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Abstract: In this paper, a class of neutral impulsive stochastic integro-differential equations with local non-Lipschitz co-
efficients is studied. We establish the well-posedness of mild solutions for neutral impulsive stochastic integro-
differential equations with infinite delays driven by Poisson jumps under local non-Lipschitz conditions on the coef-
ficients to the Hilbert space with Lipschitz condition and non-Lipschitz condition being considered as a special case
by means of the stopping time technique. Some well-known results are generalized and improved. An example is
provided to illustrate the effectiveness of the proposed result.

MSC: 93E15 • 60H15 • 35R12

Keywords: Resolvent operator • Neutral stochastic integro-differential equation • Impulses • Poisson jumps
© 2015 The Author. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The aim of this paper is to establish an well-posedness result of mild solution for a class of neutral impulsive
stochastic integro-differential equations with local non-Lipschitz coefficients described in the form

d [x(t )+Γ(t , xt )] = A[x(t )+Γ(t , xt )]d t +
[∫ t

0 K (t − s)[x(s)+Γ(t , xs )]d s +F (t , xt )
]

d t

+Σ(t , xt )dW (t )+∫
U L(t , x(t−), v)Ñ (d t ,d v), t 6= tk , t ∈ [0,T ],

∆x(tk ) = x(t+k )−x(t−k ) = Ik (x(tk )), t = tk , k = {1, · · · ,m} =: 1,m,

x0(·) =ϕ ∈B,

(1)

where the state x(·) takes values in a separable real Hilbert space H; and A : D(A) ⊂ H→ H, K (t ) : D(K (t )) ⊂ H→ H

are linear, closed, and densely defined operators onH. The history xt : (−∞,0] →H, xt (θ) = x(t +θ) for t ≥ 0, belong to
the phase space B, which will be described axiomatically in Section 2. Assume that the mappings Γ,F : R+×B →H,
Σ : R+×B → L (K;H) and L : R+×H×U → H are Borel measurable. Ik : H→ H, k = 1,m are appropriate functions.
Furthermore, let 0 = t0 < t1 < ·· · < tm < tm+1 = T be prefixed points, where x(t+k ) and x(t−k ) represent the right and left
limits of x(t ) at t = tk , respectively, and ∆x(tk ) = x(t+k )−x(t−k ), represents the jump of the function x at time tk with Ik

determining the size of the jump. The initial data ϕ= {ϕ(t ) : t ∈ (−∞,0]} is an F0-adapted, B-valued random variable
independent of the Wiener process W and the Poisson point process p(·) with E‖ϕ‖2

B <∞.
In recent years, the well-posedness of stochastic partial differential equations (SPDEs) have been extensively in-

vestigated by many authors (for example, see [1, 2] and the references therein). SPDEs with finite delay have attracted
great interest due to their applications in describing many sophisticated dynamical systems in physical, chemistry,
biology, economics and social sciences. One can see Refs. ([2–4]) for details. However, in many areas of science and
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engineering there has been an increasing interest in the investigation of functional differential equations incorporat-
ing memory or aftereffect, i.e., there is the effect of infinite delay on state equations (see, e.g. [5–8] and the references
therein). Therefore, there is real need to discuss functional differential systems with infinite delay. Comparison with
finite delay, the problem with infinite delay is clearly more complicated, since the properties of solutions depend on
the choice of the phase space B which is proposed by Hale and Kato in Ref. [9]. On the fundamental theory related to
functional differential equations with infinite delay we can see Ref. [10] for details. Moreover, the theory of impulsive
differential equations and integro-differential equations with resolvent operators has become an active area of inves-
tigation due to their applications in many physical phenomena, see for instance ([11–15] and the references therein).
All the above works are established for Wiener process without Poisson jumps processes.

On the other hand, there has not been very much study of SPDEs driven by Poisson jumps, while these have
begun to gain attention recently. To be more precise, in [16], Dong discussed the uniqueness of the invariant mea-
sure of the Burgers equations with Lévy processes. Albeverio el al. [17] investigated the existence of mild solutions
for stochastic differential equations and semilinear equations with non-Gaussian Lévy noise. Taniguchi and Luo [18]
considered the existence and behavior of mild solutions to stochastic evolution equations with infinite delays driven
by Poisson jumps. For SPDEs with jumps one can see recent monograph [19] as well as papers ([20–22] and the refer-
ences therein). However, no theory for the well-posedness result of solution to neutral impulsive stochastic integro-
differential equations with local non-Lipschitz coefficients has been established yet. Therefore, motivated by the
works [5, 23–27], in this paper we generalize the well-posedness for a class of neutral impulsive stochastic integro-
differential equations with local non-Lipschitz coefficients in the Hilbert space under a class of local non-Lipschitz
conditions on the coefficients by means of the stopping time technique. We would like to mention that the non-
Lipschitz condition and Lipschitz condition are two special case of the proposed conditions in this paper. The main
aim is to close this gap between neutral impulsive stochastic integro-differential equations with infinite delays and
Poisson jumps. Our main results concerning (1) rely essentially on techniques using strongly continuous family of
operators {R(t ), t ≥ 0}, defined on the Hilbert space H and called their resolvent. The resolvent operator is similar to
the semigroup operator for abstract differential equations in Banach spaces. There is a rich theory for analytic semi-
groups and we wish to develop theories for (1) which yield analytic resolvent. However, the resolvent operator does
not satisfy semigroup properties (see, for instance [28, 29]) and our objective in the present paper is to apply the the-
ory developed by Grimmer [30], because it is valid for generators of strongly continuous semigroup, not necessarily
analytic.

The rest of this paper is organized as follows: In Section 2, we recall briefly the notations, concepts and basic
results about the Wiener process, Poisson jumps process, deterministic integro-differential equations and the phase
space B which are used throughout this paper. The main results in Section 3 is devoted to prove the well-posedness
of mild solutions. An example is given in Section 4 to illustrate the theory. In the last section, concluding remarks are
given.

2. Preliminaries results

This section is concerned with some basic concepts, notations, definitions, lemmas and preliminary facts which
are used through this article. For more details on this section, we refer the reader to [4, 9, 30–32].

Let (H,‖·‖H,〈·, ·〉) and (K,‖·‖K,〈·, ·〉) denote two real separable Hilbert spaces, with their vectors norms and their
inner products, respectively. We denote by L (K;H) the set of all linear bounded operators from K into H, which is
equipped with the usual operator norm ‖·‖. Let W (t ) be aK-valued (Ft )tÊ0-Wiener process defined on the probability
space (Ω,F ,P) with covariance operator Q, where Q is a positive, self-adjoint, trace class operator onK.

In order to define stochastic integrals
∫ t

0
Φ(s)dW (s) [4], we introduce the subspace K0 = Q

1
2K of K, which en-

dowed with the inner product, 〈a,b〉K0 = 〈Q− 1
2 a,Q− 1

2 b〉K is a Hilbert space. Let L 0
2 = L2(K0;H) denote the space of

all Hilbert-Schmidt operators from K0 into H. It turns out to be a separable Hilbert space, equipped with the norm

‖ψ‖2
L 0

2
= tr ((ψQ

1
2 )(ψQ

1
2 )∗), for any ψ ∈L 0

2 .

Let p = p(t ), t ∈ Dp be a stationary Ft -Poisson point process taking its value in a measurable space (U ,B(U ))
with a σ-finite intensity measure λ(d v) by N (d t ,d v) the Poisson counting measure associated with p, that is,
N (t ,U ) = ∑

s∈Dp ,s≤t
IU (p(s)) for any measurable set U ∈ B(K − {0}), which denotes the Borel σ-field of (K − {0}). Let

Ñ (d t ,d v) := N (d t ,d v)−λ(d v)d t

be the compensated Poisson measure that is independent of W (t ). Denote by P 2([0,T ]×U ; H) the space of all pre-
dictable mappings L : [0,T ]×U → H for which∫ t

0

∫
U

E‖L(t , v)‖2
Hλ(d v)d t <∞.

We may then define the H-valued stochastic integral
∫ t

0

∫
U

L(t , v)Ñ (d t ,d v), which is a centred square-integrable

martingale. For the construction of this kind of integral, we can refer to Protter [32].
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Next, to be able to access existence, uniqueness and stability of mild solutions for (1) we need to introduce
partial integro-differential equations and resolvent operators.

Let X , Z be two Banach spaces such that ‖z‖Z := ‖Az‖X +‖z‖X for all z ∈ Z ; A and K (t ) are closed linear operators
on X and satisfy the following assumptions:

(H1) The operator A : D(A) ⊆ X → X is the infinitesimal generator of a strongly continuous semigroup on X .

(H2) For all t ≥ 0, K (t ) : D(K (t )) ⊆ X → X is a closed linear operator, D(A) ⊆ D(K (t )), and K (t ) ∈B(Z , X )- the set of all
bounded linear operators from Z into X . For any z ∈ Z , the map t → K (t )z is bounded, differentiable and the

derivative t → dK (t )z

d t
is bounded uniformly continuous on R+.

By Theorem 2.3 in [30], we can see that (H1) and (H2) imply the following integrodifferential abstract Cauchy problem

d x(t )

d t
= Ax(t )+

∫ t

0
K (t − s)x(s)d s, x(0) = x0 ∈ X , (2)

has an associated resolvent operator of bounded linear operators R(t ), t ≥ 0 on X .
Definition 2.1 A one-parameter family of bounded linear operator (R(t ))t≥0 on X is called a resolvent operator of (2)
if the following conditions are verified.

(a) Function R(·) : [0,∞) →L (X ) is strongly continuous and R(0)x = x for all x ∈ X .

(b) For x ∈ D(A), R(·) ∈C([0,+∞);D(A))∩C1([0,+∞); X ), and

dR(t )x

d t
= AR(t )x +

∫ t

0
K (t − s)R(s)xd s,

dR(t )x

d t
= R(t )Ax +

∫ t

0
R(t − s)K (s)xd s, f or t ≥ 0.

1. There exist constants M > 0, β such that ‖R(t )‖ ≤ Meβt for every t ≥ 0.

Hence, motivated by Grimmer [30], we can give the mild solution for the integro-differential equation

d x(t )

d t
= Ax(t )+

∫ t

0
K (t − s)x(s)d s +κ(t ), x(0) = x0 ∈ X :

x(t ) = R(t )x0 +
∫ t

0
R(t − s)κ(s)d s, ∀t ≥ 0,

where κ : [0,+∞) → X is a continuous function.
In the whole of this work, we suppose that the phase space B is axiomatically defined, we use the approach

proposed in [9]. More precisely, we have the following definition.

Definition 2.1.
The phase space B((−∞,0], H) (denoted by B for brevity) is the space of F0-measurable functions from (−∞,0] to H
endowed with a seminorm ‖ ·‖B , which satisfies the following axiom:
(A1) If x : (−∞,T ] → H , T > 0, is such that x0 ∈B, then for every t ∈ [0,T ], the following properties hold:

(i) xt ∈B;

(ii) ‖x(t )‖H ≤ H∗‖xt‖B , which is equivalent to ‖ϕ(0)‖H ≤ H∗‖ϕ‖B for every ϕ ∈B;

(iii) ‖xt‖B ≤ M(t ) sup
0≤s≤t

‖x(s)‖H +N (t )‖x0‖B ,

where H∗ > 0 is a constant; M , N : [0,+∞) → [1,+∞), M(·) is continuous, N (·) is locally bounded, and M , N are inde-
pendent of x(·).
(A2) The space B is complete.

Remark 2.1.
For convenience, the property (iii) in Definition 2.1 can be replaced by the following condition: ‖xt‖B ≤ sup

0≤s≤t
‖x(s)‖H+

NT ‖ϕ‖B , where NT := sup
0≤s≤T

N (s).
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Definition 2.2.
Denote by M :=M ((−∞,T ], H) the space of all H-valued càdlàg measurable Ft -adapted process x = x(t ),−∞< t ≤ T
such that

(i) x0 =ϕ ∈B and x(t ) is càdlàg on [0,T ];

(ii) For all x ∈M ,

‖x‖2
M := E‖ϕ‖2

B +E
∫ T

0
‖x‖2

H d t <∞.

Then M with the above norm is a Banach space.
Now, we give the definition of mild solution for (1).

Definition 2.3.
A càdlàg stochastic process x : (−∞,T ] → H , 0 < T <+∞ is called a mild solution of (1) on (−∞,T ] if

(i) x(t ) is Ft -adapted and {xt : t ∈ [0,T ]} is a B-valued stochastic process;

(ii) For arbitrary t ∈ [0,T ], P{ω :
∫ T

0
‖x(s)‖2

H d s <+∞} = 1, and x(t ) satisfies the following integral equation:

x(t ) =R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , xt )+
∫ t

0
R(t − s)F (s, xs )d s + ∑

0<tk<t
R(t − tk )Ik (x(tk ))

+
∫ t

0
R(t − s)Σ(s, xs )dW (s)+

∫ t

0

∫
U

R(t − s)L(s, x(s−), v)Ñ (d s,d v); (3)

(iii) x0(·) =ϕ ∈B.

Throughout this paper, for the well-posedness of the mild solution to (1), we shall impose the following assump-
tions:

(H3) (i) For all ϕ1,ϕ2 ∈B, and t ∈ [0,T ] such that

‖F (t ,ϕ1)−F (t ,ϕ2)‖2
H ∨‖Σ(t ,ϕ1)−Σ(t ,ϕ2)‖2

L 0
2
≤ τ(‖ϕ1 −ϕ2‖2

B).

(ii) For any x, y ∈ H , and t ∈ [0,T ] such that∫ t

0

∫
U
‖L(t , x(s−), v)−L(t , y(s−), v)‖2

Hλ(d v)d s

∨
(∫ t

0

∫
U
‖L(t , x(s−), v)−L(t , y(s−), v)‖4

Hλ(d v)d s
) 1

2 ≤
∫ t

0
τ(‖x(s)− y(s)‖2

H )d s;

(∫ t

0

∫
U
‖L(t , x(s−), v)‖4

Hλ(d v)d s
) 1

2 ≤
∫ t

0
τ(‖x(s)‖2

H )d s,

where τ(·) is a concave, nondecreasing, and continuous function from R+ to R+ such that τ(0) = 0, τ(u) > 0 for

u > 0 and
∫

0+

1

τ(u)
du =∞.

(H4) There exist a constant ρ such that ρ > 0, for any ϕ1,ϕ2 ∈B and for all t ∈ [0,T ], we have

‖Γ(t ,ϕ1)−Γ(t ,ϕ2)‖2
H ≤ ρ‖ϕ1 −ϕ2‖2

B .

(H5) The function Ik ∈C(H , H)- the space of all continuous functions from H on itself and for any x, y ∈ H there exists
some constant positive Qk such that

‖Ik (x(tk ))− Ik (y(tk ))‖2
H ≤Qk‖x − y‖2

H , k = 1,m.

(H6) For all t ∈ [0,T ], there exist a positive constant C0 such that

‖Γ(t ,0)‖2
H ∨‖F (t ,0)‖2

H ∨‖Σ(t ,0)‖2
H ∨‖Ik (0)‖2

H ∨
∫
U
‖L(t ,0, v)‖2

Hλ(d v) ≤C0.
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Remark 2.2.
Let us give some concrete functions τ(·). Let ε ∈ (0,1). Set

τ1(u) = u, for u ≥ 0.

τ2(u) =
{

u log( 1
u ) if 0 ≤ u ≤ ε,

ε log( 1
ε )+τ2

′(ε−)(u −ε) if u > ε.

τ3(u) =
{

u log( 1
u ) loglog( 1

u ) if 0 ≤ u ≤ ε,

ε log( 1
ε ) loglog( 1

ε )+τ3
′(ε−)(u −ε) if u > ε,

where ε is sufficiently small and τi
′, i = 2,3 is the left derivative of τi , i = 2,3 at the point ε. Then τi , i = 1,2,3 are

concave nondecreasing functions definition on R+ satisfying
∫

0+

1

τi (x)
d x =∞, i = 1,2,3. In particular, we see that the

Lipschitz conditions and non-Lipschitz conditions are special case of our proposed conditions.

3. The main results

In this section, we shall investigate the well-posedness theorem of the mild solution to neutral impulsive
stochastic integro-differential equations with local non-Lipschitz coefficients. In order to prove the well-posedness,
we introduce the successive approximations to (3) as follows

x0(t ) =
{
ϕ(t ), f or t ∈ (−∞,0],

R(t )ϕ(0), f or t ∈ [0,T ],
(4)

and xn for n ≥ 1 is defined by

xn(t ) =


ϕ(t ), f or t ∈ (−∞,0],

R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , xn
t )+∫ t

0 R(t − s)F (s, xn−1
s )d s

+∑
0<tk<t R(t − tk )Ik (xn−1(tk ))+∫ t

0 R(t − s)Σ(s, xn−1
s )dW (s)

+∫ t
0

∫
U R(t − s)L(s, xn−1(s−), v)Ñ (d s,d v), a.s ∀t ∈ [0,T ].

(5)

If the coefficients F,Σ,L of (1) satisfy the non-Lipchitz conditions, then by using the similar method as in [5, 24], we
can be proved that existence and uniqueness of the mild solution to (1).

Theorem 3.1.

Let the assumptions (H1)− (H6) hold and 0 < ρ < 1

24
. Then, there exist a unique mild solution to (1) in M .

Now, we present the existence and uniqueness of the mild solutions for (1) with the local non-Lipchitz condi-
tions.

Theorem 3.2.
Let the assumptions (H1), (H2), (H3?), (H4)− (H6) hold. Then, there exist a unique mild solution to (1) in M , provided

that 5
[
ρ+mΛ

m∑
k=1

Qk
]< 1.

Proof. Let N be a natural integer and let T ∈ (0,T ). We define the sequence of the functions {FN }, {ΣN }, and {LN } as
follows:

FN (t , xt ) :=
{

F (t , xt ) if ‖xt‖B ≤ N ,

F (t , N xt
‖xt ‖B ) ) if ‖xt‖B > N ,

ΣN (t , xt ) :=
{
Σ(t , xt ) if ‖xt‖B ≤ N ,

Σ(t , N xt
‖xt ‖B ) ) if ‖xt‖B > N ,

LN
(
t , x(t−), v

)
:=

{
L
(
t , x(t−), v

)
if ‖x‖H ≤ N ,

L
(
t , N x(t−)

‖x(t )‖H
, v

)
if ‖x‖H > N .

Then, the functions {FN }, {ΣN }, and {LN } satisfies assumption (H3). Thus, by Theorem 3.1, there exists a unique solu-
tion x`(t ) ∈M , with `= {N , N +1} such that

x`(t ) = R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , x`t )+
∫ t

0
R(t − s)F`(s, x`s )d s +

∫ t

0
R(t − s)Σ`(s, x`s )dW (s)

+ ∑
0<tk<t

R(t − tk )Ik (x`(tk ))+
∫ t

0

∫
U

R(t − s)L`
(
s, x`(s−), v

)
Ñ (d s,d v).

(6)
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For sufficiently large integer N , define the stopping times

γN := T ∧ inf{t ∈ [0,T ] | ‖xN
t ‖B ≥ N }, γN+1 := T ∧ inf{t ∈ [0,T ] | ‖xN+1

t ‖B ≥ N +1},

σN := T ∧ inf{t ∈ [0,T ] | ‖xN‖H ≥ N }, σN+1 := T ∧ inf{t ∈ [0,T ] | ‖xN+1‖H ≥ N +1},

θN := γN ∧γN+1 ∧σN ∧σN+1.

We claim that xN+1(t ) = xN (t ), for all t ∈ [0,T ∧θN ], a.s. ω.
By (6), we infer that

E sup
s∈[0,t∧θN ]

‖xN+1(s)−xN (s)‖2
H

≤5E sup
s∈[0,t∧θN ]

‖Γ(s, xN+1
s )−Γ(s, xN

s )‖2
H

+5E sup
s∈[0,t∧θN ]

‖
∫ s

0
R(s − r )

[
FN+1(r, xN+1

r )−FN (r, xN
r )

]
dr‖2

H

+5E sup
s∈[0,t∧θN ]

‖
∫ s

0
R(s − r )

[
ΣN+1(r, xN+1

r )−ΣN (r, xN
r )

]
dW (r )‖2

H

+5E sup
s∈[0,t∧θN ]

‖
∫ s

0

∫
U

R(s − r )
[
LN+1(r, xN+1(r−), v)−LN (r, xN (r−), v)

]
Ñ (dr,d v)‖2

H

+5E sup
s∈[0,t∧θN ]

‖ ∑
0<tk<t

R(t − tk )
[
Ik (xN+1(tk ))− Ik (xN (tk ))

]‖2
H

≤5ρE sup
s∈[0,t∧θN ]

‖xN+1
s −xN

s ‖2
B +5ΛT E

∫ t∧θN

0
‖FN+1(s, xN+1

s )−FN (s, xN
s )‖2

H d s

+C1E
∫ t∧θN

0
‖ΣN+1(s, xN+1

s )−ΣN (s, xN
s )‖2

L 0
2

d s

+C2E
∫ t∧θN

0

∫
U
‖LN+1(s, xN+1(s−), v)−LN (s, xN (s−), v)‖2

Hλ(d v)d s

+C2E
(∫ t∧θN

0

∫
U
‖LN+1(s, xN+1(s−), v)−LN (s, xN (s−), v)‖4

Hλ(d v)d s
) 1

2

+5mΛ
m∑

k=1
Qk E sup

s∈[0,t∧θN ]
‖xN+1(s)−xN (s)‖2

H ,

where C1, C2 are positive constants. Since for s ∈ [0,θN ], we know that

FN+1(s, xN
s ) = FN (s, xN

s ), ΣN+1(s, xN
s ) =ΣN (s, xN

s ), LN+1(s, xN (s−), v) = LN (s, xN (s−), v).

Thus, we have

E sup
s∈[0,t∧θN ]

‖xN+1(s)−xN (s)‖2
H

≤5
(
ρ+mΛ

m∑
k=1

Qk

)
E sup

s∈[0,t∧θN ]
‖xN+1(s)−xN (s)‖2

H

+5ΛT E
∫ t∧θN

0
‖FN+1(s, xN+1

s )−FN+1(s, xN
s )‖2

H d s

+C1E
∫ t∧θN

0
‖ΣN+1(s, xN+1

s )−ΣN+1(s, xN
s )‖2

L 0
2

d s

+C2E
∫ t∧θN

0

∫
U
‖LN+1(s, xN+1(s−), v)−LN+1(s, xN (s−), v)‖2

Hλ(d v)d s

+C2E
(∫ t∧θN

0

∫
U
‖LN+1(s, xN+1(s−), v)−LN+1(s, xN (s−), v)‖4

Hλ(d v)d s
) 1

2
.
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Hence, by assumption (H3?), Proposition 7.3 in [4] and Lemma 2.2 in [20], we get the following inequalities

E sup
s∈[0,t ]

‖xN+1(s ∧θN )−xN (s ∧θN )‖2
H

≤5ΛT

C3
E

∫ t

0
‖FN+1(s ∧θN , xN+1

s∧θN
)−FN+1(s ∧θN , xN

s∧θN
)‖2

H d s

+ C1

C3
E

∫ t

0
‖ΣN+1(s ∧θN , xN+1

s∧θN
)−ΣN+1(s ∧θN , xN

s∧θN
)‖2

L 0
2

d s

+ C2

C3
E

∫ t

0

∫
U
‖LN+1

(
s ∧θN , xN+1((s ∧θN )−), v

)
−LN+1

(
s ∧θN , xN ((s ∧θN )−), v

)‖2
Hλ(d v)d s

+ C2

C3
E
(∫ t

0

∫
U
‖LN+1

(
s ∧θN , xN+1((s ∧θN )−), v

)
−LN+1

(
s ∧θN , xN ((s ∧θN )−), v

)‖4
Hλ(d v)d s

) 1
2

≤5ΛT +C1 +C2

C3

∫ t

0
τN+1

(
E
(

sup
r∈[0,s]

‖xN+1(r ∧θN )−xN (r ∧θN )‖2
H

))
d s,

where C3 := (
1−5ρ−5mΛ

m∑
k=1

Qk
)
.

For all t ∈ [0,T ], by Bihari’s inequality [33], we obtain that

E sup
s∈[0,t ]

‖xN+1(s ∧θN )−xN (s ∧θN )‖2
H = 0.

This means that, for all t ∈ [0,T ∧θN ], we always have xN+1(t ) = xN (t ), a.s. ω.
For each ω ∈ Ω, there exists an N0(ω) > 0, such that T ∈ (0,θN0 ]. For all t ∈ [0,T ], define x(t ) by x(t ) = xN0 (t ). Since
x(t ∧θN ) = xN (t ∧θN ), it holds that

x(t ∧θN ) =R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , xN
t )+

∫ t∧θN

0
R(t − s)FN (s, xN

s )d s

+ ∑
0<tk<t∧θN

R(t − tk )Ik (xN (tk ))+
∫ t∧θN

0
R(t − s)ΣN (s, xN

s )dW (s)

+
∫ t∧θN

0

∫
U

R(t − s)LN (s, xN (s−), v)Ñ (d s,d v)

=R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , xt )+
∫ t∧θN

0
R(t − s)F (s, xs )d s

+ ∑
0<tk<t∧θN

R(t − tk )Ik (x(tk ))+
∫ t∧θN

0
R(t − s)Σ(s, xs )dW (s)

+
∫ t∧θN

0

∫
U

R(t − s)L(s, x(s−), v)Ñ (d s,d v).

Letting N →∞, for all t ∈ [0,T ], we infer that

x(t ) =R(t )[ϕ(0)+Γ(0,ϕ)]−Γ(t , xt )+
∫ t

0
R(t − s)F (s, xs )d s + ∑

0<tk<t
R(t − tk )Ik (x(tk ))

+
∫ t

0
R(t − s)Σ(s, xs )dW (s)+

∫ t

0

∫
U

R(t − s)L(s, x(s−), v)Ñ (d s,d v).

The uniqueness is obtained by stopping our process. The proof is thus complete.
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4. Application

In this section, an example is provided to illustrate the obtained theory. We consider the following neutral im-
pulsive stochastic integro-differential equations with infinite delays driven by Poisson jumps of the form:

∂

∂t

[
u(t ,ξ)+

∫ 0

−∞
γ(θ,u(t +θ,ξ))dθ

]
= ∂2

∂ξ2

[
u(t ,ξ)+

∫ 0

−∞
γ(θ,u(t +θ,ξ))dθ

]
+

∫ t

0
k̂(t − s)

∂2

∂ξ2

[
u(s,ξ)+

∫ 0

−∞
γ(θ,u(s +θ,ξ))dθ

]
d s +

∫ 0

−∞
f (θ,u(t +θ,ξ))dθ

+σ(t ,u(t +θ,ξ))dW (t )+
∫
U

u(t−,ξ)v Ñ (d t ,d v), ξ ∈ [0,π], t 6= tk , t ≥ 0,

u(t+k )−u(t−k ) = (1+ ck )u(ξ(tk )), f or t = tk , k = 1,m,

u(t ,0)+∫ 0
−∞γ(θ,u(t +θ,0))dθ = 0 f or t ≥ 0,

u(t ,π)+∫ 0
−∞γ(θ,u(t +θ,π))dθ = 0 f or t ≥ 0,

u(θ,ξ) = u0(θ,ξ) f or θ ∈ (−∞,0], ξ ∈ [0,π],

(7)

where W (t ) is a standard one-dimensional Wiener process in H defined on a stochastic space (Ω,F ,P); U = {v ∈ R :
0 < ‖v‖R ≤ ā, ā > 0}; γ, f : R− ×R → R and σ : R+ ×R → L (R) are continuous functions, k̂ : R+ → R is continuous;

ck ≥ 0 for k = 1,m and
m∑

k=1
ck < ∞; u0 : (−∞,0] × [0,π] → R is given càdlàg function such that u0(·) ∈ L2([0,π]) is

F0-measurable and satisfies E‖u0‖2
B <∞.

Let p = p(t ), t ∈ Dp be a K -valued σ-finite stationary Poisson point process (independent of W (t )) on a com-
plete probability space with the usual condition (Ω,F , (Ft )tÊ0,P). Let Ñ (d s,d v) := N (d s,d v)−λ(d v)d s, with the

characteristic measure λ(d v) on U ∈ B(K − {0}). Assume that
∫
U

v2λ(d v) <∞ and
∫
U

v4λ(d v) <∞.

To rewrite (7) into the abstract from of (1) we consider the space H = L2([0,π]) with the norm ‖·‖ and K = R1. Let

en(x) :=
√

2

π
sinnx, n = 1,2,3, ... denote the completed orthonormal basics in H and W (t ) =

∞∑
n=1

√
λnβn(t )en , t ≥ 0,

λn > 0, where {βn(t )}n≥0 are one-dimensional standard Brownian motions mutually independent on a usual complete
probability space (Ω,F , (Ft )tÊ0,P).

Defined A : H → H by A = ∂2

∂x2 , with domain D(A) = H 2([0,π])∩ H 1
0 ([0,π]), here H 1

0 ([0,π]) = {w ∈ L2([0,π]) :

∂w

∂z
∈ L2([0,π]), w(0) = w(π) = 0} and H 2([0,π]) = {w ∈ L2([0,π]) :

∂w

∂z
,
∂2w

∂z2 ∈ L2([0,π])}. Then Ax = −
∞∑

n=1
n2〈x,en〉en ,

x ∈ D(A), where n = 1,2,3, ... is also the orthonormal set of eigenvector of A. It is wellknown that A is the in-
finitesimal generator of a strongly continuous semigroup {S(t )}t≥0 on H and is given (see Pazy [31], page 70) by

S(t )x =
∞∑

n=1
e−n2t 〈x,en〉en , x ∈ H . Thus, (H1) is true.

Let K (t ) : D(A) ⊂ H → H be the operator defined by K (t )(z) = k̂(t )Az for t ≥ 0 and z ∈ D(A). Let B = BC (R−; H)
denote the Banach space of all bounded continuous functions from R− to H , equipped with the following norm

‖φ‖B = sup
θ≤0

‖φ(θ)‖H = sup
θ≤0,ξ∈[0,π]

‖φ(θ)(ξ)‖H , φ ∈B.

Then, the space B satisfies all conditions of axioms (A1) and (A2).
For ξ ∈ [0,π] and φ ∈B, let us introduce the operators Γ,F : R+×B → H , Σ : R+×B →L (K ; H), L : R+×B×

U → H and Ik : H → H , k = 1,m by

Γ(t ,φ)(ξ) =
∫ 0

−∞
γ(θ,φ(θ)(ξ))dθ,F (t ,φ)(ξ) =

∫ 0

−∞
f (θ,φ(θ)(ξ))dθ, L(t ,φ(ξ), v) =φ(ξ)v,

Σ(t ,φ)(ξ) =σ(t ,φ(θ)(ξ)), Ik (φ(ξ))(tk ) = (1+ ck )φ(ξ(tk )), k = 1,m.
If we put,{

x(t ) = u(t ,ξ), for t ≥ 0 and ξ ∈ [0,π],

ϕ(θ)(ξ) = u0(θ,ξ), for θ ∈ (−∞,0] and ξ ∈ [0,π].

Then (7) takes the following abstract form:
d [x(t )+Γ(t , xt )] = A[x(t )+Γ(t , xt )]d t +

[∫ t
0 K (t − s)[x(s)+Γ(s, xs )]d s +F (t , xt )

]
d t

+Σ(t , xt )dW (t )+∫
U L(t , x(t−), v)Ñ (d t ,d v), t 6= tk , t ∈ [0,T ],

∆x(tk ) = x(t+k )−x(t−k ) = Ik (x(tk )), t = tk , k = 1,m,

x0(·) =ϕ ∈B.
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Moreover, if k̂ is bounded andC1, whereC stand for the space of all continuous functions such that k̂ ′ is bounded
and uniformly continuous, then (H1) and (H2) are satisfied and hence (2) has a resolvent operator (R(t ))t≥0 on H . As
a consequence of the continuity of γ, f , it follows that Γ, F are continuous on R+×B with values in H , and from the
continuity ofσ it follows that Σ is continuous on R+×B with values in L (K , H). Thus, (7) can be expressed as (1) with
A,Γ,K ,F,Σ,L, Ik ,k = 1,m as defined above.

Now we suppose the following assumptions

(i) For θ ≤ 0, γ(θ,0) = 0.

(ii) There exists a function γ1 ∈ L1(R−,R) such that for θ ≤ 0 and ξ1,ξ2 ∈ R

sup
ξ1 6=ξ2

|γ(θ,ξ1)−γ(θ,ξ2)|
|ξ1 −ξ2|

≤ γ1(θ).

(iii) There exists a function γ2 is measurable nonnegative function on (−∞,0] such that for θ ≤ 0 and ξ1,ξ2 ∈ R :
| f (θ,ξ1)− f (θ,ξ2)|2 ≤ γ2(θ)τ(|ξ1 −ξ2|2), where τ(·) is define as (H3).

With the above assumptions Γ is well defined from R+ ×B → H . In fact, given ξ ∈ [0,π], φ ∈ B and a sequence
(ξn)n≥0 ⊂ [0,π] such that ξn → ξ, we have

‖Γ(t ,φ)(ξn)−Γ(t ,φ)(ξ)‖ ≤p
π

∫ 0

−∞
γ1(θ)‖φ(θ)(ξn)−φ(θ)(ξ)‖dθ.

By continuity of φ, we have lim
n
φ(θ)(ξn) =φ(θ)(ξ).

Thus, by Lebesgue convergence theorem we deduce that Γ(φ) ∈ H for all φ ∈B. Moreover, for all φ1,φ2 ∈B, we
have

‖Γ(t ,φ1)−Γ(t ,φ2)‖ = sup
ξ∈[0,π]

‖Γ(t ,φ1)(ξ)−Γ(t ,φ2)(ξ)‖ ≤p
π

∫ 0

−∞
γ1(θ)dθ‖φ1 −φ2‖B ,

and

‖F (t ,φ1)−F (t ,φ2)‖2 ≤p
π

∫ 0

−∞
γ2(θ)dθτ(‖φ1 −φ2‖2

B).

We also suppose that

(a) 0 <p
π

∫ 0

−∞
γ1(θ)dθ < 1p

24
and 0 <p

π

∫ 0

−∞
γ2(θ)dθ < 1;

(b) σ satisfies (H3), that is ‖σ(t ,ζ)−σ(t ,µ)‖2 ≤ τ(‖ζ−µ‖2
B).

Thus, all the assumptions of Theorem 3.1 and Theorem 3.2 are fulfilled. Therefore, the system (7) has a unique mild
solution.

5. Conclusion

In this paper, we have studied a class of neutral impulsive stochastic integro-differential equations with local
non-Lipschitz coefficients in real separable Hilbert spaces. Sufficient conditions for the well-posedness of mild so-
lutions for neutral impulsive stochastic integro-differential equations with local non-Lipschitz coefficients are de-
rived by means of the stopping time technique combined with theories of resolvent operators for integro-differential
equations. In addition, an example illustrating the applicability of the general theory are also provided. The results
presented in this paper extend and improve the results in [5, 23–27].
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