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Abstract: In this paper, the modified Kudryashov method or the rational Exp-function method with the aid of symbolic
computation has been proposed to construct exact solutions of both the coupled equal width wave equation
and the (2+1)-dimensional Nizhnik-Novikov-Veselov equations. As a result, some new types of exact traveling
and solitary wave solutions are obtained, with comparison of the other solution obtained before in literature,
which include exponential function, hyperbolic function and trigonometric function. The related results are
extend. Obtained results clearly indicate the reliability and efficiency of the modified Kudryashov method.
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1. Introduction

As the mathematical model of complex physics phenomena, nonlinear partial differential equations are involved in
many fields from physics to biology, chemistry and engineering, . . . etc. In the past decades, great efforts have been
made to search for powerful methods to obtain exact solutions. The investigation of exact solutions of nonlinear
wave equations plays an important role in the study of nonlinear physical phenomena. There exist some methods
such as inverse scattering method [1], Hirota’s method [2], homogeneous balance method [3], Jacobi elliptic function
method [4], extended tanh-function method [5], Bäcklund transformation method [6], algebraic method [7], sine-
cosine method [8], Homotopy perturbation method [9–11], Variational iterative method [12], Homotopy analysis
method [13], [14], F-expansion method [15–17] and so on, which proposed to construct periodic wave solutions of
nonlinear partial differential equations. For recent developments about the subject, see refs. [18–20]
Here, we aim to shed more light on the coupled equal width wave equation given by [21].

ut +u ux −ux x t + v vx = 0 (1)

vt + v vx − vx x t = 0 (2)

where the subscripts t and x denoting to the differentiation with respect to time and space respectively. Also, the
(2+1)-dimensional Nizhnik-Novikov-Veselov system given by
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ut +k ux x x + r u y y y + s ux +q u y −3k (u vx +ux v )−3r (u wy +u y w ) = 0 (3)

ux = vy (4)

u y =wx (5)

where k , r , s and q are constants, Eqs. (3)-(5) studied using Jacobi elliptic function method, extended hyperbolic
function method, further extended tanh-function method, extended mapping method and similarity reduction so-
lutions, and the balancing procedure, see refs. [22–27].
On the other hand, He and Wu [28]developed the exp-function method to seek the solitary, periodic and compaction
like solutions of nonlinear differential equations. It is an effective and simple method and is widely used. Based on
this method, modified exp-function expansion method is proposed. Hence, in this paper, we shall use the modified
Kudryashov method (the rational Exp-function method) [29, 30] to obtain new exact solitary wave solutions of both
the coupled equal width wave equation and the (2+1)-dimensional Nizhnik-Novikov-Veselov system. To the best of
our knowledge, this study has not been investigated yet.

2. The Modified Kudryashov Method

To illustrate the basic idea of the modified Kudryashov method, we first consider a general form of nonlinear equa-
tion

p (u , ut , ux , ux x , ut t , ux t , . . .) = 0 (6)

where p is a polynomial function with respect to the indicated variables.
Making use of the travelling wave transformation

u = u (ξ), ξ=α(x −β t ) (7)

whereα andβ are arbitrary constants to be determined later, then Eq. (6) reduces to a nonlinear ordinary differential
equation

p (u , −αβu ′, αu ′, α2u ′′, α2β 2u ′′, −α2βu ′′, . . .) = 0 (8)

In this section, we shall seek a rational function type of solution for a given partial differential equation, in terms of
exp(ξ), of the following form

u (ξ) =
m
∑

k=0

ak

[1+exp(ξ)]k
(9)

where a0, a1, . . ., am are constants to be determined. We can determine m by balance the linear term of the highest
order in Eq. (8) with the highest order nonlinear term.
Differentiating Eq. (9) with respect to ξ, introducing the result into Eq. (8), and setting the coefficients of the same
power of exp(ξ) equal to zero, we obtain algebraic equations. The rational function solution of the Eq. (6) can be
solved by obtaining a0, a1, . . ., am from this system [29].

3. Solutions of coupled equal width wave equation

we consider the coupled equal width wave equations, in the normalized form

ut +u ux −ux x t + v vx = 0 (10)

vt + v vx − vx x t = 0 (11)

By using the transformation

u (x , t ) =U (ξ), v (x , t ) =V (ξ), ξ=α(x −β t ) (12)

where α and β are arbitrary constant, then Eqs. (10) and (11) become
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−αβU ′+αU U ′+α3βU ′′′+αV V ′ = 0 (13)

−αβV ′+αV V ′+α3βV ′′′ = 0 (14)

In order to determine values of m and n , we balance the linear term of the highest order partial derivative terms
and the highest order nonlinear terms in Eqs. (13) and (14), then we get m = n = 2.
By using the rational function in exp(ξ), we may choose the solutions of Eqs. (13) and (14) in the form

U (ξ) = a0+
a1

[1+exp(ξ)]
+

a2

[1+exp(ξ)]2
(15)

V (ξ) = b0+
b1

[1+exp(ξ)]
+

b2

[1+exp(ξ)]2
(16)

where a0, a1, a2, b0, b1 and b2 are arbitrary constants to be determined later.
Differentiating Eqs. (15) and (16) with respect to ξ, introducing the result into Eqs. (13) and (14), and setting the
coefficients of the same power of exp(ξ) equal to zero, we obtain the following algebraic equations

−2a0a2−a 2
1 −3a1a2−2a 2

2 − b0b1−2b0b2− b 2
1 −3b1b2

−2b 2
2 −α

2βa1+βa1+2βa2−a0a1−2α2βa2 = 0 (17)

4βa2−4b0b2−3a0a1+3α2βa1−3b1b2−3b0b1−4a0a2

−3a1a2+14α2βa2−2a 2
1 −2b 2

1 +3βa1 = 0 (18)

−2a0a2− b 2
1 −2b0b2−a 2

1 +3βa1+2βa2−3a0a1

+3α2βa1−8α2βa2−3b0b1 = 0 (19)

−b0b1−α2βa1+βa1−a0a1 = 0 (20)

2α2βb2−2βb2+ b0b1+2b0b2+ b 2
1 +3b1b2+2b 2

2 +α
2βb1−βb1 = 0 (21)

−4βb2+4b0b2+2b 2
1 +3b1b2−3α2βb1−3βb1−14α2βb2+3b0b1 = 0 (22)

b 2
1 +8α2βb2+3b0b1−2βb2−3βb1−3α2βb1+2b0b2 = 0 (23)

α2βb1−βb1+ b0b1 = 0 (24)

Solving the system of algebraic Eqs. (17)-(24) with the aid of Maple, we obtain two cases of solutions

3.1. Case (1)

a0 =
β

2
(1+ i

p
3)(1−α2), b0 = β (1 - α2)

a1 = 6α2β (1+ i
p

3),

b1 = 12α2βa2 = - a1, b2 = - b1

(25)

By back substitution in Eqs. (15) and (16) with Eq. (12), new exact solution for the coupled equal width wave equa-
tion is obtained

u1(x , t ) = 6β (1+ i
p

3)





(1−α2)
12

+
α2 expα(x −β t )

�

1+expα(x −β t )
�2



 (26)

v1(x , t ) =β

(

�

1−α2
�

+
12α2 expα(x −β t )
�

1+expα(x −β t )
�2

)

(27)
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3.2. Case (2)

a0 =
β

2
(1− i

p
3)(1−α2), b0 =β (1−α2)

a1 = 6α2β (1− i
p

3), b1 = 12α2β (28)

a2 =−a1, b2 =−b1

The following new exact solution for the coupled equal width wave equation is given by

u2(x , t ) =β (1− i
p

3)

(

(1−α2)
2

+
6α2 expα(x −β t )
�

1+expα(x −β t )
�2

)

(29)

v2(x , t ) =β

(

(1−α2) +
12α2 expα(x −β t )
�

1+expα(x −β t )
�2

)

(30)

4. Solutions of (2+1)-dimensional Nizhnik-Novikov-Veselov system

Eqs. (3)-(5) can be rewritten as

ut +k ux x x + r u y y y + s ux +q u y = 3k (u vx +ux v ) +3r (u wy +u y w ) (31)

ux = vy (32)

u y =wx (33)

By using the transformation

u (x , y , t ) =U (ξ), v (x , y , t ) =V (ξ), w (x , y , t ) =W (ξ), ξ=α(x +γy −β t ) (34)

where α, β and γ are arbitrary constant, then Eqs. (31)-(33) become

−αβU ′+kα3U ′′′+ rα3γ3U ′′′+ sαU ′+qαγU ′

−3kα(U V ′+U ′V )−3rαγ(U W ′+U ′W ) = 0 (35)

αU ′−αγV ′ = 0 (36)

αγU ′−αW ′ = 0 (37)

In order to determine values of m , n and l , we balance the linear term of the highest order partial derivative terms
and the highest order nonlinear terms in Eqs. (35)-(37), then we get m = n = l = 2.
By using the rational function in exp(ξ), the solutions of Eqs. (35)-(37) can be written in the form

U (ξ) = a0+
a1

[1+exp(ξ)]
+

a2

[1+exp(ξ)]2
(38)

V (ξ) = b0+
b1

[1+exp(ξ)]
+

b2

[1+exp(ξ)]2
(39)

W (ξ) = c0+
c1

[1+exp(ξ)]
+

c2

[1+exp(ξ)]2
(40)

where a0, a1, a2, b0, b1, b2, c0, c1 and c2 are arbitrary constants to be determined.
Differentiating Eqs. (38)-(40) with respect to ξ, introducing the result into Eqs. (35)-(37), and setting the coefficients
of the same power of exp(ξ) equal to zero, we obtain the following algebraic equations

−βa1−9k a2b1+2kα2a2−12k a2b2−6k a1b1−6k a0b2+ rα2a1

+kα2a1−9k a1b2−3r a0c1−6k a2b0−3k a0b1+2rα2a2−6r a0c2

−6r a1c1−9r a1c2+q a1+ s a1−12r a2c2+2s a2−2βa2−3r a1c0

+2q a2−3k a1b0−9r a2c1−6r a2c0 = 0

(41)
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−9k a2b1+3s a1−12r a2c0−9k a1b2−4βa2−9r a0c1−9k a0b1

−3βa1+4q a2+3q a1−9r a1c0−12k a1b1−9k a1b0+4s a2

−9r a2c1−14rα2a2−12r a1c1−9r a1c2−3kα2a1−12r a0c2

−12k a2b0−3rα2a1−14kα2a2−12k a0b2 = 0

(42)

−2βa2+3s a1−3kα2a1−6k a2b0+2q a2+8kα2a2−6r a2c0

+2s a2−6r a1c1−3βa1−9k a0b1+8rα2a2−9r a1c0−9r a0c1

−3rα2a1+3q a1−6k a1b1−9k a1b0−6r a0c2−6k a0b2 = 0

(43)

q a1−βa1−3k a1b0−3r a1c0−3k a0b1+kα2a1+ rα2a1−3r a0c1+ s a1 = 0 (44)

γb1−a1 = 0 (45)

−a1+2γb2−2a2+γb1 = 0 (46)

γa1−2c2+2γa2− c1 = 0 (47)

−c1+γa1 = 0 (48)

Solving the system of algebraic Eqs. (41)-(48) with the aid of Maple, we obtain two cases of solutions

4.1. Case 1

a0 = a0, b0 =
β −qγ+3r γc0− s

3r γ3
, c0 = c0, γ3 =−

k

r

(a1, a2) = γ (b1, b2) , b1 = b1, b2 = b2, (c1, c2) = γ
2 (b1, b2) (49)

By back substitution new exact solution for the (2+1)-dimensional Nizhnik-Novikov-Veselov equations is obtained

u1(x , y , t ) = a0+
3
q

− k
r b1

h

1+exp
n

α
�

x + 3
q

− k
r y −β t

�o i +
3
q

− k
r b2

h

1+exp
n

α
�

x +% 3
q

− k
r y −β t

�oi2 (50)

v1(x , y , t ) =−
(β - s) + 3

q

- k
r (3rc0 - q)%

3k
+

b1
h

1+exp
n

α
�

x + 3
q

− k
r %y −β t

�oi

+
b2

h

1+exp
n

α
�

x + 3
q

− k
r y −β t

�oi2

(51)

w1(x , y , t ) = c0+

�

− k
r

�
2
3 b1

h

1+exp
n

α
�

x + 3
q

− k
r y −β t

�oi +

�

− k
r

�
2
3 b2

h

1+exp
n

α
�

x + 3
q

− k
r y −β t

�o i2 (52)
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4.2. Case 2

a0 =
(s −β +kα2−3k b0)γ+ (q −3r c0)γ2+ rα2γ4

3(r γ3+k )
,

b0 = b0, c0 = c0, (53)

(a1, a2) = 2α2γ(−1, 1), (b1, b2) = 2α2(−1, 1), (c1, c2) = 2α2γ2(−1, 1)

By back substitution we get the following new exact solution for the (2+1)-dimensional Nizhnik-Novikov-Veselov
equations

u2(x , y , t ) =
(s −βγ+kα2−3k b0)γ+ (q −3r c0)γ2+ rα2γ4

3(r γ3+k )
−

2α2γexp{α(x +γy −β t )}
�

1+exp{α(x +γy −β t )}
�2 (54)

v2(x , y , t ) = b0−
2α2 exp{α(x +γy −β t )}
�

1+exp{α(x +γy −β t )}
�2 (55)

w2(x , y , t ) = c0−
2α2γ2 exp{α(x +γy −β t )}
�

1+exp{α(x +γy −β t )}
�2 (56)

5. Conclusions

In this paper, we have applied the modified Kudryashov method or the rational Exp-function method on both the
coupled equal width wave equation and (2+1)-dimensional Nizhnik-Novikov-Veselov system, respectively. Some
new exact wave solutions of both equations under consideration are successfully found. Compared to the methods
used before, one can see that this method is concise and effective, and it can be applied to other nonlinear problems
of physical interest. Thus, we can say that the proposed method can be extended to solve the problems of nonlinear
partial differential equations which arising in the theory of solitons and other areas described by nonlinear evolution
equations.
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