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Abstract: In this paper, we introduce a fractional-order HBV infection model. We show the existence of non-negative so-
lutions of the model, and also give a detailed stability analysis of the disease-free and endemic equilibria. Nu-
merical simulations are presented to illustrate the results.
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1. Introduction

Infection with hepatitis B virus (HBV) is a major health problem, which can lead to cirrhosis and primary hepato-
cellular carcinoma (HCC) [1, 2]. According to World Health Organization, an estimated 2 billion people worldwide
have been infected with the virus and about 350 million carrying HBV, with HBV being responsible for approximately
600,000 deaths each year [3]. Hepatitis B causes about 1 million people, die from chronic active hepatitis, cirrhosis
or primary liver cancer annually [3].

Mathematical modeling of HBV infection has provided a lot of understandings of the dynamic of infection. The
basic virus infection model introduced by Nowak [4] is widely used in the studies of virus infection dynamics. In [5],
Su et. al. presented a HBV infection model in the following:

dx Bxv
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where x, y and v are number of uninfected (susceptible) cells, infected cells, and free virus respectively. Uninfected
cells are assumed to be produced at a constant rate s. Uninfected cells are assumed to be die at the rate of d x, and

become infected at the rate ff ;, where f is a rate constant describing the infection process and are assumed to die
at the rate a y. Infected hepatocytes are cured by noncytolytic processes at a constant rate p per cell. Free virus are
assumed to be produced from infected cells at the rate of ky and are removed at the rate of yv. Furthermore, the

lossof viral particles rate at a rate /;szy/ when the free-virus particle once enters the target cell.

Fractional calculus is an area of mathematics that addresses generalization of the mathematical operations of differ-
entiation and integration to arbitrary (non-integer) order. In recent years, fractional calculus has been extensively
applied in many fields [6-10]. In order to introduced fractional order to the HBV infection model, we firstly present
the definition of fractional-order integration and fractional-order differentiation [11]. For fractional-order differen-

tiation, we will use Caputo’s definition, due to its convenience for initial conditions of the differential equations.
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Definition 1.1.
The fractional integral of order a > 0 of a function f : R* — R is given by

1 X
Fh=—— | (x—0)*'f(t)dt
I'(a) J(, f
provided the right side is pointwise defined on R*. Here and elsewhere in this paper, I’ denotes the Gamma function.

Definition 1.2.
The Caputo fractional derivative of order a € (n —1, n) of a continuous function f : is given by

a _ gh—apn _i
D% f(x)=4"""D" f(x), D_dt'

In particular, when 0 < a < 1, we have

D fx)= -t f LHORN
0

1—-a) J, (x—1)

Now we introduce fractional order into system (1). The new system is described by the following set of FODE:

D“xzs—dx—m+py,

x+y
“y= Bxv —ay—py, 2
xX+y
xXv
D%v=ky—uv— Py
The meaning of the parameters are similar to system (1). The initial conditions for system (2) are
x(0)=x>0, y(0)=y°>0, v(0)=v’>0. 3)
We denote

R} ={(x,y,v)€R% x>0,y >0,v>0}.

This paper is organized as follows. In Section 2, the established fractional-order model is proved to possess unique
non-negative solutions. A detailed analysis on local stability of equilibrium is carried out in Section 3. Simulations
and results are given in Section 4.

2. Non-negative solutions

In order to prove that the solutions of system (2) are non-negative, we need the following lemmas.

Lemma 2.1 (Generalized Mean Value Theorem [12]).
Suppose that f(x)€ Cla, b] and D} f(x) € C(a, b], for0 < a <1, then we have

Fx)=fla)+ %{D:f)(a(x—a)a

witha<&<x,Yx€(a,b].

Lemma 2.2.
Suppose that f(x) € Cla, bl and D{ f(x)€ C(a, b], for0<a <1. IfD? f(x) =0,V x €(a, b), then f(x) is nondecreasing
foreach x €la,b]. If DY f(x)<0,Vx €(a, b), then f(x) is non increasing for each x €a, b].

Theorem 2.1.
There is a unique solution X (t)=(x, y, v)" to system (2) with initial condition (3) on t > 0 and the solution will remain
inR3.

Proof. The existence and uniqueness of the solution of (2)-(3) in (0, +00) can be obtained from Theorem 3.1 and
Remark 3.2 in [13]. In the following, we will show that the domain Ri is positively invariant. Since

D%x|yzo=s+py =0,
Day|y=0 :ﬁ V> O,
DaU'UZO = ky 2 0)
on each hyperplane bounding the non-negative orthant, the vector field points into R? by using Lemma 2.2,
O
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3. Equilibria and their asymptotical stability

To prove the locally asymptotical stability of equilibria of system (2), the following lemma is useful.

Lemma 3.1 (Ahmed [7]).
The equilibrium (x, y) of the following frictional-order differential system

{ D*x(t)= filx,y), D*y(1) = fo(x, y), a2 €(0,1],
x(0)= xo, y(0)= yo
is locally asymptotically stable if all the eigenvalues of the Jacobian matrix
dh 9h
ox Jdy

evaluated at the equilibrium (x, y) satisfy the following condition:

an
larg(7A)| > o
The basic reproductive ratio of system (2) is #Z, = b E’;Z)_lf). To evaluate the equilibria, we let

D%x=0,Dy =0,D%v =0.

It is easily to know that if 22, < 1, then the disease-free equilibrium Py(xy,0,0) is the unique steady state, where x, =
s/d;if Zy > 1, then in addition to the disease-free equilibrium, there is only one endemic equilibrium P*(x*, y*, v*),
where x* = m, y*= a(;(ifﬂf)ﬂz A S((Z:(;?;f )1(;f(;1;1]- When %, = 1, P* will becomes P,. In the following, we will

discuss the local stability of the disease-free equilibrium and endemic equilibrium.

Theorem 3.1.
The disease-free equilibrium Py is locally asymptotically stable if Z, < 1 and is unstable if Z, > 1.

Proof. The Jacobian matrix J(B) for system (2) evaluated at the disease-free equilibrium P, is given by

—-d p —p
JR)=| 0 —(a+p) P -
0k —(u+p)
Hence, the characteristic equation about B, is given by

A+u)A*+A A+ A,)=0, (4)

where Ay =a+u+p+pandA,=up+ua+ap+pp—kp.

Obviously, 2y <1< A, > 0and 2, > 1 < A, <0. All the eigenvalues are A, =—u <0, 4,3 = %[—A1 +4/A2—4A,].

If Zy < 1, then the three roots of the characteristic equation (4) will have negative real parts. Thus, if 2, < 1, the
disease-free equilibrium P, is asymptotically stable.

If Z, > 1, atleast one eigenvalue will be positive real root. Thus, if #, > 1, the disease-free equilibrium P, is unstable.
In the following, we consider the local stability of the endemic equilibrium P*. The Jacobian matrix J(P*) evaluated
at the endemic equilibrium P* is given as:

By*v* x*v Bx*
B R oo
B Jeor e o
](P*) - (x*+y*)2 _[]C*+y*)2 - (a + p) X*Hy*
ey oy R Xt y* u
The characteristic equation of J(P*)is
FA) =2+ A% +aA+a; =0, (5)

where

ay=(a+p)Ro+u+d+p/ R,
ay=dla+p+pu+(a+p)Ro—1)/Ro+ /Rl +(a+p)u(Ro—1)+ala+p)Ro—1)/ Ry,
as =pa(a+p)Ro—17/Ro+du(a+ p)Ry— 1)/ R.

Hence, a, > 0 and a3 > 0 when %2, > 1. And we can easily obtain a, > 0. Furthermore, a,a,—az; = ula+p+u+p/%,+
ap(Ro— D]+ [(a+p)Ro+d+ B/ Roll(a+p)d(Ro—1)/ Ro+ala+p)Ro— 17/ RE+a+p+u+ P Ro+ap(Ry—1)]> 0.
O
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Proposition 3.1.
The endemic equilibrium P* is locally asymptotically stable if all of the eigenvalues A of J(P*) satisfy arg(A) > 5.

Denote
1l a9 a, a3 O
01 a a a3
D(f) =— 3 Zal ag 0 O
0 3 2a; a, O

0 0 3 2a a
=18a,aya3 +(a,a,)* —4aza; —4a; —27a;3.

Using the results of [6], we have the following proposition.

Proposition 3.2.

Suppose #y > 1.

(D IfD(f)> 0, then the endemic equilibrium P* is locally asymptotically stable.

@) IfD(f)<0and % <a< %, then the endemic equilibrium P* is locally asymptotically stable.

4. Numerical methods and simulations

According to the Adams predictor-corrector scheme shown in [14, 15], the numerical solution of the initial value
problem for system (2) will be yielded as below.
Seth= %, t,=nh,n=0,1,2,---,N €Z*, the system (2) can be discretized as follows:

By vy,
Xn+1 = x0+ (a+2 ( dx""'l %J’:H +pyn+l)
+ B h¢ (ﬁxnﬂ U;’z’ﬂ —a — ) (6)
Yns1=Y° ra+2 L+l y”“ pyn“ '
B P Bravia
Upt1 = v0+ r(a+g)(kyn+1 ‘LLU,HI X+ )’

where

0 ht N Bxjv
Xpp =X +m2ﬁj,n+1(5—dxj— _+PJ’j),
=0

xj+y]
n
he Bx;jv;
yf+1=y°+mzﬁj.n+1[x]+ —ay;—py
Bxjv;
Up _V + 2 Zﬂ]nﬂ[ky] uvj— j+.Vj]’
ZT}nH(S dx] i)
Vi = Zr,m[ —pYjl
Bxjv;
= D> Yinnlky,—uv;— ]
jz(; jn j I+,
and
Bjnn="g(n—j—=1)"—(n—j)),
n‘“l (n—a)n+1), j=0,
Yjn+1 (n—j+2)* +(n—j)yt=2(n—j+1)*", 0<j<n,
1, j=n+1.

For the numerical simulations for system (2), using the above-mentioned method is appropriate. For the param-
eters s = 5,d = 0.01, 8 = 0.02, p = 0.01,a = 0.4, k = 1000, u = 8, we obtain £, = 15.23765244. Furthermore,
a, = 14.26071885, a, = 48.96920158, a; = 14.26071885, a,a, — a; = 680.8514660 > 0 and D(f) = 144085.7355 > 0.
System (2) exists a positive equilibrium E*(0.8764148221,12.47808963,1559.121702) and it is locally asymptotically
stable. The approximate solutions are displayed in Fig. 1 for the step size 0.005 and a = 0.85,0.9,0.95, 1. The initial
conditions are x(0) = 0.3, y(0) = 20, v(0) = 1300. When a = 1, system (2) is the classical integer-order system (1). In
Figure 1(a) , the variation of x(¢) versus time ¢ is shown for different values of ¢ = 0.85,0.9,0.95, 1 by fixing other pa-
rameters. It is revealed that increase in a increases with the proportion of susceptible while behavior is reverse after
certain value of time. Figure 1(b), (c) depicts y(t), v(¢t) versus time ¢ with various values of @ (a = 0.85,0.9,0.95, 1,
respectively).
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Fig. 1. Time evolution of population of x(¢), y(¢), v(¢) when s =5,d = 0.01, 8 = 0.02, p = 0.01, a = 0.4, k = 1000, u = 8 for
a=0.85,0.9,0.95,1.
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