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Abstract: The purpose of this work is to theoretically and quantitatively investigate the linear electrohydrodynamic instability
of a viscoelastic dielectric liquid sheet of the Rivlin-Ericksen type flowing with relative velocity to the surrounding
inviscid dielectric gas medium. The method of normal modes analysis has been used to generate the differential
equations characterizing the liquid and gas media and the electric field. This has been done in addition to Maxwell’s
equations and the appropriate boundary conditions at the fluid interfaces. These differential equations’ solutions
have been found, and dispersion relations between wave numbers and growth rates have been constructed for both
situations and symmetric and antisymmetric disturbances. As a result of their extreme complexity, the resulting dis-
persion relations cannot be used to examine the stability of the system under consideration in an analytical manner.
The dispersion relations are then first written in non-dimensional forms, and they are then numerically solved using a
new method utilizing the Mathematica program. In-depth research has been done on how all of the analysis’s factors
affect the growth rates of disturbances in both two- and three-dimensional scenarios. It is discovered that the electric
field, the Weber numbers, and the ratio of gas to liquid density all have destabilizing effects for both symmetric and
antisymmetric modes of disturbance. The Ohnesorge number and the gas to liquid velocity ratio are shown to have a
dual function in the stability of the system, whilst the viscoelasticity parameter is found to have stabilizing effects for
both forms of disturbances.
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1. Introduction

A sheet of liquid can form when a dense fluid is ejected into a less dense fluid through a small slit whose thickness
is significantly smaller than its width. In biological applications and astrophysical phenomena, the linear scale of a
sheet can range from light years to nanometers [1]. The associated fluids can be anything from a complicated charged
plasma subject to intense electromagnetic and gravitational forces to a tiny collection of basic molecules moving
around freely with minimal external influence. Because of its intrinsic instability, the fluid sheet easily breaks apart.
Knowing the physical mechanism of breakup is therefore quite helpful when one needs to fully utilize the phenomena,
aside from its basic scientific significance [2]. Film coating, nuclear safety curtain production, spray combustion,
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agricultural sprays, ink jet printing, fiber and sheet drawing, processing powdered milk, powder metallurgy, toxic
substance removal, and encapsulation of biomedical materials are a few examples of recent applications [3]. Books
on the subject typically concentrate on particular applications because there are so many different uses. For instance,
Lefebvre’s [4] book discusses internal combustion, Masters’ [5] book concentrates on the formation of powdered milk,
Yarin’s [6] book offers a mathematical analysis of recent applications involving non-Newtonian fluids, and Lin’s [7]
review book discusses the breakdown of both liquid sheets and jets. See the investigations by Li and Tankin [8], Cousin
and Dumouchel [9], and more recently by Dasgupta et al. [10] and Han [11] for early research on the liquid sheets
instability of viscous fluids.

A branch of fluid mechanics called electrohydrodynamic examines how electric and hydrodynamic forces interact.
Due to its application in the sciences, it is a crucial branch. Electric phenomena and hydrodynamic motion are thus
connected. As a result, there are two categories for electrohydrodynamic equations of motion. The first set consists of
equations related to hydrodynamics and second-order responses to electric fields. The accompanying boundary con-
ditions reflect how the sets of equations are coupled. Melcher [12], El-Sayed [13], and Moatimid et al. [14] each provide
an overview of electrohydrodynamics with specific references to many of the recent advancements in the subject. In
the meantime, the field of spray engineering has called for a thorough electrohydrodynamical examination into the
mechanism behind the phenomena of liquid sheet disintegration in gas flow [15–19]. The electro-fluid dynamics of
biological systems, the ejection of liquid in zero gravity environments, and insulation studies in liquids and gases are
just a few examples of the many disciplines where electrohydrodynamics is applied. Due to these facts, there is an
increasing demand for original research on the fundamental electrohydrodynamic phenomena involving the use of
non-Newtonian fluids, which are the foundation for applications in the agricultural industry, biomedicine, etc. Since
the interaction between the fluid and elasticity in the presence of an electric field is so complex, little is understood
about the instability and breakdown of electrohydrodynamic non-Newtenian liquid sheets [20–25].

There are numerous viscoelastic fluids that neither Oldroyd’s constitutive relations nor Maxwell’s constitutive re-
lations can adequately describe. Rivlin-Ericksen fluid is one of these viscoelastic fluids [26]; given its growing use
in the production of spacecraft components (such as cushions, ropes, tyres, foams, seats, engineering equipment,
airplanes, belt conveyers, contact lenses, etc.), it is desirable to investigate this fluid’s instability. For engineers and
applied mathematicians who are interested in finding precise solutions, studying the flow problems of this kind of
viscoelastic fluid is not only crucial from a technological standpoint [27], but it is also difficult. Despite a few research
on the instability analysis of viscoelastic liquid sheets, relevant literature reveals that the impacts of gas velocities and
electric fields have largely been disregarded [28, 29].

Therefore, the current study’s objective is to conduct an investigation of linear temporal electrohydrodynamic in-
stability of a viscoelastic liquid sheet of Rivlin-Ericksen type that is running between two dielectric gas streams with
nonzero identical velocities. To the best of my knowledge, this issue hasn’t yet been looked into. In order to demon-
strate the impact of different parameters on the stability of both cases in two and three dimensional cases, two disper-
sion relations have been constructed in sophisticated forms for both cases of antisymmetric and symmetric distur-
bance. These relations are then numerically solved. The structure of this essay is as follows: The theoretical model and
its governing equations are described in section 2. The required boundary conditions for disturbances are provided
in Section 3. The solutions to the symmetric and antisymmetric disturbances for the gas and liquid media with an
applied electric field are shown in Sections 4 and 5, respectively. The detailed derivation of the analytical dimension-
less dispersion relations between wave number and temporal growth rate is covered in Section 6. In sections 7 (two
and three dimensions), the dispersion relations are numerically solved, and the impacts of all physical parameters on
the temporal growth rate are discussed. The key conclusions and the numerical method employed in this study are
summarized in Sections 8 and 9, respectively.

2. Formulation of the problem and perturbation equations

We investigate a viscoelastic Rivlin-Ericksen type dielectric liquid sheet whose thickness is 2a that issues from a
nozzle at a velocity U0l and has a density ρl , pressure pl , dielectric constant εl , kinematic viscosity νl (= µl /ρl )
and kinematic viscoelasticity ν′l (= µ′

l /ρl ), where µl and µ′
l are the dynamic viscosity and dynamic viscoelasticity,

respectively. The liquid sheet is streaming through an inviscid dielectric gas whose velocity is U0g , and has a density
ρg , pressure pg , dielectric constant εg in the presence of a horizontal electric field E0 moving parallel to the interfaces
y =±a.The following definitions are given in three-dimensional cartesian coordinates for the equation of continuity
and the Navier-Stokes equations for both liquid and gas media.

∂ul

∂x
+ ∂vl

∂y
+ ∂wl

∂z
= 0 (1)
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We presum that this problem can be accurately approximated by the quasi-static approximation, then the applied
electric field E can be derived from the gradient of a scalar potentialψ, and so, the linearized Maxwell’s equations that
govern the electric field become [12]

∇· (ε j E j
) = 0 (9)

∇×E j = 0, (10)

where the subscript
(

j = l
)

denotes the liquid sheet, while the subscript
(

j = g
)

denotes the gas medium so that the
total electric field is given by

E j = E0i−∇ψ j (11)

where i is the unit vector in the x-direction. From equations (9)-(11) we find that the electric potentials in the two
regions satisfy Laplace’s equations

∇2ψ j = 0 (12)

The flow has been separated into a time-dependent disturbance and a stable basic flow. Let u1 j , v1 j , w1 j , p1 j and ψ1 j ,
where ( j = l , g ) in the liquid and gas media, denote the perturbation in fluid velocity components u j , v j , w j , the
pressure p j and the electric potentials ψ j . Hence, we can write

u j =U0 j +u1 j , v j = v1 j , w j = w1 j , p j = p0 j +p1 j and ψ j =ψ0 j +ψ1 j

Substitute into eqs. (1)-(8) and (12) we obtain in the liquid sheet medium, the perturbed equations in the form
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and in the gas region as
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and that the perturbed electric potentials in the liquid and gas media are

∇2ψ1 j = 0 (21)
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3. Normal modes analysis

To break down the disturbance into its component normal modes, we seek solution of equations (13)-(21), for the
liquid and gas media, whose dependence on x, y, z, and t are of the forms [30](

u1l , v1l , w1l , p1l ,ψ1l
)= (Ul ,Vl ,Wl ,Pl ,Ψl )exp[i (kx +nz)+ωt ] (22)

(
u1g , v1g , w1g , p1g ,ψ1g

)= (
Ug ,Vg ,Wg ,Pg ,Ψg

)
exp[i (kx +nz)+ωt ] (23)

where Ul ,Vl ,Wl ,Pl ,Ψl ,Ug ,Vg ,Wg ,Pg and Ψg are functions of y only; k and n are the wave numbers in the x and z
directions, respectively, and ω = ωr + iωi is the complex frequency, respectively. The real part ωr represents the rate
of growth or decay of the disturbance. depending on whether ωr is positive or negative, respectively. The imaginary
variable ωi is 2π times the disturbance frequence. The interface displacement is given by [31]

η= η0 exp[i (kx +nz)+ωt ] (24)

Substituting from eqs.(22) and (23) into eqs.(13)-(21), we obtain in the electrified liquid sheet medium the equations

i kUl +DVl + i nWl = 0 (25)

(ω+ i kU0l )Ul = − i k

ρl
Pl +

(
νl +ν

′
l

∂

∂t

)(
D2 −m2)Ul (26)

(ω+ i kU0l )Vl = −DPl

ρl
+

(
νl +ν

′
l

∂

∂t

)(
D2 −m2)Vl (27)

(ω+ i kU0l )Wl = − i n

ρl
Pl +

(
νl +ν

′
l

∂

∂t

)(
D2 −m2)Wl (28)

(
D2 −m2)Ψl = 0 (29)

where D = d/d y and m2 = k2 +n2, and in the electrified gas medium, we obtain the equations

i kUg +DVg + i nWg = 0 (30)

(
ω+ i kU0g

)
Ug = − i k

ρg
Pg (31)

(
ω+ i kU0g

)
Vg = −DPg

ρg
(32)

(
ω+ i kU0g

)
Wg = − i n

ρg
Pg (33)

(
D2 −m2)Ψg = 0 (34)

The solutions of eqs. (29) and (34) can be written in the form

(Ψl ,Ψg ) = (A1,B1)emy + (A2,B2)e−my (35)

Hence

Ψg = B1emy f or y ≤−a and Ψg = B2e−my f or y ≥ a sinceΨg → 0 as y →±∞ (36)

where A1, A2, B1, and B2 are constants to be determined, using the boundary conditions.
Multiplying eq. (26) by ik, operate by the operator D on eq. (27), and multiply eq. (28) by in, and adding the

resulting three equations and using eq. (25), we obtain(
D2 −m2)Pl = 0 (37)

The solution of eq. (37) is given by

Pl =C1emy +C2e−my (38)
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where C1 and C2 are constants of integration to be determined, equation (26) on using eq. (38) can be written in the
form

d 2Ul

d y2 − s2Ul =
i k(C1emy +C2e−my )

ρl
(
νl +ν′

lω
) (39)

where

s2 = m2 + (ω+ i kU0l )(
νl +ν′

lω
) (40)

Similarly, eqs. (27) and (28) can be written on using eq. (38) in the forms

d 2Vl

d y2 − s2Vl = m(C1emy −C2e−my )

ρl
(
νl +ν′

lω
) (41)

d 2Wl

d y2 − s2Wl = i n(C1emy +C2e−my )

ρl
(
νl +ν′

lω
) (42)

The general solution of the non-homogeneous eq. (39) is

Ul =C3e s y +C4e−s y + i k

ρl
(
νl +ν′

lω
) (C1emy +C2e−my )(

m2 − s2
) (43)

Similarly, the general solutions of eqs. (41) and (42) are

Vl = C5e s y +C6e−s y + m

ρl
(
νl +ν′

lω
) (C1emy −C2e−my )(

m2 − s2
) (44)

Wl = C7e s y +C8e−s y + i n

ρl
(
νl +ν′

lω
) (C1emy +C2e−my )(

m2 − s2
) (45)

Also, multiplying eq. (31) by ik, operate by the operator D on eq. (32), and multiply eq. (33) by in, and adding the
resulting three equations and using eq. (30), we obtain(

D2 −m2)Pg = 0 (46)

The solution of eq. (46) is

Pg =C9emy +C10e−my (47)

where C9 and C10 are constants of integration to be determined.

4. Boundary conditions

Depending on whether the obtained disturbance is symmetric or antisymmetric, different boundary conditions
must be used for this problem. For antisymmetric disturbance, the upper andm lower interfaces at y ≈ ±a is de-
scribed, respectively, by y = a +η and y =−a +η, have the following form, while for symmetric disturbance, the two
interfaces are described, respectively, by y = a +η and y =−a −η, where η is the interface displacement defined by
equation (24). The linearized boundary conditions for the antisymmetric disturbances at y ≈±a are [32, 33]

(1) The normal velocity at the interfaces should equal the total derivative of the interface displacement in order to
satisfy the kinematic boundary condition.

v1l = ∂η

∂t
+U0l

∂η

∂x
at y ≈±a (48)

v1g = ∂η

∂t
+U0g

∂η

∂x
at y ≈±a (49)

(2) Far from the interfaces, the perturbed gas velocity should vanish, so

v1g = 0 at y →±∞ (50)
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(3) At the interfaces, the stress tensor’s tangential component ought to be continuous [23]

τy x =
(
µl +µ

′
l

∂

∂t

)(
∂u1l

∂y
+ ∂v1l

∂x

)
= 0 at y ≈±a (51)

τy z =
(
µl +µ

′
l

∂

∂t

)(
∂v1l

∂z
+ ∂w1l

∂y

)
= 0 at y ≈±a (52)

(4) At the interfaces, the electric field’s tangential component is continuous, i.e.

∂ψ1l

∂x
= ∂ψ1g

∂x
at y ≈±a (53)

(5) At the interfaces, the electric displacement’s normal component is continuous.

εl
∂ψ1l

∂y
−εg

∂ψ1g

∂y
= i kη0E0

(
εl −εg

)
at y ≈±a (54)

(6) Surface tension causes the normal component of the stress tensor to discontinue at interfaces [34, 35]

−p1l +εl E0
∂ψ1l

∂x
+2

(
µl +µ

′
l

∂

∂t

)
∂v1l

∂y
=−p1g +εg E0

∂ψ1g

∂x
+pσ at y ≈±a (55)

where pσ is the pressure induced by the surface tension σ.

Note that, for symmetric disturbances, the boundary conditions that change forms are the kinematic boundary
conditions (48), (49) at y =−a which become

v1l =−
(
∂η

∂t
+U0l

∂η

∂x

)
at y ≈−a (56)

v1g =−
(
∂η

∂t
+U0g

∂η

∂x

)
at y ≈−a (57)

and the electric displacement boundary condition (54) which becomes [36]

εl
∂ψ1l

∂y
−εg

∂ψ1g

∂y
=−i kη0E0

(
εl −εg

)
at y ≈−a (58)

5. Solutions for the antisymmetric disturbances

5.1. Solution of the electric field

Substituting forψ1l and ψ1g from eqs. (22), (23), (35) and (36) into the boundary condition (53) and (54), we obtain

A1ema + A2e−ma = B2e−ma (59)

A1e−ma + A2ema = B1e−ma (60)

εl m(A1ema − A2e−ma)+εg mB2e−ma = i kη0E0(εl −εg ) (61)

εl m(A1e−ma − A2ema)−εg mB1e−ma = i kη0E0(εl −εg ) (62)

solving eqs. (59)-(62), we obtain

B1 =−B2 =− i kη0E0(εl −εg )ema tanh(ma)

m[εl +εg tanh(ma)]
(63)

and

A1 =−A2 =
i kη0E0(εl −εg )

2m cosh(ma)[εl +εg tanh(ma)]
(64)

Then, the electric potential in both regions can be written in the form

ψ1l =
i kη0E0(εl −εg )sinh(my)

m cosh(ma)[εl +εg tanh(ma)]
e i (kx+nz)+ωt (65)

ψu,l
1g =± i kη0E0(εl −εg )em(a∓y) tanh(ma)

m[εl +εg tanh(ma)]
tanh(ma)e i (kx+nz)+ωt (66)
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5.2. Solution of the liquid sheet phase

The boundary conditions (48), (51), (52), on using eqs. (22), (24), (43), (44), (67) and (68), yield the following solu-
tions

C3 =− i km {C1 sinh[(s +m) a]−C2 sinh[(s −m) a]}

sρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
− i k (ω+ i kU0l )η0

2s cosh(sa)
(67)

C4 = i km {C1 sinh[(s −m) a]−C2 sinh[(s +m) a]}

sρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
+ i k (ω+ i kU0l )η0

2s cosh(sa)
(68)

C5 = −m {C1 sinh[(s +m) a]−C2 sinh[(s −m) a]}

ρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
+ (ω+ i kU0l )η0

2cosh(sa)
(69)

C6 = −m {C1 sinh[(s −m) a]−C2 sinh[(s +m) a]}

ρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
+ (ω+ i kU0l )η0

2cosh(sa)
(70)

C7 =− i nm {C1 sinh[(s +m) a]−C2 sinh[(s −m) a]}

sρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
− i n (ω+ i kU0l )η0

2s cosh(sa)
(71)

C8 = i nm {C1 sinh[(s −m) a]−C2 sinh[(s +m) a]}

sρl
(
νl +ν′

lω
)(

m2 − s2
)

sinh(2sa)
+ i n (ω+ i kU0l )η0

2s cosh(sa)
(72)

Since the equation of continuity (13) is satisfied everywhere in the liquid sheet, it is also satisfied at the two interfaces.
Hence, on using eqs. (67)-(72), it reduces to

m

sρl (νl +ν′lω)sinh(sa)cosh(sa)
×{[

sinh2 (sa)cosh(ma)+cosh2 (sa)sinh(ma)
]

C1 +
[−sinh2 (sa)cosh(ma)+cosh2 (sa)sinh(ma)

]
C2

}
+ (ω+ i kU0l )η0

s cosh(sa)

(
m2 + s2)sinh(sa) = 0 (73)

and

m

sρl (νl +ν′lω)sinh(sa)cosh(sa)
×{[−sinh2 (sa)cosh(ma)+cosh2 (sa)sinh(ma)

]
C1 +

[
sinh2 (sa)cosh(ma)+cosh2 (sa)sinh(ma)

]
C2

}
− (ω+ i kU0l )η0

s cosh(sa)

(
m2 + s2)sinh(sa) = 0 (74)

Solving eqs. (73) and (74), we obtain

C1 =−C2 =−
ρl

(
νl +ν′

lω
)(

m2 + s2
)

(ω+ i kU0l )η0

2m cosh(ma)
(75)

Substituting for C1 and C2 into eqs. (67)-(72), and using the fact that (ω+ i kU0l ) = (
s2 −m2

)(
νl +ν′

lω
)
, we respectively

obtain

C3 =−C4 =−
i ks

(
νl +ν′

lω
)
η0

cosh(sa)
(76)

C5 =C6 =−
m2

(
νl +ν′

lω
)
η0

cosh(sa)
(77)

C7 =−C8 =−
i ns

(
νl +ν′

lω
)
η0

cosh(sa)
(78)
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Hence, we have the following solutions for the liquid phase

p1l = −ρl

m

(
νl +ν

′
lω

)(
m2 + s2) (ω+ i kU0l )η0

sinh
(
my

)
cosh(ma)

×exp[i (kx +nz)+ωt ] (79)

u1l = −i kη0

[
2s

(
νl +ν

′
lω

) sinh
(
s y

)
cosh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )

m
(
m2 − s2

) sinh
(
my

)
cosh(ma)

]
×exp[i (kx +nz)+ωt ] (80)

v1l = −η0

[
2m2

(
νl +ν

′
lω

) cosh
(
s y

)
cosh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )(

m2 − s2
) cosh

(
my

)
cosh(ma)

]
×exp[i (kx +nz)+ωt ] (81)

w1l = −i nη0

[
2s

(
νl +ν

′
lω

) sinh
(
s y

)
cosh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )

m
(
m2 − s2

) sinh
(
my

)
cosh(ma)

]
×exp[i (kx +nz)+ωt ] (82)

5.3. Solution in the gas phase

Substitute from eqs. (47) into eqs. (31)-(33), we get

Ug = − i k [C9emy +C10e−my ]

ρg
(
ω+ i kU0g

) (83)

Vg = −m [C9emy −C10e−my ]

ρg
(
ω+ i kU0g

) (84)

Wg = − i n [C9emy +C10e−my ]

ρg
(
ω+ i kU0g

) (85)

using the kinematic boundary condition for the gas medium (49), we get

C9emy −C10e−my =−ρg
(
ω+ i kU0g

)2
η0

m
at y ≈±a (86)

From the boundary condition (50) it follows that C9 = 0 due to v1g = 0 as y →∞, then

C10 =
ρg

(
ω+ i kU0g

)2
η0

m
ema , y > a (87)

while C10 = 0 due to v1g = 0 as y →−∞, then

C9 =−ρg
(
ω+ i kU0g

)2
η0

m
ema , y <−a (88)

Substitute from eqs. (87) and (88) into eqs. (83)-(85), and using eqs. (23) and (47), we get the velocity and pressure
disturbances in the gas medium, for the regions y > a and y <−a as follows

p1g = ±ρg
(
ω+ i kU0g

)2
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (89)

u1g = ∓ i k
(
ω+ i kU0g

)
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (90)

v1g = (ω+ i kU0g )ηoem(a∓y) exp[i (kx +nz)+ωt ] (91)

w1g = ∓ i n
(
ω+ i kU0g

)
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (92)

A definition of the pressure caused by surface tension by [31]

pσ =σ
(
∂2η

∂x2 + ∂2η

∂z2

)
=−m2ση0 exp[i (kx +nz)+ωt ] (93)
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6. Solutions for the symmetric disturbances

6.1. Solution of the electric field

Substituting for ψ1l and ψ1g from eqs. (22),(23),(35), and (36) into the boundary condition (53) at y = ±a, (54) at
y = a, and (58) at y = −a, we obtain the same eqs. (59)-(61) obtained before, but equation (62) is replaced by the
equation

εl m(A1e−ma − A2ema)−εg mB1e−ma =−i kη0E0(εl −εg ) (94)

then solving these equations, we get

B1 = B2 =
i kη0E0(εl −εg )ema coth(ma)

m[εl +εg coth(ma)]
(95)

and

A1 = A2 =
i kη0E0(εl −εg )

2m sinh(ma)[εl +εg coth(ma)]
(96)

Therefore, we have the solutions of the electric potentials as

ψ1l =
i kη0E0(εl −εg )cosh(my)

m sinh(ma)[εl +εg coth(ma)]
e i (kx+nz)+ωt (97)

and

ψu,l
1g = i kη0E0(εl −εg )em(a∓y) coth(ma)

m[εl +εg coth(ma)]
coth(ma)e i (kx+nz)+ωt (98)

6.2. Solution of the liquid sheet phase

As a result, we continue in a manner identical to that of the prior antisymmetric disturbance instance except that
the kinematic boundary condition (48) is applied at the interface y = a, while at the lower interface y =−a, we use the
condition (56), and also apply the boundary conditions (51) and (52) to obtain the following constants of integration

C1 =C2 =−
ρl

(
νl +ν′

lω
)(

m2 + s2
)

(ω+ i kU0)η0

2m sinh(ma)
(99)

C3 =C4 =−
i ks

(
νl +ν′

lω
)
η0

sinh(sa)
(100)

C5 =−C6 =−
m2

(
νl +ν′

lω
)
η0

sinh(sa)
(101)

C7 =C8 =−
i ns

(
νl +ν′

lω
)
η0

sinh(sa)
(102)

Hence, we have the following solutions for the liquid phase

p1l = −ρl

m

(
νl +ν

′
lω

)(
m2 + s2) (ω+ i kU0l )η0

cosh
(
my

)
sinh(ma)

×exp[i (kx +nz)+ωt ] (103)

u1l = −i kη0

[
2s

(
νl +ν

′
lω

) cosh
(
s y

)
sinh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )

m
(
m2 − s2

) cosh
(
my

)
sinh(ma)

]
×exp[i (kx +nz)+ωt ] (104)

v1l = −η0

[
2m2

(
νl +ν

′
lω

) sinh
(
s y

)
sinh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )(

m2 − s2
) sinh

(
my

)
sinh(ma)

]
×exp[i (kx +nz)+ωt ] (105)

w1l = −i nη0

[
2s

(
νl +ν

′
lω

) cosh
(
s y

)
sinh(sa)

+
(
m2 + s2

)
(ω+ i kU0l )

m
(
m2 − s2

) cosh
(
my

)
sinh(ma)

]
×exp[i (kx +nz)+ωt ] (106)
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6.3. Solution in the gas phase

Here, we proceed in a similar way to the antisymmetric disturbance case axcept that the kinamatic boundary con-
dition for the gas (49) is satisfied at y = a, while at the lower interface y =−a, we use the condition (57), then , we get
the pressure and velocity components in the gas medium in the regions y > a and y <−a in the form

p1g = ρg
(
ω+ i kU0g

)2
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (107)

u1g = − i k
(
ω+ i kU0g

)
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (108)

v1g = ±(ω+ i kU0g )ηoem(a∓y) exp[i (kx +nz)+ωt ] (109)

w1g = − i n
(
ω+ i kU0g

)
η0

m
em(a∓y) exp[i (kx +nz)+ωt ] (110)

7. Dispersion relations and stability analysis

Substituting from eqs. (65), (66), (79), (81), (89) and (93) into the normal stress boundary condition (55), for y =
a leads to dispersion relation between k and ω , for antisymmetric disturbances(

νl +ν
′
lω

)(
m2 + s2)[ρl (ω+ i kU0l )+2ρl m2

(
νl +ν

′
lω

)]
tanh(ma)

−4ρl m3s
(
νl +ν

′
lω

)2
tanh(sa)− k2E 2

0 (εl −εg )2

[εl +εg tanh(ma)]
tanh(ma)

+ρg
(
ω+ i kU0g

)2 +m3σ= 0 (111)

Also, substituting from eqs. (97), (98), (103), (105), (107) and (93) into the boundary condition (55) foe y = a, leads to
the following dispersion relation for the symmetric disturbance case.(

νl +ν
′
lω

)(
m2 + s2)[ρl (ω+ i kU0l )+2ρl m2

(
νl +ν

′
lω

)]
coth(ma)

−4ρl m3s
(
νl +ν

′
lω

)2
coth(sa)− k2E 2

0 (εl −εg )2

[εl +εg coth(ma)
coth(ma)

+ρg
(
ω+ i kU0g

)2 +m3σ= 0 (112)

Note that, the dispersion relation for symmetric disturbances is similar to eq. (111) except that tanh(ma)
and tanh(sa) are replaced by coth(ma) and coth(sa), respectively.

To facilitate the analysis, we should write equations (111) and (112) in dimensionless forms using the following non-
dimensional quantities: W e = ρlU

2
0l a/σ is the Weber number, Re =U0l a/νl is the Reynolds number, Oh =p

W e/Re is
the Ohnesorge number ρ = ρg /ρl is the gas to liquid density ratio, U =U0g /U0l is the gas to liquid velocity ratio, V ′ =
ν′l /a2 is the viscoelasticity parameter. And let K = ka, N = na represent the non-dimensional wave numbers, and

put M = ma, S = sa, E = E0/
p
σ, ε̃l = εl a, and ε̃g = εg a. Also, we defined the quantitiesΩ=Ωr +i

p
W eΩi where Ωr =

ωr a2
√
ρl /σa,Ωi =ωi a/U0l andΩ1 =Ω+ i K

p
W e.

Then, the non-dimensional form of the dispersion relation (111) can be written, for antisymmetric case, in the form[
Ω1 +4M 2(Oh +V ′Ω)

]
Ω1 tanh(M)+4M 3(Oh +V ′Ω)2[M tanh(M)

−S tanh(S)
]− K 2E 2(ε̃l − ε̃g )2

[ε̃l + ε̃g tanh(M)]
tanh(M)+ρ(Ω+ i KU

p
W e)2

+M 3 = 0 (113)

where

S2 = M 2 + Ω1

Oh +ΩV ′ (114)

Similarly, the non-dimensional form of the dispersion relation (112) can be written, for symmetric disturbance case,
in the form [

Ω1 +4M 2(Oh +V ′Ω)
]
Ω1 coth(M)+4M 3(Oh +V ′Ω)2[M coth(M)

−S coth(S)
]− K 2E 2(ε̃l − ε̃g )2

[ε̃l + ε̃g coth(M)]
coth(M)+ρ(Ω+ i KU

p
W e)2

+M 3 = 0 (115)
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Note that, in absence of both electric field and gas velocity, (i.e. when E = 0 and U = 0), the dimensionless disper-
sion relation (113) and (115) reduce to the same dispersion relation obtained before by El.Sayed et al [33], which are
generalization of the dispersion relations obtained earlier by Ibrahim and Akpan [37], in absence of the viscoelasticity
parameter (i.e. for only viscous fluids, when V ′ = 0), and hence their results are recovered.
The dimensionless dispersion relations (113) and (115) are very complicated, and they cannot be analytically solved
in order to investigate the effects of different parameters on the stability of the system under consideration. As a re-
sult, they may be using the Mathematica software to solve numerical problems (as shown in the appendix) to yield
values of K as a function of Ω for different values of the other parameters. In providing a guessed root of Ωr , it is
helpful to realize thatΩi =−K in accordance with Gaster’s theorem [38]. Note that, the three-dimensional results are
obtained from the numerical solution of the relations (113) and (115) with N = 1,2 ( the z-direction wave numbers),
while the two-dimensional results corresponds to the case N = 0. By solving the dispersion equations (113) and (115)
in the temporal mode for both the antisymmetrical and symmetrical disturbances cases, it is possible to examine the
effects of different analysis parameters on the instability of an electrified viscoelastic Rivlin-Ericksen liquid sheet. A
novel method that combines the Muller method [39] and the Gaster method [38] is used to solve these dispersion rela-
tions numerically using Mathematica software, to obtain relationships between the non-dimensional real part of the
growth rates Ωr and the non-dimensional wave numbers K of the disturbances. The physical parameters including
in the study are shown graphically in the following figures (1)-(8) which exhibit the growth rateΩr as a function of the
wave number K for the flow. In these figures, at firstΩr increases with increasing K and then decreases for both cases
of antisymmetrical and symmetrical disturbances. The dominant growth rate is defined as the highest possible value,
and the dominant wave number is the corresponding maximum value of the growth rate. The critical wave number is
the point where the growth rate curve meets the wave number axis. The Rivlin-Ericksen fluid sheet becomes unstable
with positive growth rate in the area under the growth rate curve where the wave number ranges from zero to the
cutoff wave number, which is defined as the instability zone. The maximum growth rates Ωr with the dominant wave
number K makes the Rivlin-Ericksen liquid sheet most unstable. Furthermore, the following figures demonstrate that
the maximum growth rates of antisymmetrical disturbances are significantly higher than those of symmetrical distur-
bances, indicating that the antisymmetrical disturbance situation has a greater impact on the Rivlin-Ericksen liquid
sheet instability.Therefore, the antisymmetrical disturbances play a major role in the flow instability and breakup of
the electrified Rivlin-Ericksen liquid sheet surrounded by an inviscid gas medium [40, 41] .

Fig. 1. Variation of growth rateΩr with wave number k for various values of electric field
E when W e = 10000, Oh = 0.1, ρ = 0.01, N = 0, V ′ = 0.01, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) antisymmetric and (b) symmetric
modes.
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7.1. Effect of electric field

Figures 1a,b show the variation of non-dimensional growth rate Ωr with non-dimensional wave number K for
various values of the electric field E , and constant values of the other parameters for both antisymmetrical and
symmetrical disturbances, respectively. The instability zone is larger in the antisymmetric case than the symmetric
case at any electric field value, even the situation of no electric field, as can be seen from the figure, which shows that
the curves of antisymmetrical disturbances are greater than those of symmetrical disturbances. Additionally, we see
that as the electric field values rise, the dominating growth rates and related dominant wave numbers rise as well.
Therefore, we draw the conclusion that both kinds of disruption are destabilized by the applied electric field.

Fig. 2. Variation of growth rateΩr with wave number k for various values of Weber number W e when
Oh = 0.1, ρ = 0.01, N = 0, V ′ = 0.01, E = 2, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) intisymmetric and (b) symmetric modes.

7.2. Effect of Weber Number

Figures 2a,b give the relation between the non-dimensional growth rate Ωr and the non-dimensional wave num-
ber K for various values of Weber number, We in both cases of antisymmetrical symmetrical modes, respectively,
under different initial disturbances.These data show that as the Weber number rises, the dominant wave numbers
and dominant growth rates of symmetrical and antisymmetrical modes also rise. As a result, the Weber number both
accelerates and reduces the disturbance wavelength in both scenarios. It should be noted that by raising the Weber
number faster than their values in the comparable symmetric disturbance case, the maximum growth rates, dominant
wave numbers, and critical wave numbers all increase in the antisymmetrical disturbances mode. As a result, we draw
the conclusion that the Weber number causes the system to become unstable.

7.3. Effect of viscoelasticity parameter

Figures 3a,b show the variation of non-dimensional growth ratesΩr with non-dimensional wave number K under
different various of viscoelasticity parameter V ′ for antisymmetrical and symmetrical disturbances, respectively, and
constant values of the other parameters included in the analysis. The figure shows that, similar to the aforementioned
results, the growth rates of antisymmetrical modes are higher than those of symmetric modes. Additionally, it is seen
that for the two disturbance scenarios, growth rates are reduced by raising the viscoelasticity value, and the dominant
wave numbers also decrease with the increase of V ′. Hence, we conclude that the viscoelasticity parameter V ′ has a
stabilizing effect on the system under consideration, due to the decrease of instability zone.
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Fig. 3. Variation of growth rateΩr with wave number k for various values of viscoelasticity parameter V ′ when
W e = 10000, Oh = 0.1, ρ = 0.01, N = 0, E = 2, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) antisymmetric and (b) symmetric modes.

7.4. Effect of Ohnesorge Number

Figures 4a,b show the effect of Ohnesorge number Oh on the non-dimensional growth rate Ωr and non-
dimensional wave number K for antisymmetric and symmetric modes of disturbances, respectively, and the other
parameters stay constant. From these figures, it is clear that when the Ohnesorge number Oh is increased the max-
imum growth rates of antisymmetric and symmetric modes decrease for wave number values less than a fixed wave
number value after which both the growth rate and dominant wave number of both modes of disturbance increase.
The instability zone in the case of an antisymmetric disturbance is significantly larger than the corresponding insta-
bility zone in the case of a symmetric disturbance, leading us to the conclusion that the Ohnesorge number plays a
dual role on the stability of the system, stabilizing and then destabilizing effects.
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Fig. 4. Variation of growth rate Ωr with wave number k for various values of Ohnesorge number Oh when
W e = 10000, ρ = 0.01, N = 0, V ′ = 0.01, E = 2, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) antisymmetric, and (b) symmetric modes.

7.5. Effect of gas to liquid density ratio

Figures 5a,b demonstrate the variation of non-dimensional growth rate of disturbance Ωr with the non-
dimensional wave number K under several different values of the gas to liquid density ratio ρ and constant values
of the other physical parameters in both antisymmetric and symmetric disturbance modes, respectively,The figure
shows that the growth rates and the dominating wave numbers of the symmetric and antisymmetric modes of insta-
bility both rise with an increase in the gas to liquid density ratio. This means that in the case of an antisymmetric
disturbance, the dominant growth rates, dominant wave numbers, and critical wave numbers are bigger than those
in the case of a symmetric disturbance. In all kinds of instability, the disturbance is therefore accelerated by the gas
to liquid density ratio. As a result, we draw the conclusion that the system is destabilized by the gas to liquid density
ratio, and that this instability occurs more quickly in the antisymmetric mode case than in the comparable symmetric
mode situation.
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Fig. 5. Variation of growth rate Ωr with wave number k for various values of gas to liquid density ratio ρ when
W e = 10000, Oh = 0.1, N = 0, V ′ = 0.01, E = 2, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) antisymmetric and (b) symmetric modes.

Fig. 6. Variation of growth rate Ωr with wave number k for various values of gas to liquid velocity ratio U ≥ 2 when
W e = 10000, Oh = 0.1, ρ = 0.01, N = 0, V ′ = 0.01, E = 2, ε̃l = 0.1 and ε̃g = 0.3 in (a) antisymmetric and (b) symmetric modes.

7.6. Effect of gas to liquid velocity ratio

Figures 6a,b show the effect of the gas to liquid velocity ratio U ≥ 2 on the instability of Rivlin-Ericksen electrified
viscoelastic liquid sheet for both cases of antisymmetrical and symmetrical disturbances, respectively, while Figures
7a,b show the same effect when 0 < U ≤ 2. It is clear from Figures 6a,b that increase the gas to liquid velocity ratio
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Fig. 7. Variation of growth rate Ωr with wave number k for various values of gas to liquid velocity ratio 0 <U ≤ 2 when
W e = 10000, Oh = 0.1, ρ = 0.01, N = 0, E = 2, ε̃l = 0.1 and ε̃g = 0.3 in (a) antisymmetric and (b) symmetric modes.

from U = 2 to U = 2.6 , and keeping the other parameters constant, then the growth rates for antisymmetrical and
symmetrical disturbances increase, and the dominant growth rates also largely increase with the increase of the gas to
liquid velocity ratio U ≥ 2. Furthermore, because the dominant growth rate and dominant wave numbers are nearly
same in both circumstances, the instability zones of both modes stay unchanged. Therefore, we conclude that the
gas to liquid velocity ratio U ≥ 2 has a destabilizing effect on the considered system. It is also clear from Figures
7a,b that increase the gas to liquid velocity ratio in the range 0 < U ≤ 1 decreases the dominant growth rate, and
the dominant wave number as well as critical wave number, showing thereby the stability effect of the gas to liquid
velocity ratio U ≤ 1 including the case of zero gas velocity. Figures 7a,b clearly also show that increase the gas to liquid
velocity ratio in the range 1 ≤ U ≤ 2 leads to increasing the instability zones for both antisymmetric and symmetric
modes of disturbances similar to curves in Figures 6a,b. Therefore, we conclude that the gas to liquid velocity ration
in range 1 ≤U ≤ 2 has a destabilizing effect. Hence, the gas to liquid velocity ratio has only a stabilizing effect in the
range U ≤ 1, otherwise it has a destabilizing effect on the system. Note that the values of U = (0.2,1.8), (0.3,1.7), ...etc
has the same growth rate curve. In other words, we can conclude that the gas to liquid velocity ratio has a dual role on
the stability of the system stabilizing for the ratio range U ≤ 1, and then destabilizing otherwise for ratio U ≥ 1.

7.7. Effect of dimension

Figures 8a,b give the relation between the non-dimensional growth rate Ωr and non-dimensional wave number
K for both antisymmetric and symmetric modes, respectively, in two dimensional N = 0 and three-dimensional
N ≥ 1 cases of the problem of the stability of an electrified viscoelastic Rivlin-Ericksen liquid sheet streaming with rel-
ative velocity in an inviscid gas medium. It is clear from the figures that the growth rates of two-dimensional antisym-
metric and symmetric disturbances always exceed that of the three-dimensional ones, and also the three-dimensional
disturbance with N = 1 has higher growth rates than those with N = 2 . As a result, we draw the conclusion that, in
both cases of antisymmetric and symmetric disturbances, two-dimensional instability disturbances are more unsta-
ble than three-dimensional instability ones, and the instability zone in the antisymmetric mode of instability is larger
than the corresponding zone in the symmetric mode. As a result, the studied viscoelastic liquid sheet breaks apart
more quickly in two dimensions than it does in three. Additionally, this liquid sheet breakdown occurs more quickly
in the event of antisymmetric disturbances than it does in the case of symmetric disturbances.

8. Concluding remarks

A linear electrohydrodynamic instability analysis of an incompressible viscoelastic dielectric liquid sheet of Rivlin-
Ericksen type streaming with relative velocity in an inviscid dielectric gas medium has been investigated in this paper
using the equations of motion for fluids and electric fields with the appropriate boundary conditions. By using the
linear temporal stability analysis method, the analytical dimensionless dispersion relations are derived for both an-
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Fig. 8. Variation of growth rate Ωr with wave number k for various values of two and three dimension N when
W e = 10000, Oh = 0.1, ρ = 0.01, V ′ = 0.01, E = 2, ε̃l = 0.1, ε̃g = 0.3 and U = 1.2 in (a) antisymmetric and (b) symmetric modes.

tisymmetrical and symmetrical cases. The influence of different elements on the instability of such a liquid sheet
problem can be investigated by solving the resulting dispersion relations numerically using the Gaster technique and
Mathematica software. Some concluding observations can be made based on the previous analysis and numerical
discussion.

• For all the physical parameters included in the analysis, the maximum growth rates and the dominant wave
numbers of the antisymmetric mode of disturbance are much greater than in the symmetric mode.

• In both examples of antisymmetric and symmetric modes, the disturbances caused by two-dimensional insta-
bility are greater than those caused by three-dimensional instability.

• In both symmetric and antisymmetric modes of disturbance, the electrified viscoelastic liquid sheets can break
up more quickly by increasing the electric field, Weber numbers, and gas to liquid density ratio.

• For both kinds of disturbance, increasing the viscoelasticity parameter can reduce the breakup of the electrified
viscoelastic liquid sheet.

• The gas to liquid velocity ratio and the Ohnesorge number both affect the system’s stability in different ways.

9. Appendix

(1) Numerical Program used to draw Figure 1a, we write

M =
√

K 2 +n2; β=−K ;

Ω=α+ iβ
p

we;

Λ=Ω+ i K
p

we;

we = 10000; z = 0.1; ρ = 0.01; n = 0; ν= 0.01; B = 0; ε1 = 0.1;

ε2 = 0.3; U = 1.2;
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F (K_,α_) = (
Λ+4M 2(νΩ+ z)

)
Λ tanh(M)+4M 3(νΩ+ z)2(

M tanh(M)−
√

M 2 + Λ

νΩ+ z
tanh

√
M 2 + Λ

νΩ+ z

)

−B 2K 2 tanh(M)(ε1−ε2)2

ε2tanh(M)+ε1
+ρ (

Ω+ i KU
p

we
)2 +M 3

F1 = ℜ(Table[{K ,α/.FindRoot[F (K ,α) = 0,{α,5}]},

{K ,0.001,5,0.005}]);

F11 = ListLinePlot
[
F1,PlotStyle → {Black}

]
we obtained the solid curve.

we = 10000; z = 0.1; ρ = 0.01; n = 0; ν= 0.01; B = 1; ε1 = 0.1;

ε2 = 0.3; U = 1.2;

G(K_,α_) = (
Λ+4M 2(νΩ+ z)

)
Λ tanh(M)+4M 3(νΩ+ z)2(

M tanh(M)−
√

M 2 + Λ

νΩ+ z
tanh

√
M 2 + Λ

νΩ+ z

)

−B 2K 2 tanh(M)(ε1−ε2)2

ε2tanh(M)+ε1
+ρ (

Ω+ i KU
p

we
)2 +M 3

G1 = ℜ(Table[{K ,α/.FindRoot[G(K ,α) = 0,{α,5}]},

{K ,0.001,5,0.005}]);

G11 = ListLinePlot
[
G1,PlotStyle → {Dashed,Black}

]
we obtained the dashed curve.
Show[F11,G11]
we obtained the solid curve and the dashed curve.

we = 10000; z = 0.1; ρ = 0.01; n = 0; ν= 0.01; B = 2; ε1 = 0.1;

ε2 = 0.3; U = 1.2;

H(K_,α_) = (
Λ+4M 2(νΩ+ z)

)
Λ tanh(M)+4M 3(νΩ+ z)2(

M tanh(M)−
√

M 2 + Λ

νΩ+ z
tanh

√
M 2 + Λ

νΩ+ z

)

−B 2K 2 tanh(M)(ε1−ε2)2

ε2tanh(M)+ε1
+ρ (

Ω+ i KU
p

we
)2 +M 3

H1 = ℜ(Table[{K ,α/.FindRoot[H(K ,α) = 0,{α,5}]},

{K ,0.001,5,0.005}]);

H11 = ListLinePlot
[
H1,PlotStyle → {DotDashed,Black}

]
we obtained the dot dashed curve.

Show
[
F11,G11,H11,PlotRange → {{0,3}, {0.07,2}}

]
we obtained solid curve, dashed curve and dot dashed curve.

we = 10000; z = 0.1; ρ = 0.01; n = 0; ν= 0.01; B = 3; ε1 = 0.1;

ε2 = 0.3; U = 1.2;
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J (K_,α_) = (
Λ+4M 2(νΩ+ z)

)
Λ tanh(M)+4M 3(νΩ+ z)2(

M tanh(M)−
√

M 2 + Λ

νΩ+ z
tanh

√
M 2 + Λ

νΩ+ z

)

−B 2K 2 tanh(M)(ε1−ε2)2

ε2tanh(M)+ε1
+ρ (

Ω+ i KU
p

we
)2 +M 3

J1 = ℜ(Table[{K ,α/.FindRoot[J (K ,α) = 0,{α,5}]},

{K ,0.001,3,0.01}]);

J11 = ListLinePlot
[

J1,PlotStyle → {Dotted,Black}
]

we obtained the dotted curve.

Show
[
F11,G11,H11,J11,PlotRange → {{0,2.5}, {0,1.6}}

]
we obtained the solid curve, the dashed curve, the dot dashed curve and the dotted curve.

M1 = Plot[1.5, {t ,1.8,2.1},PlotStyle → {Black}];

M2 = Plot[1.36,{t ,1.8,2.1},PlotStyle → {Black,Dashed}];

M3 = Plot[1.2, {t ,1.8,2.1},PlotStyle → {Black,DotDashed}];

M4 = Plot[1.05,{t ,1.8,2.1},PlotStyle → {Black,Dotted}];

Y1 = Show[F11,G11,H11,J11,M1,M2,M3,M4,

Epilog → {Text[E=0,{2.3,1.9}, {0,5}],Text[E=1,{2.3,1.75}, {0,5}],

Text[E=2,{2.3,1.6}, {0,5}],

Text[E=3,{2.3,1.45}, {0,5}],Text[Oh = 0.1, {5.43,3}, {0,5}],

Text[ρ = 0.01,{5.56,2.8}, {0,5}],Text[We = 1000,{5.5,2.6}, {0,5}],

Text[ "Antisymmetric", {2.1,2.1}, {0,5}],Text[ "(a)" , {2.2,1}, {0,5}],

Frame → True,FrameLabel → {K,Ωr},

FrameStyle → Di r ect i ve[Bl ack,16],

TextStyle → {FontWeight → "Bold",PlotRange → {{0,2.5}, {0.1,1.75}}]

(2) Numerical Program to draw Figure 1b, we will follow the same steps as in the previous case useb in Figure 1a
except that any (tanh) will be replaced by (coth), and the last paragraph in this case will be written as

M1 = Plot[0.84,{t ,1.48,1.72},PlotStyle → {Black}];

M2 = Plot[0.77,{t ,1,48,1.72},PlotStyle → {Black,Dashed}];

M3 = Plot[0.7, {t ,1.48,1.72},PlotStyle → {Black,DotDashed}];

M4 = Plot[0.7, {t ,1.48,1.72},PlotStyle → {Black,Dotted}];

Y1 = Show[F11,G11,H11,J11,M1,M2,M3,M4,

Epilog → {Text[E=0,{1.85,1.04}, {0,5}],Text[E=1,{1.85,0.97}, {0,5}],

Text[E=2,{1.85,0.9}, {0,5}],

Text[E=3,{2.3,1.45}, {0,5}],Text[Oh = 0.1, {5.43,3}, {0,5}],

Text[ρ = 0.01,{5.56,2.8}, {0,5}],Text[We = 1000,{5.5,2.6}, {0,5}],

Text[ "symmetric", {1.75,1.16}, {0,5}],Text[ "(b)" , {1.7,0.55}, {0,5}],

Frame → True,FrameLabel → {K,Ωr},

FrameStyle → Di r ect i ve[Bl ack,16],

TextStyle → {FontWeight → "Bold",PlotRange → {{0,2.0}, {0.05,1}}]
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