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Abstract: In this paper, the local fractional Laplace decomposition method is used for solving the nonhomogeneous heat equa-
tions arising in the fractal heat flow within local fractional derivative. This method is coupled by the local fractional
Adomian decomposition method and Laplace transform. Analytical solutions are obtained by using the local frac-
tional Laplace decomposition method via local fractional calculus theory. The method in general is easy to imple-
ment and yields good results. Illustrative examples are included to demonstrate the validity and applicability of the
new technique.
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1. Introduction

Fractals are used in many engineering applications such as porous media modeling, nano fluids, fracture me-
chanics and many other applications in Nanoscale [1, 2], where various transport phenomena cannot be described
by smooth continuum approach and need the fractal nature of the objects to be taken into account. For the transport
phenomena performed in fractal objects the local temperature depends on the fractal dimensions where adequate
physical results can be achieved by the application of local fractional models and relevant solution approaches.
Fractional heat conduction equation was studied by many researchers [3–17]. For example, Povstenko considered
the thermo elasticity based on the fractional heat conduction equation[7]. Youssef suggested the generalized the-
ory of fractional-order thermo elasticity [8]. Ezzat and El-Karamany presented the fractional-order conduction in
thermo elastic medium [9]. Ezzat proposed the fractional-order heat transfer in thermoelectric fluid [10]. Sherief
et al. reported the fractional-order generalized thermo elasticity with one relaxation time [11]. Vazquez et al. used
the second law of thermodynamics to fractional heat conduction equation [12].Hristov considered the inverse Ste-
fan problem and nonlinear heat conduction with Jeffreys fading memory by using the heat balance integral method
[13, 14]. Davey and Prosser gave the solutions of the heat transfer on fractal and prefractal domains [15]. Ostoja
Starzewski investigated thermo elasticity of fractal media [16]. Qi and Jiang discussed space-time fractional Cattaneo
diffusion equation [17]. Bhrawy and Alghamdi applied the Legendre tau-spectral method to find time fractional heat
equation with nonlocal conditions [18]. Atangana and Klcman suggested the Sumudu transform solving certain non-
linear fractional heat-like equations [19]. Mohammadi discussed numerical solution of Bagley-Torvik equation using
Chebyshev wavelet operational matrix of fractional derivative [33].Salehbhai and Timol found the solution of some
fractional differential equations [34]. Aslefallah and Rostamy solved time-fractional differential diffusion equation by
theta-method [35].

Recently, the local fractional calculus [20–22] was used to deal with the discontinuous problem for heat transfer
in fractal media [23–25]. The nonhomogeneous heat equations arising in fractal heat flow were considered by using
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the local fractional Fourier series method [26]. The local fractional heat conduction equation was investigated by the
local fractional variation iteration method [27]. The nondifferentiable solution of one-dimensional heat equations
arising in fractal transient conduction was found by the local fractional Adomian decomposition method [28]. Local
fractional Laplace variational iteration method [29, 30] was considered to deal with linear partial differential equa-
tions.

In this manuscript we use the local fractional Laplace decomposition method to solve the nonhomogeneous
heat equations arising in fractal heat flow with local fractional derivative. The structure of the manuscript is sug-
gested as follows. In Section 2 the basic theory of local fractional calculus and local fractional Laplace transform are
introduced. Section 3 gives the local fractional Laplace decomposition method. In Section 4, the non-differentiable
solutions for nonhomogeneous heat equations arising in fractal heat flow are presented. Finally, the conclusions are
considered in Section 5.

2. The heat equations arising in fractal heat flow

In this section, we present heat equations arising in fractal heat flow, the conceptions of local fractional deriva-
tive and integral and the local fractional Laplace transform [23, 30, 31].
The heat equations arising in fractal heat flow reads as follows

∂αT (x, t )

∂tα
− ∂2αT (x, t )

∂x2α = g (x, t ), (1)

with the initial conditions

T (0, t ) =ϕ(t ),
∂αT (0, t )

∂xα
=ψ(t ). (2)

Suppose that there is the relation

| f (x)− f (x0)| < εα, 0 <α≤ 1, (3)

with |x − x0| < δ, for ε,δ> 0 and ε,δ ∈ R, then the function f (x) is called local fractional continuous at x = x0 and it is
denoted by lim

x→x0
f (x) = f (x0).

The local fractional derivative of f (x) of order α at x = x0 is given by

f (α)(x0) = dα

d xα
f (x)|x=x0 = lim

x→x0

4α( f (x)− f (x0))

(x −x0)α
(4)

where 4α( f (x)− f (x0) ∼= Γ(α+1)( f (x)− f (x0)).
The local fractional integral of f (x) of order α in the interval [a,b] is given by

a I (α)
b f (x) = 1

Γ(1+α)

∫ b

a
f (t )(d t )α = 1

Γ(1+α)
lim

4t−→0

N−1∑
j=0

f (t j )(4t j )α. (5)

where the partition of the interval [a,b] is denoted as (t j , t j+1), j = 0, ..., N −1, t0 = a and tN = b with 4t j = t j+1 − t j

and 4t = max{4t0,4t1, . . .}. The Yang-Laplace transform of f (x) is given by

Lα{ f (x)} = f L,α
s (s) = 1

Γ(1+α)

∫ ∞

0
Eα(−sαxα) f (x)(d x)α, 0 <α≤ 1, (6)

where the latter integral converges and sα ∈ Rα. The inverse formula of the Yang-Laplace transform of f (x) is given by

L−1
α

(
f L,α

s (s)
)= f (x) = 1

(2π)α

∫ β+iω

β−iω
Eα(sαxα) f L,α

s (s)(d s)α, 0 <α≤ 1 (7)

where sα =βα+ iαωα; fractal imaginary unit iα and Re(s) =β> 0.
The properties for local fractional Laplace transform used in the paper are given as [23]

Lα{a f (x)+bg (x)} = a f L,α
s (s)+bg L,α

s (s) (8)

Lα{ f (2α)(x)} = s2α f L,α
s (s)− sα f (0)− f (α)(0) (9)

Lα{cosα(cxα)} = c

s2α+ c2 (10)

Lα{cosα(cxα)} = sα

s2α+ c2 (11)

Lα{xkα} = Γ(1+kα)

s(k+1)α
(12)
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3. Analysis of the method

Let us consider the following linear operator with local fractional derivative:

Łαu(x, t )+Rαu(x, t ) = h(x, t ), (13)

where Łα = ∂2α

∂x2α denotes the linear local fractional differential operator, Rα is the remaining linear operator, and

h(x, t ) is a source term. Taking Yang-Laplace transform on Eq. (13), we obtain

Lα {Łαu(x, t )}+Lα {Rαu(x, t )} = Lα {h(x, t )} . (14)

By applying the local fractional Laplace transform differentiation property, we have

s2αLα{u(x, t )}− sαu(0, t )−u(α)(0, t )+Lα{Rαu(x, t )} = Lα{h(x, t )}. (15)

or

Lα{u(x, t )} = 1

sα
u(0, t )+ 1

s2α u(α)(0, t )+ 1

s2α Lα{h(x, t )}− 1

s2α Lα {Rαu(x, t )} . (16)

Taking the inverse of local fractional Laplace transform on Eq. (16), we have

u(x, t ) = u(0, t )+ xα

Γ(1+α)
u(α)(0, t )+L−1

α

(
1

s2α Lα{h(x, t )}

)
−L−1

α

(
1

s2α Lα {Rαu(x, t )}

)
. (17)

We are going to represent the solution in an infinite series given below:

u(x, t ) =
∞∑

n=0
un(x, t ). (18)

Substituting Eq. (18) into Eq. (17), which give us this result

∞∑
n=0

un(x, t ) = u(0, t )+ xα

Γ(1+α)
u(α)(0, t )+L−1

α

(
1

s2α Lα{h(x, t )}

)
−L−1

α

(
1

s2α Lα

{
Rα

∞∑
n=0

un(x, t )

})
. (19)

When we compare the left and right hand sides of Eq. (19) we obtain

u0(x, t ) = u(0, t )+ xα

Γ(1+α)
u(α)(0, t )+L−1

α

(
1

s2α Lα{h(x, t )}

)
,

u1(x, t ) =−L−1
α

(
1

s2α Lα {Rαu0(x, t )}

)
, (20)

u2(x, t ) =−L−1
α

(
1

s2α Lα {Rαu1(x, t )}

)
The recursive relation, in general form is

u0(x, t ) = u(0, t )+ xα

Γ(1+α)
u(α)(0, t )+L−1

α

(
1

s2α Lα{h(x, t )}

)
un+1(x, t ) =−L−1

α

(
1

s2α Lα {Rαun(x, t )}

)
, (21)

4. Illustrative examples

In this section, we given some illustrative examples for solving the nonhomogeneous heat equation arising in
fractal heat flow within local fractional operator by using local fractional Laplace decomposition method.

Example 4.1.
The nonhomogeneous local fractional heat equation with the nondifferentiable sink term is presented as follows:

∂αT (x, t )

∂tα
− ∂2αT (x, t )

∂x2α =− xα

Γ(1+α)
Eα(−tα), (22)

with the initial condition

T (0, t ) = 0,
∂αT (0, t )

∂xα
= Eα(−tα). (23)
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In view of Eqs. (21) and (22) the local fractional iteration algorithm can be written as follows:

T0(x, t ) = xα

Γ(1+α)
Eα(−tα)+ x3α

Γ(1+3α)
Eα(−tα),

Tn+1(x, t ) = L−1
α

(
1

s2α Lα

{
∂αTn(x, t )

∂tα

})
,n ≥ 0. (24)

Therefore, from (24) we give the components as follows:

T0(x, t ) = xα

Γ(1+α)
Eα(−tα)+ x3α

Γ(1+3α)
Eα(−tα), (25)

T1(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT0(x, t )

∂tα

})
=− x3α

Γ(1+3α)
Eα(−tα)− x5α

Γ(1+5α)
Eα(−tα), (26)

T2(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT1(x, t )

∂tα

})
= x5α

Γ(1+5α)
Eα(−tα)+ x7α

Γ(1+7α)
Eα(−tα), (27)

T3(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT2(x, t )

∂tα

})
=− x7α

Γ(1+7α)
Eα(−tα)− x9α

Γ(1+9α)
Eα(−tα), (28)

...

Hence, we finally have

T (x, t ) = Eα(−tα)

(
xα

Γ(1+α)
+ x3α

Γ(1+3α)
− x3α

Γ(1+3α)
− x5α

Γ(1+5α)
+ x5α

Γ(1+5α)
+·· ·

)
= xα

Γ(1+α)
Eα(−tα). (29)

The result is the same as the one which is obtained by the local fractional Laplace variational iteration method [30].

Example 4.2.
We now consider the nonhomogeneous local fractional heat equation with the nondifferentiable source term:

∂αT (x, t )

∂tα
− ∂2αT (x, t )

∂x2α = xα

Γ(1+α)
cosα(tα), (30)

with the initial condition

T (0, t ) = 0,
∂αT (0, t )

∂xα
= sinα(tα). (31)

Making use of Eqs. (21) and (30) the local fractional iteration algorithm can be written as follows:

T0(x, t ) = xα

Γ(1+α)
sinα(tα)− x3α

Γ(1+3α)
cosα(tα),

Tn+1(x, t ) = L−1
α

(
1

s2α Lα

{
∂αTn(x, t )

∂tα

})
,n ≥ 0. (32)
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Therefore, from Eq. (32) we give the components as follows:

T0(x, t ) = xα

Γ(1+α)
sinα(tα)− x3α

Γ(1+3α)
cosα(tα), (33)

T1(x, y) = L−1
α

(
1

s2α Lα

{
∂αT0(x, t )

∂tα

})
= x3α

Γ(1+3α)
cosα(tα)+ x5α

Γ(1+5α)
sinα(tα), (34)

T2(x, y) = L−1
α

(
1

s2α Lα

{
∂αT1(x, t )

∂tα

})
=− x5α

Γ(1+5α)
sinα(tα)+ x7α

Γ(1+7α)
cosα(tα), (35)

T3(x, y) = L−1
α

(
1

s2α Lα

{
∂αT2(x, t )

∂tα

})
=− x7α

Γ(1+7α)
cosα(tα)+ x9α

Γ(1+9α)
sinα(tα), (36)

...

Consequently, we obtain

T (x, t ) = xα

Γ(1+α sinα(tα). (37)

The result is the same as the one which is obtained by the local fractional Laplace variational iteration method
[30].

Example 4.3.
Let us consider the nonhomogeneous local fractional heat equation

∂αT (x, t )

∂tα
− ∂2αT (x, t )

∂x2α = 1 (38)

with the initial condition

T (0, t ) = tα

Γ(1+α)
,
∂αT (0, t )

∂xα
= 0. (39)

In view of Eqs. (21) and (38) the local fractional iteration algorithm can be written as follows:

T0(x, t ) = tα

Γ(1+α)
− x2α

Γ(1+2α)
,

Tn+1(x, t ) = L−1
α

(
1

s2α Lα

{
∂αTn(x, t )

∂tα

})
,n ≥ 0. (40)

Therefore, from Eq. (40) we give the components as follows:

T0(x, t ) = tα

Γ(1+α)
− x2α

Γ(1+2α)
, (41)

T1(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT0(x, t )

∂tα

})
= x2α

Γ(1+2α)
, (42)

T2(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT0(x, t )

∂tα

})
= 0, (43)

T2(x, t ) = L−1
α

(
1

s2α Lα

{
∂αT0(x, t )

∂tα

})
= 0, (44)

...

Consequently, we obtain

T (x, t ) = tα

Γ(1+α)
(45)
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5. Conclusions

In this work we derived the nonhomogeneous heat equations arising in fractal heat flow based upon the local
fractional calculus. The obtained solutions are nondifferentiable functions, which are Cantor functions and they dis-
continuously depend on the local fractional derivative. It is shown that the local fractional Laplace decomposition
method is an efficient and simple tool for solving local fractional differential equations.
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