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Abstract: In this paper, we introduce a fractional-order HBV infection model. We show the existence of non-negative so-
lutions of the model, and also give a detailed stability analysis of the disease-free and endemic equilibria. Nu-
merical simulations are presented to illustrate the results.
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1. Introduction

Infection with hepatitis B virus (HBV) is a major health problem, which can lead to cirrhosis and primary hepato-
cellular carcinoma (HCC) [1, 2]. According to World Health Organization, an estimated 2 billion people worldwide
have been infected with the virus and about 350 million carrying HBV, with HBV being responsible for approximately
600,000 deaths each year [3]. Hepatitis B causes about 1 million people, die from chronic active hepatitis, cirrhosis
or primary liver cancer annually [3].
Mathematical modeling of HBV infection has provided a lot of understandings of the dynamic of infection. The
basic virus infection model introduced by Nowak [4] is widely used in the studies of virus infection dynamics. In [5],
Su et. al. presented a HBV infection model in the following:
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where x , y and v are number of uninfected (susceptible) cells, infected cells, and free virus respectively. Uninfected
cells are assumed to be produced at a constant rate s . Uninfected cells are assumed to be die at the rate of d x , and
become infected at the rate β x v

x+y , where β is a rate constant describing the infection process and are assumed to die
at the rate a y . Infected hepatocytes are cured by noncytolytic processes at a constant rate ρ per cell. Free virus are
assumed to be produced from infected cells at the rate of k y and are removed at the rate of µv . Furthermore, the
lossof viral particles rate at a rate β x v

x+y when the free-virus particle once enters the target cell.
Fractional calculus is an area of mathematics that addresses generalization of the mathematical operations of differ-
entiation and integration to arbitrary (non-integer) order. In recent years, fractional calculus has been extensively
applied in many fields [6–10]. In order to introduced fractional order to the HBV infection model, we firstly present
the definition of fractional-order integration and fractional-order differentiation [11]. For fractional-order differen-
tiation, we will use Caputo’s definition, due to its convenience for initial conditions of the differential equations.
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Definition 1.1.
The fractional integral of order α> 0 of a function f :R+→R is given by

I α =
1

Γ (α)

∫ x

0

(x − t )α−1 f (t )d t

provided the right side is pointwise defined onR+. Here and elsewhere in this paper, Γ denotes the Gamma function.

Definition 1.2.
The Caputo fractional derivative of order α ∈ (n −1, n ) of a continuous function f : is given by

D α f (x ) =I n−αD n f (x ), D =
d

d t
.

In particular, when 0<α< 1, we have

D α f (x ) =
1

Γ (1−α)

∫ x

0

f ′(t )
(x − t )α

d t .

Now we introduce fractional order into system (1). The new system is described by the following set of FODE:






















D αx = s −d x −
β x v

x + y
+ρy ,

D αy =
β x v

x + y
−a y −ρy ,

D αv = k y −µv −
β x v

x + y
.

(2)

The meaning of the parameters are similar to system (1). The initial conditions for system (2) are

x (0) = x 0 ≥ 0, y (0) = y 0 ≥ 0, v (0) = v 0 ≥ 0. (3)

We denote

R3
+ = {(x , y , v ) ∈R3, x ≥ 0, y ≥ 0, v ≥ 0}.

This paper is organized as follows. In Section 2, the established fractional-order model is proved to possess unique
non-negative solutions. A detailed analysis on local stability of equilibrium is carried out in Section 3. Simulations
and results are given in Section 4.

2. Non-negative solutions

In order to prove that the solutions of system (2) are non-negative, we need the following lemmas.

Lemma 2.1 (Generalized Mean Value Theorem [12]).
Suppose that f (x ) ∈C[a , b ] and D α

a f (x ) ∈C(a , b ], for 0<α≤ 1, then we have

f (x ) = f (a ) +
1

Γ (α)
(D α

a f )(ξ)(x −a )α

with a ≤ ξ≤ x , ∀x ∈ (a , b ].

Lemma 2.2.
Suppose that f (x ) ∈C[a , b ] and D α

a f (x ) ∈C(a , b ], for 0<α≤ 1. If D α
a f (x )≥ 0, ∀x ∈ (a , b ), then f (x ) is nondecreasing

for each x ∈ [a , b ]. If D α
a f (x )≤ 0, ∀x ∈ (a , b ), then f (x ) is non increasing for each x ∈ [a , b ].

Theorem 2.1.
There is a unique solution X (t ) = (x , y , v )> to system (2) with initial condition (3) on t ≥ 0 and the solution will remain
in R3

+.

Proof. The existence and uniqueness of the solution of (2)-(3) in (0,+∞) can be obtained from Theorem 3.1 and
Remark 3.2 in [13]. In the following, we will show that the domain R3

+ is positively invariant. Since

D αx |x=0 = s +ρy ≥ 0,
D αy |y=0 =βv ≥ 0,
D αv |v=0 = k y ≥ 0,

on each hyperplane bounding the non-negative orthant, the vector field points into R3
+ by using Lemma 2.2.
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3. Equilibria and their asymptotical stability

To prove the locally asymptotical stability of equilibria of system (2), the following lemma is useful.

Lemma 3.1 (Ahmed [7]).
The equilibrium (x , y ) of the following frictional-order differential system

§

D αx (t ) = f1(x , y ), D αy (t ) = f2(x , y ),α ∈ (0, 1],
x (0) = x0, y (0) = y0

is locally asymptotically stable if all the eigenvalues of the Jacobian matrix

J =

�

∂ f1
∂ x

∂ f1
∂ y

∂ f2
∂ x

∂ f2
∂ y

�

evaluated at the equilibrium (x , y ) satisfy the following condition:

|arg(λ)|>
απ

2
.

The basic reproductive ratio of system (2) isR0 =
β (k−a−ρ)
(a+ρ)µ . To evaluate the equilibria, we let

D αx = 0, D αy = 0, D αv = 0.

It is easily to know that ifR0 < 1, then the disease-free equilibrium P0(x0, 0, 0) is the unique steady state, where x0 =
s/d ; ifR0 ≥ 1, then in addition to the disease-free equilibrium, there is only one endemic equilibrium P ∗(x ∗, y ∗, v ∗),
where x ∗ = s

a (R0−1)+d , y ∗ = s (R0−1)
a (R0−1)+d , v ∗ = s (k−a−ρ)(R0−1)

aµ(R0−1)+dµ . WhenR0 = 1, P ∗ will becomes P0. In the following, we will
discuss the local stability of the disease-free equilibrium and endemic equilibrium.

Theorem 3.1.
The disease-free equilibrium P0 is locally asymptotically stable ifR0 < 1 and is unstable ifR0 > 1.

Proof. The Jacobian matrix J (P0) for system (2) evaluated at the disease-free equilibrium P0 is given by

J (P0) =

 −d p −β
0 −(a +ρ) β
0 k −(µ+β )

!

.

Hence, the characteristic equation about P0 is given by

(λ+µ)(λ2+A1λ+A2) = 0, (4)

where A1 = a +µ+β +ρ and A2 =µρ+µa +aρ+ρβ −kβ .

Obviously,R0 < 1⇔ A2 > 0 andR0 > 1⇔ A2 < 0. All the eigenvalues are λ1 =−µ< 0, λ2,3 =
1
2 [−A1±

Æ

A2
1−4A2].

If R0 < 1, then the three roots of the characteristic equation (4) will have negative real parts. Thus, if R0 < 1, the
disease-free equilibrium P0 is asymptotically stable.
IfR0 > 1, at least one eigenvalue will be positive real root. Thus, ifR0 > 1, the disease-free equilibrium P0 is unstable.
In the following, we consider the local stability of the endemic equilibrium P ∗. The Jacobian matrix J (P ∗) evaluated
at the endemic equilibrium P ∗ is given as:

J (P ∗) =







− β y ∗v ∗

(x ∗+y ∗)2 −d β x ∗v ∗

(x ∗+y ∗)2 +ρ − β x ∗

x ∗+y ∗
β y ∗v ∗

(x ∗+y ∗)2 − β x ∗v ∗

(x ∗+y ∗)2 − (a +ρ)
β x ∗

x ∗+y ∗
β y ∗v ∗

(x ∗+y ∗)2 k + β x ∗v ∗

(x ∗+y ∗)2
β x ∗

x ∗+y ∗ −µ






.

The characteristic equation of J (P ∗) is

f (λ) =λ3+a1λ
2+a2λ+a3 = 0, (5)

where

a1 = (a +ρ)R0+µ+d +β/R0,
a2 = d [a +ρ+µ+ (a +ρ)(R0−1)/R0+β/R0] + (a +ρ)µ(R0−1) +a (a +ρ)(R0−1)2/R0,
a3 =µa (a +ρ)(R0−1)2/R0+dµ(a +ρ)(R0−1)/R0.

Hence, a2 > 0 and a3 > 0 whenR0 > 1. And we can easily obtain a1 > 0. Furthermore, a1a2−a3 =µ[a+ρ+µ+β/R0+
aµ(R0−1)]+[(a +ρ)R0+d +β/R0][(a +ρ)d (R0−1)/R0+a (a +ρ)(R0−1)2/R2

0 +a +ρ+µ+β/R0+aµ(R0−1)]> 0.
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Proposition 3.1.
The endemic equilibrium P ∗ is locally asymptotically stable if all of the eigenvalues λ of J (P ∗) satisfy arg(λ)> απ

2 .

Denote

D ( f ) =−

�

�

�

�

�

�

�

�

�

1 a1 a2 a3 0
0 1 a1 a2 a3

3 2a1 a2 0 0
0 3 2a1 a2 0
0 0 3 2a1 a2

�

�

�

�

�

�

�

�

�

= 18a1a2a3+ (a1a2)2−4a3a 3
1 −4a 3

2 −27a 2
3 .

Using the results of [6], we have the following proposition.

Proposition 3.2.
SupposeR0 > 1.
(1) If D ( f )> 0, then the endemic equilibrium P ∗ is locally asymptotically stable.
(2) If D ( f )< 0 and 1

2 <α<
2
3 , then the endemic equilibrium P ∗ is locally asymptotically stable.

4. Numerical methods and simulations

According to the Adams predictor-corrector scheme shown in [14, 15], the numerical solution of the initial value
problem for system (2) will be yielded as below.
Set h = T

N , tn = nh , n = 0, 1, 2, · · · , N ∈Z+, the system (2) can be discretized as follows:














xn+1 = x 0+ hα

Γ (α+2) (s −d x p
n+1−

β x p
n+1 v p

n+1

x p
n+1+y p

n+1
+ρy p

n+1),

yn+1 = y 0+ hα

Γ (α+2) (
β x p

n+1 v p
n+1

x p
n+1+y p

n+1
−a y p

n+1−ρy p
n+1),

vn+1 = v 0+ hα

Γ (α+2) (k y p
n+1−µv p

n+1−
β x p

n+1 v p
n+1

x p
n+1+y p

n+1
),

(6)

where

x p
n+1 = x 0+ hα

Γ (α)

n
∑

j=0

β j ,n+1(s −d x j −
β x j v j

x j + yj
+ρyj ),

y p
n+1 = y 0+ hα

Γ (α)

n
∑

j=0

β j ,n+1[
β x j v j

x j + yj
−a yj −ρyj ],

v p
n+1 = v 0+ hα

Γ (α)

n
∑

j=0

β j ,n+1[k yj −µv j −
β x j v j

x j + yj
],

x q
n+1 =

n
∑

j=0

γ j ,n+1(s −d x j −
β x j v j

x j + yj
+ρyj ),

y q
n+1 =

n
∑

j=0

γ j ,n+1[
β x j v j

x j + yj
−a yj −ρyj ],

v q
n+1 =

n
∑

j=0

γ j ,n+1[k yj −µv j −
β x j v j

x j + yj
]

and

β j ,n+1 =
hα

α ((n − j −1)α− (n − j )α),

γ j ,n+1 =

(

nα+1− (n −α)(n +1)α, j = 0,
(n − j +2)α+1+ (n − j )α+1−2(n − j +1)α+1, 0≤ j ≤ n ,
1, j = n +1.

For the numerical simulations for system (2), using the above-mentioned method is appropriate. For the param-
eters s = 5, d = 0.01, β = 0.02, ρ = 0.01, a = 0.4, k = 1000, µ = 8, we obtain R0 = 15.23765244. Furthermore,
a1 = 14.26071885, a2 = 48.96920158, a3 = 14.26071885, a1a2 − a3 = 680.8514660 > 0 and D ( f ) = 144085.7355 > 0.
System (2) exists a positive equilibrium E ∗(0.8764148221, 12.47808963, 1559.121702) and it is locally asymptotically
stable. The approximate solutions are displayed in Fig. 1 for the step size 0.005 and α = 0.85, 0.9, 0.95, 1. The initial
conditions are x (0) = 0.3, y (0) = 20, v (0) = 1300. When α = 1, system (2) is the classical integer-order system (1). In
Figure 1(a) , the variation of x (t ) versus time t is shown for different values of α= 0.85, 0.9, 0.95, 1 by fixing other pa-
rameters. It is revealed that increase in α increases with the proportion of susceptible while behavior is reverse after
certain value of time. Figure 1(b), (c) depicts y (t ), v (t ) versus time t with various values of α (α = 0.85, 0.9, 0.95, 1,
respectively).
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Fig. 1. Time evolution of population of x (t ), y (t ), v (t ) when s = 5, d = 0.01, β = 0.02, ρ = 0.01, a = 0.4, k = 1000, µ = 8 for
α= 0.85, 0.9, 0.95, 1.
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