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Abstract: In our research we will study the existence of weak solutions to the problem

[M (‖u‖p
1,p )]

p−1
�

−∆p u + |u |p−2u
�

= f (x , u ) ‖ u ‖t
α +

∫

Ω

k (x , y )H (u )d y in Ω.

with no-flux boundary condition on a bounded smooth domain of Rn , 1 < p < N ; M , f , k and H are given
functions. By means of the Galerkin method and using of the Brouwer Fixed Point theorem we get our results.The
uniqueness of a weak solution is also considered.
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1. Introduction and Preliminaries

The equation

ρ
∂ 2u

∂ t 2
−
�P0

h
+

E

2L

∫ L

0

�

�

∂ u

∂ x

�

�

2
d x

�∂ 2u

∂ x 2
= 0, (1)

presented by Kirchhoff in 1883 [16], is an extension of the classical D’Alembert’s wave equation by considering the
effects of the changes in the length of the string during the vibrations. The parameters in (1) have the following
meanings: L is the length of the string, h is the area of the cross-section, E is the Young modulus of the material, ρ
is the mass density and P0 is the initial tension. A distinguishing feature of equation (1) is that the equation contains

a nonlocal coefficient P0
h +

E
2L

∫ L

0
| ∂ u
∂ x |2 d x which depends on the average 1

2L

∫ L

0
| ∂ u
∂ x |2 d x , and hence the equation is

no longer a pointwise identity. Some early classical studies of Kirchhoff equations were Bernstein [7] and Pohožaev
[21]. The equation

−
�

a + b

∫

Ω

|∇u |2 d x
�

∆u = f (x , u ) in Ω,

u = 0 on ∂ Ω,

(2)

is related to the stationary analogue of the equation (1) and received much attention only after Lions [22] proposed
an abstract framework to the problem. Problems like (2) can be used for modelling several physical and biological
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systems where u describes a process which depends on the average of it self,such as the population density, see [13]
and its references therein. Some important and interesting results can be found, for example,in [3, 12, 20]. Recently
Alves et al. [4] and Ma and Rivera [25] obtained positive solutions of such problems by variational methods.
An interesting generalization of problem (2) is

−
�

M
�

‖u‖p
1,p

��p−1
∆p u = f (x , u ) in Ω,

u = 0, on ∂ Ω,

where Ω is a bounded domain in RN with smooth boundary ∂ Ω, and −∆p u is the p -Laplacian: −∆p u :=
div(|∇u |p−2∇u ) . Correa and Nascimento [9], Liu et al [26], Yang and Chang [30], Correa and Figueiredo [10] and
recently Molica Bisci and Radulescu [19] studied questions on the existence of positive solutions.
In [30] Yang and Zhang studied the following problem

−
�

M
�

‖u‖p
1,p

��p−1
∆p u =λ f (x , u ) in Ω,

∂ u

∂ ν
= 0, on ∂ Ω,

where p <N , they established existence and multiplicity of solutions for the problem under suitable assumptions
on M and f .
The question of existence of positive solutions for a class of nonvariational elliptic system with nonlocal source term
is studied by Chen and Gao [17], via Galerkin methods.
In this paper we are interested in the following semilinear integro-differential equation of p-Kirchhoff type

�

M
�

‖u‖p
1,p

��p−1 �
−∆p u + |u |p−2u

�

= f (x , u ) ‖ u ‖t
α +

∫

Ω

k (x , y )H (u (y ))d y in Ω,

u (x ) = constant, x ∈ ∂ Ω, (3)
∫

∂ Ω

|∇u |p−2 ∂ u

∂ ν
d S = 0,

with the following conditions:

M) the function M :R+ −→R+ is a continuous function and there is a constant m0 > 0 such that

M (t )≥m0 for all t ≥ 0

F) f (x , t ) :Ω×R−→R is a continuous function and satisfies the subcritical condition

| f (x , t )| ≤ c1(|t |q−1+1) for some p < q < p ∗ =

� N p
N−p if N ≥ 3,

+∞ if N = 1, 2.

H) H ∈C (R) satisfying

|H (s )| ≤ c2|s |r , r ∈ 〈1; p −1〉.

K)

k (x , y ) is a non-positive L p (Ω×Ω) f un c t i o n

The nonlocal term
∫

Ω
k (x , y )H (u )d y , with k = k (x ) appears in numerous physical models such systems of particles

in thermodynamical equilibrium via gravitational (Coulomb) potential, 2-D fully turbulent behavior of real flow,
thermal runaway in Ohmic Heating, shear bands in metal deformed under high strain rates, see [24] for references
of these applications. The nonlocal boundary conditions in (1) have been studied by Berestycki and Brezis [8] ,
Ortega [27] and more recently Zhao [31]. They arise from certain models in plasma physics: specifically, a model
describing the equilibrium of a plasma confined in a toroidal cavity, called a Tokamak machine. A detailed descrip-
tion of this problem can be found in the appendix of [28]. Semilinear integro-differential equations have become
an active area of research, for example in the framework of control theory as well in order to solve noncooperative
system,arisen in the classical FitzHugh-Nagumo systems , see e.g. [2, 5, 14, 15, 18, 29]. In case that the kernel k=
k(x,y) is symmetric (and H (s ) = s ) , the problem is of variational type and a solution can be found by the Mountain
Pass Theorem if the L p × L p norm is sufficiently small,see [6] for p = 2. Motivated by the above papers and the
results in [18, 19, 31], we consider (3) to study the existence of weak solutions, but with non-symmetric kernels,
then the problem has no variational structure; so, the most usual variational techniques can not be used to study.
To attack problem (3) we will use the Galerkin method through the following version of the Brouwer fixed -point
Theorem whose proof may found in Lions (see Lemma 4.3 [23]).
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Proposition 1.1.
Suppose that F : Rm → Rm is a continuous function such that 〈F (ξ),ξ〉 ≥ 0 on |ξ| = r , where 〈·, ·〉 is the usual inner
product in Rm and | · | its related norm. Then, there exists z0 ∈ Br (0) such that F (z0) = 0.

2. Main results and proofs

Let W 1,p (Ω) = {u ∈ L p (Ω) :∇u ∈ [L p (Ω)]n} be endowed with the norm

‖u‖1,p = ‖u‖W 1,p (Ω) =
�

∫

Ω

|∇u |p + |u |p d x
�1/p

. (3)

Let

V = {u ∈W 1,p (Ω) : u |∂ Ω = constant}.

With a straightforward adaptation of Lemma 2.1 [31], it is easy to get the following lemma

Lemma 2.1.
�

V ,‖.‖1,p

�

is a separable and reflexive Banach space.

Since we are preoccupied with the existence of weak solutions of problem (3) we begin by giving of such solutions.

Definition 2.1.
A weak solution of problem (3) is any u ∈V such that

�

M
�

‖u‖p
��p−1

∫

Ω

�

|∇u |p−2∇u .∇v + |u |p−2u v
�

d x =‖ u ‖t
α

∫

Ω

f (x , u )v d x +

∫

Ω

(

∫

Ω

(k (x , y )H (u (y ))d y )v d x

for all v ∈V .

Our main result is given by the following theorem

Theorem 2.1.
Let us assume that conditions (M)–(F)–(H) and (K) hold. If ‖k‖L p (Ω×Ω) is sufficiently small and the function f satisfies

f (x , u )u ≤ a |u |p + b |u |, , 1<β <min{p − t ,α} , 1<α<
N p

N −p
(4)

for some constants a , b > 0 with m p−1
0 −a c β+t

α − |k |L p (Ω×Ω)c
r
r p ′cp ′c2 > 0 , 1

p +
1

p ′ = 1
where cξ is the corresponding embedding Sobolev constant; then problem (3) has at least one weak solution. Besides
, any solution of (3) satisfies the estimate

‖u‖1,p ≤R1 =max







1,

 

b |Ω|1/p ′c t
α

m p−1
0 −a c β+t

α − |k |L p (Ω×Ω)c
r
r p ′cp ′c2

!1/(p−t−1)






(5)

Proof. Let {wν}ν≥1 a Schauder’s basis for V , which is a separable and reflexive Banach space with the restricted
norm of (3) .For each m ∈N consider the finite dimensional space

Vm = span{w1, . . . , wm}.

Since (Vm ,‖ · ‖1,p ) and (Rm , | · |) are isometric and isomorphic, we make the identification

um =
m
∑

j=1

ξ j w j ←→ ξ= (ξ1, . . . ,ξm ), ‖u‖1,p = |ξ|.

We will show that for each m there is um ∈Vm , an approximate solution of (3), satisfying

�

M
�

‖um‖
p
1,p

��p−1
∫

Ω

�

|∇um |p−2∇um .∇w j + |um |p−2um w j

�

d x =‖ um ‖t
α

∫

Ω

f (x , um )w j d x+

∫

Ω

(

∫

Ω

(k (x , y )H (um )d y )w j d x
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(6)

j = 1, 2, 3, ..., m .
To solve this algebraic system we consider the function F :Rm →Rm given by

F (ξ) = (F1(ξ), . . . , Fm (ξ)),

Fj (ξ) =
�

M
�

‖u‖p
1,p

��p−1
∫

Ω

�

|∇u |p−2∇u .∇w j + |u |p−2u w j

�

d x− ‖ u ‖t
α

∫

Ω

f (x , u )w j d x−
∫

Ω

(

∫

Ω

(k (x , y )H (u (y ))d y )w j d x

where j = 1, 2, 3, ..., m . and u ∈Vm

We note that F is continuous from the continuity of M , f (x , u )with respect to u and
∫

Ω
k (x , y )H (u )d y .

Therefore, from the hypotheses we have

〈F (u ), u〉 ≥m p−1
0 ‖u‖p

1,p −a c β+t
α ‖u‖β+t

1,p − b c t
α |Ω|

1/q ‖u‖t+1
1,p − |k |L p (Ω×Ω)c

r
r p ′cp ′c2‖u‖r+1

1,p > 0 (7)

if ‖u‖1,p =R , for R large enough . Thus, because of Proposition 1 there is um ∈Vm , ‖um‖1,p ≤R , R does not depend
on m such that um is solution of (6).
Let us prove that the sequence (um )m≥1 ⊆ V has a convergent subsequence which converges to a solution of (3).
Indeed, since (um ) is bounded there exists a subsequence, still denoted by (um ), such that

‖u‖p
1,p −→ γ.for some γ,

um * u , in W 1,p (Ω),

um −→ u , in L q (Ω), 1≤ q < p ∗ (8)

‖um‖t
α −→‖u‖

t
α, (9)

um −→ u , a .e in Ω.

∃ g ∈ L q (Ω) : |um (x )| ≤ g (x ) a .e . in Ω.

In view of continuity of M

[M (‖um‖
p
1,p )]

p−1 −→ [M (γ)]p−1 (10)

and the continuity of the Nemytskii map

f (., um )−→ f (., u ) i n L q (Ω). (11)

But under the assumption (K )we have

|k (x , y )|p = (
∫

Ω

|k (x , y )|p d y )
1
p <+∞; i .e , k (x , y ) ∈ L p (Ω)

for fixed x ∈Ω . Also, noting that (H (um ))m≥1 is bounded in L p ′ (Ω), 1
p +

1
p ′ = 1 , we obtain up to subsequence that

H (um )*H (u ) in L p ′ (Ω) (12)

Therefore, for x ∈Ωwe get

∫

Ω

k (x , y )H (um (y ))d y −→
∫

Ω

k (x , y )H (u (y ))d y , a .e .

Also, we can easily prove that

|
∫

Ω

k (x , y )H (um (y ))d y |L p ′ (Ω) <+∞.

then by [23], Lemma 2.1 we have

∫

Ω

k (x , y )H (um (y ))d y *

∫

Ω

k (x , y )H (u (y ))d y . (13)
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weakly in L p ′ (Ω).
Furthermore, by using the Lebesgue dominated convergence theorem we easily obtain

∫

Ω

|um |p−2um w j d x −→
∫

Ω

|u |p−2u w j d x (14)

From of Theory of Monotone Operators, we get

[M (‖um‖
p
1,p )]

p−1

∫

Ω

|∇um |p−2∇um .∇w d x −→ [M (γ)]p−1

∫

Ω

|∇u |p−2∇u∇w d x (15)

∀w ∈V .
We now fix l ≤m , Vl ⊆Vm , letting m −→+∞ in (6) and using (10)–(15), we conclude that

[M (γ))]p−1

∫

Ω

�

|∇u |p−2∇u∇wl + |u |p−2u w j

�

d x = ‖u‖t
α

∫

Ω

f (x , u )wl d x +

∫

Ω

(

∫

Ω

k (x , y )H (u )d y )wl d x ; , (16)

l=1,2,...
From the completeness of {wν}ν≥1, identity (16) holds with wl replaced by any w ∈V .
In particular, when w = u we get

[M (γ))]p−1‖u‖p
1,p = ‖u‖

t
α

∫

Ω

f (x , u )u d x +

∫

Ω

(

∫

Ω

k (x , y )H (u )d y )u d x (17)

On the other hand, taking w j = um in (6) and passing to the limit, we obtain

[M (γ))]p−1γ= ‖u‖t
α

∫

Ω

f (x , u )ud x +

∫

Ω

(

∫

Ω

k (x , y )H (u )d y )ud x (18)

and comparing equations (17) and (18) we get

[M (γ)]p−1γ= [M (γ)]p−1‖u‖p
1,p

Then we conclude γ= ‖u‖p
1,p

This together with (8) , taking into account that V is uniformly convex , yields

um −→ u in W 1,p (Ω)

But V is a closed subspace of W 1,p (Ω) and (um )⊆V , hence u ∈V . Thus, from (16) (with wl =w ∈V )

M (‖u‖p
1,p )]

p−1

∫

Ω

�

|∇u |p−2∇u∇w + |u |p−2u w
�

d x = ‖u‖t
α

∫

Ω

f (x , u )w d x +

∫

Ω

(

∫

Ω

k (x , y )H (u (y ))d y )w d x (19)

for all w ∈V , which shows that u is a weak solution of (3).
Finally, if u is any solution of (3),then

M (‖u‖p
1,p )]

p−1‖u‖1,p = ‖u‖t
α

∫

Ω

f (x , u )u d x +

∫

Ω

(

∫

Ω

k (x , y )H (u (y ))d y )u d x ,

Therefore, either ‖u‖1,p ≤ 1 or

m p−1
0 ‖u‖p

1,p ≤ a c β+t
α ‖u‖p

1,p + b c t
α |Ω|

1/p ′‖u‖t+1
1,p + |k |L p (Ω×Ω)c

r
r p ′cp ′c2‖u‖r+1

1,p

then
�

m p−1
0 −a c β+t

α − |k |L p (Ω×Ω)c
r
r p ′cp ′c2

�

‖u‖p
1,p ≤ b |Ω|1/p

′
c t
α‖u‖

t+1
1,p

and (5) follows.
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3. Uniqueness of weak solutions

In this section , we are going to consider problem (3) when the exponent p satisfies
2N

2+N
< p ≤ 2, t = 0. (20)

To establish the uniqueness of weak solutions,we need the following well known Lemma

Lemma 3.1.
If p ∈]1, 2] ,then it hold

i) ||z |p−2z − |y |p−2 y | ≤β |z − y |p−1

ii) 〈|z |p−2z − |y |p−2 y |, z − y 〉 ≥ (p −1)|z − y |2
�

|z |p + |y |p
�

p−2
p

for all y , z ∈RN with β independent of y and z .

Theorem 3.1.
Let the assumptions of Theorem 2.1 hold with (4) replaced by

�

f (x , u )− f (x , v )
�

(u − v )≤ 0 ∀ x ∈Ω;∀ u , v ∈R (21)

Let us in addition that M is Lipschitz on [0, R p
1 ] where R1 is defined in (5) and H is a C 1-function such that |H ′(s )| ≤

c3|s |r−1, c3 > 0. Then if the Lipschitz constant LM of M is small enough, problem (3) has exactly one solution.

Proof. We will follow some ideas in [1],adapted to our case.
The part of existence follows from Theorem 2.1. Now, let u1 and u2 be two solutions to problem . Introduce the
function u = u1−u2 . Taking it for the test-function in the integral identities for u1 and u2, we obtain the relation

�

M
�

‖u1‖
p
1,p

��p−1
∫

Ω

�

�

|∇u1|p−2∇u1− |∇u2|p−2∇u2

�

(∇u1−∇u2) +
�

|u1|p−2u1− |u2|p−2u2

�

(u1−u2)
�

d x =

∫

Ω

( f (x , u1)− f (x , u2))(u1−u2)d x +

∫

Ω

∫

Ω

k (x , y )(H (u1(y ))−H (u2(y )))(u1−u2)d y d x

+
n
�

M
�

‖u2‖
p
1,p

��p−1
−
�

M
�

‖u1‖
p
1,p

��p−1o
∫

Ω

�

|∇u2|p−2∇u2(∇u1−∇u2) + |u2|p−2u2(u1−u2)
�

d x

Now, using the hypotheses on M , H , K and Lemma 3.1, after some calculations we have

m p−1
0 (p −1)

∫

Ω

�

|∇u |2
�

|∇u1|p + |∇u2|p
�

p−2
p + |u |2

�

|u1|p + |u2|p
�

p−2
p
�

d x ≤

c3

∫

Ω

∫

Ω

|k (x , y )|
�

|u1|r−1+ |u2|r−1
�

|u |2 d y d x +βL p−1
M p

�

(‖u1‖1,p + ‖u2‖1,p )‖u2‖1,p

�p−1 ‖u‖2
1,p

(22)

where β = max
s∈[0,R p

1 ]
M (s ). It follows from Holder’s inequality and the Sobolev immersions that

�

�

�

�

∫

Ω

∫

Ω

|k (x , y )||u1|r−1|u |2 d y d x

�

�

�

�

≤ ‖k‖L p |u1|r−1
(r−1)p ′ |u |

2
2p ′ ≤ c r−1

(r−1)p ′c
2
2p ′‖k‖L p ‖u1‖r−1

1,p ‖u‖
2
1,p

with 1
2p ′ ≥

1
p −

1
N . Similar inequality is obtained for u2.

Let us take a constant q ∈
�

p
2 , 1

�

⊆
�

2N
2+N , 1

�

. Using the inverse Holder’s inequality in (22) , we obtain

m p−1
0 (p −1)

��

∫

Ω

|∇u |2q d x
�

1
q
�

∫

Ω

�

|∇u1|p + |∇u2|p
�

2−p
p . q

1−q
d x

�

q−1
q

+
�

∫

Ω

|u |2q d x
�

1
q
�

∫

Ω

�

|u1|p + |u2|p
�

2−p
p . q

1−q
d x

�

q−1
q
�

≤
�

2c3c r−1
(r−1)p ′c

2
2p ′‖k‖L p R r−1

1 +22p−3R 2p−2
1 CβLM m p−2

1

�

‖u‖2
1,p

(23)

Since p < 2q < 2 , again using Holder’s inequality , the Sobolev embedding W 1,2q ,→W 1,p , L 2q ,→ L p and noting
that 2−p

p . q
1−q ≤ 1 , we obtain

�

m p−1
0 (p −1)C −2

2q |Ω|
1
θ 2

p−2
2 R p−2

1

�

︸ ︷︷ ︸

e0

‖u‖2
1,p ≤

�

2c3c r−1
(r−1)p ′c

2
2p ′‖k‖L p R r−1

1 +22p−3R 2p−2
1 CβLM m p−2

1

�

︸ ︷︷ ︸

e1

‖u‖2
1,p (24)

with θ = 1− (2−p )q
p (1−q ) . Hence it follows that

(e0− e1)‖u‖2
1,p = 0 (25)

Therefore, if ‖k‖L p and LM are small enough, we conclude that ‖u‖1,p = 0, and so u = 0.
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