutting-edge techniques for modeling and assessing open channel
flow.
[14] Conducted an investigation focusing on the numerical modeling of turbulent flow in curved channels with
compound cross-sections. They developed a mathematical model based on a curved orthogonal coordinate system,
employing various algebraic stress models to simulate secondarily spiraled currents. The study delved into the impact
of alterations in cross-cutting and canal curvature configurations on secondary motion, exploring the relationship
between secondary stream patterns and different driving forces.
[15] Conducted a research study focused on the hydraulics of open rectangular and triangular channel flows, aiming
to discern the hydraulic efficiency between the two configurations. The application of the laws of conservation of
mass and momentum led to the derivation of non-linear partial differential equations, which could not be solved
using analytical methods. Consequently, they employed the finite difference method for solving these equations.
The study emphasized the significance of velocity and flow depth in determining discharge, and various parameters
affecting velocity were investigated.

The findings indicated that flow velocity increased with depth, reaching its maximum slightly below the free
surface. Additionally, an increase in channel slope, energy coefficient, and top width resulted in higher flow velocities,
while an increase in roughness coefficient had the opposite effect. Notably, the research concluded that, for a fixed
flow depth and width, an open rectangular channel exhibited greater hydraulic efficiency compared to an open
triangular channel.
The insights gained from this study hold practical implications for applications such as flood control, irrigation, and
the design of channels, including considerations for house gutter construction.
[16]) Did a study on incompressible flow in open channels. They investigated the lateral inflow in an open trapezoidal
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channel. They used the finite difference numerical method to solve the continuity, momentum, and chezy equations.
They made assumptions that the only forces affecting the flow are the gravitational forces and that the fluid is
unsteady and Newtonian. From the study, it was observed that the velocity of the fluid increases with an increase in
depth. Also, an increase in the cross-sectional area led to a decrease in the flowing field. He recommended that the
fluid could be more realistic if a two-dimensional flow were considered.
[17] Reviewed numerical simulations of lateral inflows in river bends. Their review highlighted the importance of
understanding lateral inflows in river bends, which are crucial in channel dynamics and sediment transport. The
review synthesized various numerical simulation techniques to study secondary flows, providing valuable insights
for researchers and engineers on river hydraulics. By incorporating the findings of [17]Understanding flow behavior
and dynamics in open channels, including the effects of lateral inflow and secondary flows, can be further enhanced,
aiding in the development of more accurate and comprehensive models for open channel hydraulics.
[18] Conducted a study on the effect of a difference in angle in two lateral inflow channels on the main channel’s
velocity. This study examined the flow from two lateral inflow channels in an artificial open rectangular channel of
an incompressible Newtonian fluid. The flow was assumed to be one-dimensional and unsteady. They used finite
difference method to find approximate solutions. The goal was to look at the impact of the angle of the lateral inflow
channels on the main channel flow velocity. The summary of the angle effect shows that 90° does not affect the key
channel’s flow velocity. 72° and 60° increases but 45° increases the flow velocity.
[19], [20] Conducted an investigation focusing on a model of open channel fluid flow characterized by a trapezoidal
cross-section with a segment base. The primary aim of this research was to assess the relevance of trapezoidal
cross-sections with segment bases in the design of drainage systems, specifically considering constant and uniform
open channel flow. The study employed the finite-difference approximation method to solve the Saint-Venant partial
differential equations governing free surface flow.
They found that an increase in the cross-sectional area of flow led to a decrease in flow velocity. The study observed
that an increase in the radius of the circle forming the segment contributed to a reduction in flow velocity. The
findings also indicated that an increase in the depth of flow, channel radius, and cross-sectional area resulted in a
corresponding decrease in fluid velocity. Moreover, an increase in the bed slope of the waterway was associated with
an increase in flow velocity. [21] Analyzed water flow behavior in trapezoidal open channels using the Saint-Venant
model and the finite difference method. The study focused on understanding the hydraulic characteristics and flow
patterns in trapezoidal channels commonly used in engineering applications.
[22] Explored the application of finite difference schemes to the one-dimensional Saint-Venant equation for simulat-
ing weir overflow. Their study demonstrated the effectiveness of finite difference schemes in accurately simulating
the flow behavior and characteristics of weir overflow. The combined findings of both studies provide valuable
insights into using numerical methods, specifically the finite difference approach, in modeling and analyzing open
channel flows, including trapezoidal channels and weir overflow scenarios.

[23], [24] This study presents the development of a depth-averaged two-dimensional numerical model using finite
difference method (FDM) on a staggered grid, solving governing equations with the Marker and Cell method by Harlow
and Welch (1965). Employing explicit FDM for solving, first-order temporal derivative approximation, and second-
order central difference for space discretization, the model’s time step adheres to the Courant–Friedrichs–Lewy (CFL)
condition, contingent on grid spacing and velocity components in both x- and y-directions. The research bifurcates
into two phases: firstly, establishing the depth-averaged 2D model for flow simulation, and secondly, devising a mod-
ule for bed load transport computation to simulate river morphology in regions with steep slopes and torrents. Ap-
plied to an artificial channel and a flood event in the Asungjun River segment of South Korea’s Yangyang Namdae
River, the model demonstrates good agreement with observed data, affirming its efficacy.

2. Mathematical Model

The foundation for the Model is provided by the Saint-Venant equations, which govern flow behavior in open chan-
nels. The Model considers the impact depth, pressure, and other relevant parameters on flow characteristics. By de-
veloping this Model, it becomes possible to analyze and anticipate flow patterns, water levels, and velocities within
the open circular channel.

3. Assumptions

1. The flow is two dimensional in cylindrical coordinates.

2. The flow is steady.

3. The fluid is considered incompressible.

4. The forces causing the flow are due to gravity alone.
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5. The fluid is Newtonian.

6. The flow is purely radial.

4. Governing equations

The Saint-Venant equations, which reflect mass and momentum conservation, are the foundation for the governing
equations for fluid flow in an open circular channel. The momentum equation connects changes in momentum to
the forces operating on the fluid, which is gravity in our case. These Saint-Venant equations are given by:
Continuity Equation:

∂ρ

∂t
+~∇(ρ ·~q) = 0 (1)

where ρ is the density, ~q is the velocity vector,~∇ is the dell operator, t is the time.
Since flow is incompressible, the density is assumed to be constant; hence, the equation reduces to:

~∇·~q = 0 (2)

The velocity field for a 3D flow is given by ~q = ui + v j +wk and the dell operator is given by
~∇= i ∂

∂x + j ∂
∂y +k ∂

∂z
Thus

(i
∂

∂x
+ j

∂

∂y
+k

∂

∂z
) · (ui + v j +wk) = 0 (3)

∂u

∂x
+ ∂v

∂y
+ ∂w

∂z
= 0 (4)

In cylindrical coordinates, equation (4) will become

1

r

∂

∂r
(r ur )+ 1

r

∂

∂θ
(uθ)+ ∂

∂z
(uz ) = 0 (5)

The flow is in two dimensional in the r and z direction, but uz is negligible: thus, equation (5) becomes

1

r

∂

∂r
(r ur ) = 0 (6)

Momentum Equation:

∂~q

∂t
+ (~q ·~∇)~q =− 1

ρ
~∇P +ν∇2~q +~F (7)

where ∂~q
∂t is the temporal acceleration, ν is the kinematic viscosity, P is the pressure force, ∇2 is the Laplacian operator,

~F is the Body force, (~q~∇)~q is the local acceleration.
Since the flow is steady, the above equation reduces to

(~q ·~∇)~q =− 1

ρ
~∇P +ν∇2~q +~F (8)

Dividing equation (8) all through by ρ

ρ(~q(~∇) ·~q) =−~∇p +µ∇2~q +ρ~Fb (9)

But ν= µ
ρ .

For buoyancy-driven flow, the governing equation is as follows:

ρ(~q(~∇) ·~q) =−~∇p +ν∇2~q −ρg k̂ (10)

where ~Fb =−g k̂ and k̂ is the unit vector
The x-momentum equation for a two dimensional flow becomes

ρ(u
∂u

∂x
+w

∂u

∂z
) =−∂p

∂x
+µ(

∂2u

∂x2 + ∂2u

∂z2 )+ρgx (11)
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The y-momentum becomes

ρ(u
∂w

∂x
+ v

∂w

∂z
) =−∂p

∂z
+µ(

∂2w

∂x2 + ∂2w

∂z2 )+ρgz (12)

In cylindrical coordinates, they become
r-component

ρ(ur
∂ur

∂r
+uz

∂ur

∂z
− u2

θ

r
) =−∂p

∂r
+µ(∇2ur − ur

r 2 )+ρgr (13)

z-component

ρ(ur
∂uz

∂r
+uz

∂uz

∂z
) =−∂p

∂z
+µ(∇2uz )+ρgz (14)

Since the flow is purely radial and velocity in the z direction is negligible, the equation reduces to
r-component

ρ(ur
∂ur

∂r
) =−∂p

∂r
+µ1

r

∂

∂r
(r
∂ur

∂r
− ur

r 2 )+ρgr (15)

z-component

0 =−∂p

∂z
+ρgz (16)

5. Non-dimensionalization of the governing equations

This is the process of completely or partially eliminating physical dimensions using the appropriate variable sub-
stitution from an equation involving physical quantities. When using this technique, problems involving measured
units can be made simpler and more parameterized. It can decrease the free parameters and facilitate the exami-
nation of the current issue. The non-dimensionalization equation facilitates a better understanding of the relative
sizes of the different variables in the equation. This results in identifying small terms in the equation once the non-
dimensionalization procedure appropriately chooses the scaler. The solution can be made simpler by disregarding
the smaller terms in favor of the larger ones. By choosing distinctive dimensionless quantities, the governing equa-
tions are non-dimensionalized.
Let: u∗

r = ur
U =⇒ ur =U u∗

r , r∗ = r
R =⇒ r = r∗R

p∗ = p
po

=⇒ p = po p∗, z∗ = z
R =⇒ z = Rz∗

Using the chain rule we obtain the first and the second order equation
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r
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r
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∂p

∂z
= ∂p
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U

R
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r
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2u∗

r
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Substituting equation (15) in the continuity equation (16), the equation reduces to

U

R

∂u∗
r

∂R∗ = 0 (21)

Substituting equations (17),(18),(19) and (20) in the r-momentum equation (15), the equation reduces to

ρ
U 2

R
u∗

r
∂u∗

r

r∗ =−po

R

∂p∗
∂r∗ + µU

R2r∗
∂u∗

r

∂r∗ + µU

R2
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r
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r +ρgr (22)

Multiplying by R
ρU 2 we get

u∗
r
∂u∗

r
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∂p∗
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ρRu∗
r

∂ur
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ρRU
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r
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r
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But Reynolds’s and Froude’s numbers are given by

Re = ρU R

µ
,Fr = U√

g R

Equation (23) reduces to

u∗
r
∂u∗

r
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∂u∗
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(24)

Substituting equation (3.19) in the z-momentum equation (3.16), the equation reduces to

0 = po

R

∂p∗

∂z∗ +ρgz (25)
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6. Boundary conditions

Boundary values are crucial in solving ordinary differential equations (ODEs) because they define the conditions
at the boundaries of the domain over which the differential equation is defined. In many practical applications, the
behavior of the system being modeled is influenced by conditions at its boundaries.

Here are a few reasons why boundary values are significant in solving ODEs:

(i) Physical Constraints: Boundary values often represent physical constraints or conditions that must be satisfied
by the solution. For example, in a heat conduction problem, the temperature at the boundaries of a material
might be specified or the heat flux might be prescribed.

(ii) Uniqueness of Solution: For many differential equations, specifying boundary conditions is necessary to ensure
the existence and uniqueness of the solution. Without appropriate boundary conditions, there may be multiple
solutions or no solution at all.

(iii) Determining Specific Solutions: Boundary conditions help to determine specific solutions to the ODE. They
provide additional information that narrows down the set of possible solutions to one that satisfies both the
differential equation and the boundary conditions.

(iv) Physical Interpretation: Boundary conditions often have a physical interpretation that helps to understand the
behavior of the system being modeled. They can represent constraints imposed by the physical environment in
which the system operates

The boundary conditions for the study problem are:
at r=0

ur = u∞,P = P∞

at r =∞

ur = uw ,P = Pw

7. Method of solution

7.1. Finite difference method

The finite difference approximations of these partial differential equations are obtained from Taylor’s series expan-
sion of the independent variables [25]. From definition

ur = ∂ur

∂r
= lim
∆r→0

u(r +∆r )−u(r )

∆r
(26)

The finite difference method offers a powerful approach for addressing problems with boundary or initial value condi-
tions by discretizing the problem’s domain into a grid or mesh. Through this discretization, derivatives in the original
differential equation are approximated using finite difference approximations. The method employs discrete points
to estimate the function’s rate of change at each grid point, constructing an algebraic equation system by substituting
these approximations into the original equation. Solving this system provides an approximation to the solution of the
original differential equation [26]. Key considerations for employing this technique include defining the grid spacing,
the number of grid points, and ensuring proper boundary or initial conditions, which alongside the order of the finite
difference approximations [27], significantly impact the method’s accuracy.

7.2. The forward finite difference method

In the forward finite difference method, the derivative is estimated by computing the difference between the
function values at a given point and a slightly displaced point in the forward direction, divided by the displacement.
The following substitutions are derived using this method:

∂u∗
r

∂r∗ =
u∗

r (i+1,k) −u∗
r (i ,k)

∆r∗
∂p∗

∂r∗ = p∗
(i+1,k) −p∗

(i ,k)

∆r∗
∂2u∗

r

∂r∗ =
u∗

r (i+1,k) −2u∗
r (i ,k) +u∗

r (i−1,k)

(∆r∗)2

∂p∗

∂z∗ = p∗
(i+1,k) −p∗

(i ,k)

∆z
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Fig. 1. Finite difference mesh

Replacing the above substitution in the governing equations
Continuity equation

U

R

u∗
r (i+1,k) −u∗

r (i ,k)

∆r∗ = 0 (27)

r-momentum

u∗
r i ,k (

u∗
r (i+1,k) −u∗

r (i ,k)

∆r∗ ) =− po (i ,k)

ρ(i ,k)U 2 (
p∗

(i+1,k) −p∗
(i ,k)

∆r∗ )+ 1

Re r∗
(i ,k)

(
u∗

r (i+1,k) −u∗
r (i ,k)

∆r∗ )

+ 1

Re
(

u∗
r (i+1,k) −2u∗

r (i ,k) +u∗
r (i−1,k)

(∆r∗)2 )− 1

Re R2r∗3
(i ,k)

(
u∗

r (i+1,k) −u∗
r (i ,k)

∆r∗ )− 2

Re R6r∗8
(i ,k)

u∗
r i ,k +

1

Fr
(28)

z-momentum

0 = po (i ,k)

R
(

p∗
(i+1,k) −p∗

(i ,k)

∆z
)+ρgz (29)

Making u∗
r i+1,k the subject in equation (28) and p∗

i+,k in equation (29) the equations become.

u∗
r i+1, j =

po (i , j )

ρ(i , j )U 2 (p∗
(i+1, j ) −p∗

(i , j ))−
1

Re
u∗

r (i , j ) −
1

Re

2u∗
r (i , j )

∆r∗ + 1

Re

u∗
r (i−1, j )

∆r∗

+ 1

Re R2r∗3
(i , j )

u∗
r (i , j ) −

2∆r∗

Re R6r∗8
(i , j )

+ ∆r∗

Fr
+u∗

r
2
(i , j )

÷
(

u∗
r i+1, j −

1

Re r∗
(i , j )

− 1

Re∆r∗
(i , j )

+ 1

Re R2r∗3
(i , j )

)
(30)

p∗
(i+1,k) =

R

po (i ,k)
p∗

(i ,k) −
R

po (i ,k)
∆zρgz (31)

The FDM representation of the equation of momentum in the r and z direction is the governing equation that will be
applied in this study.

8. Results and Discussions

MATLAB software was used to simulate the equations (30) and (31). The flow parameters of Reynold’s and Froude’s
numbers were investigated to determine how they affect the velocity.
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Fig. 2. Graph of velocity against radius

8.1. The velocity profiles of the flow

The results on velocity profiles indicates that, an increase in the radius leads to an increase in velocity.
From the figure (2), it is observed velocity decreases with depth. The fluid flow velocity at the channel bottom is
zero due to the non-slip condition of fluids. The non-slip condition states that a fluid in contact with a surface will
achieve the same velocity as the surface. Since at the channel bottom, the surface is stationary, the flow velocity at this
section of the channel will be zero. However, as you move vertically upwards, the velocity increases since the frictional
forces decrease and velocity becomes maximum slightly below the free surface. At the free surface, the velocity is not
maximum due to surface tension that is caused by strong cohesive forces between the fluid molecules.

8.2. The pressure profiles of the flow

From the figure (3), its observed that an increase in depth leads to an increase in pressure. The results indicate that
an increase in the depth leads to an increase in the pressure.

Fig. 3. Graph of pressure against radius

As depth increases within the circular channel, the pressure equation reveals a corresponding rise in pressure. This
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phenomenon occurs because at greater depths, there is a larger volume of fluid above that particular point. Con-
sequently, the increased weight of this additional fluid column exerts a greater force, resulting in elevated pressure
levels.

8.3. The effects of pressure on the velocity profile

From the figure (4), the pressure decreases with increase in velocity. The observed trend indicates a negative corre-
lation between fluid velocity and pressure within the system. Specifically, as fluid velocity increases, pressure tends to
decrease, and conversely, as fluid velocity decreases, pressure tends to increase. This negative correlation suggests an
inverse relationship between the two variables: as one variable increases, the other tends to decrease, and vice versa.

Fig. 4. Graph of pressure against velocity

According to Bernoulli’s principle, as the velocity of a fluid increases, the pressure decreases, and vice versa. This
relationship arises from the conservation of energy in a fluid flow system, where an increase in fluid velocity is ac-
companied by a decrease in pressure energy and vice versa. This principle is fundamental in fluid dynamics and is
applicable in various contexts, including the flow of liquids and gases in pipes, channels, and around objects.
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9. The effects of varying flow parameters on Flow variables

9.1. Effects of Reynolds number on the velocity Profiles

From the figure (5) the velocity profile increases with an increase in the Reynold’s Number

Fig. 5. Graph of velocity with varying Reynolds number

In the depicted graph illustrating the correlation between Reynolds number and flow velocity, a clear pattern emerges,
reflecting the intricate balance between inertial and viscous forces in fluid dynamics. With increasing Reynolds num-
bers, indicating a greater dominance of inertial forces relative to viscous forces, there is a corresponding rise in flow
velocity. Conversely, as Reynolds numbers decrease, signifying a shift towards viscous forces dominating over inertial
forces, a decrease in flow velocity is observed. This dynamic interplay between Reynolds number and flow velocity
underscores the fundamental principles governing fluid behavior, offering valuable insights into the nature of fluid
flow phenomena.

9.2. Effects of Froude’s number on the velocity Profiles

From figure (6) the velocity profile increases with an increase in the Froude’s number

Fig. 6. Graph of velocity against radius with varying Froude’s number
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When the Froude number is high, it indicates a dominance of inertial forces over gravitational forces. Consequently,
velocities tend to be high under such conditions. Conversely, when the Froude number is low, gravitational forces
exert greater influence over inertial forces, resulting in lower velocities. This relationship highlights the critical role
of the Froude number in characterizing the balance between inertial and gravitational forces within fluid systems,
offering insights into the flow behavior and dynamics of various phenomena, such as open channel flows and wave
propagation.

10. Validation of results

Fig. 7. Validation of results

Based on the velocity profiles observed, it’s evident that an upward trend exists: as depth increases from the surface,
velocity also increases. This finding aligns with the conclusions drawn by [16] as seen on figure (7), [28], who examined
fluid flow in an open trapezoidal channel and similarly found that flow velocity correlates positively with depth.
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