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Abstract: This article deals with the study of transient magnetohydrodynamic free convection flow past a vertical porous plate in
presence of viscous dissipation. The governing differential equations are transformed into a set of non-linear coupled
ordinary differential equations and solved using a Finite element method. The effects of various physical parameters
on the dimensionless velocity, temperature and concentration profiles are depicted graphically and analyzed in detail.
Also, the skin-friction, Nusselt number and Sherwood number at the plate of derived and discussed and their numer-
ical values for various physical parameters are presented in tables. Favorable comparisons with previously published
work on various special cases for different physical parameters.
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1. Introduction

The most common type of body force, which acts on a fluid, is due to gravity, so that the body force can be de-
fined as in magnitude and direction by the acceleration due to gravity. Sometimes, electromagnetic effects are impor-
tant. The electric and magnetic fields themselves must obey a set of physical laws, which are expressed by Maxwell’s
equations. The solution of such problems requires the simultaneous solution of the equations of fluid mechanics and
electromagnetism. One special case of this type of coupling is known as magnetohydrodynamic.

Coupled heat and mass transfer phenomenon in porous media is gaining attention due to its interesting appli-
cations. The flow phenomenon in this case is relatively complex than that in pure thermal/solutal convection process.
Processes involving heat and mass transfer in porous media are often encountered in the chemical industry, in reser-
voir engineering in connection with thermal recovery process, in the study of dynamics of hot and salty springs of a
sea. Underground spreading of chemical waste and other pollutants, grain storage, evaporation cooling, and solidi-
fication are a few other application areas where combined thermosolutal convection in porous media are observed.
However, the exhaustive volume of work devoted to this area is amply documented by the most recent books by Ing-
ham and Pop[1], Nield and Bejan [2] and Vafai [3], Pop and Ingham [4] studied the problem of transient flow of a fluid
past a moving semi-infinite vertical porous plate. However, many problem areas which are important in applications,
as well as in theory still persist.

Convective heat transfer in porous media has been a subject of great interest for the last few decades. This inter-
est was motivated by numerous thermal engineering applications in various disciplines, such as geophysical, thermal
and insulation engineering, the modeling of packed sphere beds, the cooling of electronic systems, chemical catalytic
records, ceramic processes, grain storage devices fiber and granular insulation, petroleum reservoirs, coal combus-
tors, ground water pollution and filtration process. Kim [5] investigated an unsteady MHD convective heat transfer
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Nomenclature

T ′
w Wall dimensional temperature

U ′∞ Dimensional free stream velocity

t ′ Dimensional time

t Time

u Non âĂŞdimensional velocity

g Acceleration due to gravity

K ′ Dimensional porosity parameter

(u′, v ′) Dimensional velocity components

(x′, y ′) Dimensional Cartesian coordinates

Cp Specific heat capacity

M Magnetic parameter

Pr Prandtl number

Gr Thermal Grashof number

Gc Solutal Grashof number

Sc Schmidt number

Ec Eckert number

D Molecular diffusivity

C ′
w Wall dimensional concentration

C ′∞ Free stream dimensional concentration

U0 Mean velocity

B0 Magnetic field

S0 Non dimensional Heat absorption parameter

S Heat absorption parameter

u′
p Plate velocity

n′ Dimensional free stream frequency of oscillation

U∞ Free stream velocity

K Permeability parameter

Nu Nusselt numbe

Sh Sherwood number

Greek symbols

β Coefficient of Volume expansion

β∗ Volumetric coefficient of expansion with concentration

ν Kinematic viscosity

σ Electrical conductivity

ρ Fluid density

k Thermal conductivity

θ Non âĂŞdimensional temperature

φ Non âĂŞdimensional concentration

τ Skin-friction coefficient

Subscripts

ω Wall condition

∞ Free stream condition

past a semi-infinite vertical porous moving plate with variable suction. Chamkha [6] extended the work of Kim in
which he discussed unsteady MHD convective heat and mass transfer past a semi-infinite vertical permeable moving
plate with heat absorption. Alam et al. [7] discussed numerical study of the combined free forced convection and
mass transfer flow past a vertical porous plate in a porous medium with heat generation and thermal diffusion.Sahin
et al. [8] studied combined heat and mass transfer by mixed convection MHD flow along a porous plate with chemical
reaction in presence of heat source.

Gebhar [9] has shown that the viscous dissipation effect plays an important role in natural convection in vari-
ous devices that are subjected to large deceleration or that operate at high rotational speeds, in strong gravitational
field processes on large scales (on large planets), and in geological processes. Soundalgekar [10] analyzed the effect
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of viscous dissipative heat on the two dimensional unsteady, free convective flow past an vertical porous plate when
the temperature oscillates in time and there is constant suction at the plate. Israel Cookey et al [11] investigated the
influence of viscous dissipation and radiation on unsteady MHD free convection flow past an infinite heated vertical
plate in porous medium with time dependent suction. Aurangzaib et al. [12] investigated the effect of thermal strati-
fication on magnetohydrodynamic free convection boundary layer flow with heat and mass transfer of an electrically
conducting fluid over an unsteady stretching sheet in the presence of strong magnetic field. The electron-atom colli-
sion frequency is assumed to be relatively high, so that the hall effect is assumed to be exist, while induced magnetic
field is neglected. The transformed nonlinear boundary layer equations are solved numerically by applying Keller-box
method. Bestman [13] examined the natural convection boundary layer with suction and mass transfer in a porous
medium. His results confirmed the hypothesis that suction stabilizes the boundary layer and affords the most effi-
cient method in boundary layer. Sivaiah and Srinivasa Raju [14] studied effect of heat and mass transfer flow with Hall
current, heat source and viscous dissipation.

The object of the present paper is to study the transient magnetohydrodynamic free convection flow past a
vertical porous plate in presence of viscous dissipation. The problem is governed by the system of coupled non-linear
partial differential equations whose exact solutions are difficult to obtain, if possible. So, finite element method has
been adopted for its solution, which is more economical from computational point of view.

2. Mathematical analysis

Consider the an unsteady free convective boundary layer flow of a viscous, incompressible, electrically conduct-
ing fluid past an infinite vertical porous plate in the presence of viscous dissipation is considered. The x ′- axis is taken
in the upward direction along the plate and y ′ axis normal to it. The physical model and coordinate system are shown
in Fig. 1. A uniform magnetic field is applied in the direction perpendicular to the plate. Due to infinite length in

Fig. 1. Physical model and coordinate system

x ′-direction, the flow variables are functions of y ′ and t ′ only. Under the usual Boussinesq approximation, governing
equations for this unsteady problem are given by

∂v ′

∂y ′ = 0 (1)
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Under these assumptions, the appropriate boundary conditions for the velocity, temperature and concentration fields
are

t ′ < 0 : u′ = 0, T ′ = 0, C ′ = 0 ∀ y ′,

t ′ ≥ 0 :

{
u′ = u′

p , T ′ = T ′∞+ε( T ′
w − T ′∞)e n′t ′ C ′ = C ′∞+ε( C ′

w − C ′∞)e n′t ′ at y ′ = 0,

u′ =U ′∞ =U0(1+εAe n′t ′ ), T ′ → T ′∞, C ′ → C ′∞ as y ′ →∞
(5)

From Eq. (1) it is clear that the suction velocity at the plate is either a constant or function of time only. Hence the
suction velocity normal to the plate is assumed in the form

v ′ =−V0(1+εAen′t ′ ) (6)

Where A is a real positive constant, ε and εA are small less than unity. Here V0 is mean suction velocity, which has a
non-zero positive constant and the minus sign indicates that the suction is towards the plate. Outside the boundary
layer, Eq. (2) gives

−1

ρ

∂p ′

∂x ′ =
dU

′
∞

d t ′
+ ν

K ′U
′
∞+ σ

ρ
B 2

0U
′
∞ (7)

In order to write the governing equations and the boundary conditions in dimensionless form, the following
non-dimensional quantities are introduced.

u = u′

U0
,ν= v ′

V0
,η= V0 y ′

ν
, t = t ′V 2

0

ν
, Pr = ρCpν

k
, Sc = ν

D
,θ = T ′−T ′∞

T ′
w −T ′∞

, S = νS0

ρCpV 2
0

, n = νn′

V 2
0

,

φ= C ′−C ′∞
C ′

w −C ′∞
, K = K ′V 2

0

ν2 , Gr = gβν(T ′
w −T ′∞)

U0V 2
0

, Gc = gβ∗ν(C ′
w −C ′∞)

U0V 2
0

, M = σB 2
0ν

ρV 2
0

, K = K ′ν
V 2

0

,

Ec =
U 2

0

Cp (T ′
w −T ′∞)

, U∞ = U ′∞
U0

, Up =
u′

p

U0

(8)

In view of Eqs. (5)-(8), Eqs. (2)-(4) reduce to the following dimensionless form:

∂u

∂t
− (1+εAent )

∂u

∂η
= dU∞

d t
+ Grθ+ Gcφ+ ∂2u

∂η2 +N (U∞−u) (9)

∂θ

∂t
− (1+εAent )

∂θ

∂η
= 1

Pr

∂2θ

∂η2 + Ec

(
∂u

∂η

)2

− Sθ (10)

∂φ

∂t
− (1+εAent )

∂φ

∂η
= 1

Sc

∂2φ

∂η2 (11)

Where N = M + 1

K
.

The corresponding dimensionless boundary conditions are:

u =Up ,θ = 1+ε ent ,φ= 1+ε ent at η= 0

u →U∞,θ→ 0,φ→ 0 as η→∞ (12)

Now it is important to calculate the physical quantities of primary interest, which are the local shear stress, local
surface heat flux and Sherwood number.
Dimensionless local wall shear stress or skin-friction is obtained as,

τ= [
∂u

∂η
]η=0 (13)

Dimensionless local surface heat flux or Nusselt number is obtained as,

Nu = [
∂θ

∂η
]η=0 (14)

Dimensionless the local Sherwood number is obtained as

Sh = [
∂φ

∂η
]η=0 (15)
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3. Method of solution

The finite element method has been implemented to obtain numerical solutions of Eqs. (9)-(11) under bound-
ary conditions (12). This technique is extremely efficient and allows robust solutions of complex coupled, nonlinear
multiple degree differential equation systems. The fundamental steps comprising the method are now summarized.
An excellent description of finite element formulations is available in Bathe [15] and Reddy [16]

Step-1: Discretization of the Domain into Elements
The whole domain is divided into finite number of "sub-domains", a process known as Discretization of the

domain. Each sub-domain is termed a âĂIJfinite elementâĂİ. The collection of elements is designated the "finite
element mesh".
Step-2: Derivation of the element Equations The derivation of finite element equations algebraic equations among
the unknown parameters of the finite element approximation, involves the following three steps.

a. Construct the variational formulation of the differential equation.

b. Assume the form of the approximate solution over a typical finite element.

c. Derive the finite element equations by substituting the approximate solution into variational formulation.

These steps results in a matrix equation of the form [K e ]{ue }={F e }, which defines the finite element model of the
original equation.
Step-3 Assembly of Element Equations

The algebraic equations so obtained are assembled by imposing the âĂIJinter-elementâĂİ continuity conditions.
This yields a large number of algebraic equations constituting the âĂIJglobal finite element modelâĂİ, which governs
the whole flow domain.
Step-4:Impositions of Boundary Conditions

The physical boundary conditions defined in (12) are imposed on the assembled equations
Step-5: Solution of the Assembled Equations

The final matrix equation can be solved by a direct or indirect (iterative) method. For computational purposes,
the coordinate is varied from to , where represents infinity external to the momentum, energy and concentration
boundary layers. The whole domain is divided into a set of line segments of equal width each element being two-
noded.
Variational formulation
The variational formulation associated with equations (9)-(11) over a typical two-noded linear element(ηe ,ηe+1) is
given by∫ ηe+1

ηe

w1[(
∂u

∂t
)−B(

∂u

∂η
)− (

∂2u

∂η2 )− dU∞
d t

+Nu −NU∞−Grθ−Gcφ]dη= 0 (16)

∫ ηe+1

ηe

w2[(
∂θ

∂t
)−B(

∂θ

∂η
)− 1

Pr
(
∂2θ

∂η2 )−Sθ−Ec (
∂u

∂t
)2]dη= 0 (17)

∫ ηe+1

ηe

w3[(
∂φ

∂t
)−B(

∂φ

∂η
)− 1

Sc
(
∂2φ

∂η2 )]dη= 0 (18)

Where B = 1+εAent and w1, w2, w3 are arbitrary test functions and may be viewed as the variation in u,θ and φ
respectively. After reducing the order of integration and non-linearity, we arrive at the following system of equations∫ ηe+1

ηe

[(w1)(
∂u

∂t
)−B(w1)(

∂u

∂η
)+ (

∂w1

∂η
)(
∂u

∂η
)− (

dU∞
d t

)(w1)+N (w1)u −N (w1)U∞−

(Gr )(w1)θ− (Gc)(w1)φ]d y − [(w1)(
∂u

∂η
)]ηe+1
ηe

= 0

(19)

∫ ηe+1

ηe

[(w2)(
∂θ

∂t
)−B(w2)(

∂θ

∂η
)+ 1

Pr
(
∂w2

∂η
)(
∂θ

∂η
)−S(w2)θ−Ec (w2)(
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∂y
)(
∂u

∂y
)]dη− [(

w2

Pr
)(
∂θ

∂η
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ηe

= 0 (20)

∫ ηe+1

ηe
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∂θ

∂t
)−B(w3)(

∂φ

∂η
)− 1

Sc
(
∂w3

∂η
)(
∂φ

∂η
)]dη− [(

w3

Sc
)(
∂φ
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)]ηe+1
ηe

= 0 (21)
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Finite Element formulation
The finite element model may be obtained from Eqs. (20)-(21) by substituting finite element approximations of the
form:

u =
2∑

j=1
ue

jψ
e
j , θ =

2∑
j=1

θe
jψ

e
j , φ=

2∑
j=1

φe
jψ

e
j (22)

With w1 = w2 = w3 =ψe
j ( j = 1,2), where ue

j ,θe
j and θe

j are the velocity, temperature and concentration respectively at

the jth node of typical eth element (ηe ,ηe+1) and ψe
i are the shape functions for this element (ηe ,ηe+1) and are

taken as:

ψe
1 =

ηe+1 −η
ηe+1 −ηe

and ψe
2 =

η−ηe

ηe+1 −ηe
, ηe ≤ η≤ ηe+1 (23)

[K 11] [K 12] [K 13]

[K 21] [K 22] [K 23]

[K 31] [K 32] [K 33]


{ue }

{θe }

{φe }

+

[M 11] [M 12] [M 13]

[M 21] [M 22] [M 23]

[M 31] [M 32] [M 33]


{u′e }

{θ′e }

{φ′e }

=

{b1e }

{b2e }

{b3e }

 (24)

where
{[

K mn]
,
[
M mn]}

and
{{

ue} ,
{
θe} ,

{
ϕe} ,

{
u′e} ,

{
θ′e

}
,
{
ϕ′e} and

{
bme} }

(m, n = 1, 2, 3) are the set of matrices

of order 2×2 and 2×1 respectively and /′ (dash) indicates
d

dη
. These matrices are defined as follows:

K 11
i j =−B

∫ ηe+1

ηe

[(ψe
i )(
∂ψe

j

∂η
)]dη+

∫ ηe+1

ηe

[(
∂ψe

i

∂η
)(
∂ψe

j

∂η
)dη]+N

∫ ηe+1

ηe

[(ψe
i )(ψe

j )]dη,

K 12
i j =−[

dU∞
d t

+NU∞]
∫ ηe+1

ηe

[(ψe
i )dη, K 13

i j =−[Gr +Gc]
∫ ηe+1

ηe

[(ψe
i )(ψe

j )dη, M 11
i j =

∫ ηe+1

ηe

[(ψe
i )(ψe

j )dη,

M 12
i j = M 13

i j = 0, K 21
i j =−Ec

∫ ye+1

ye

(ψe
i )(
∂u

∂y
)(
∂ψ j e

∂y
)]d y, M 21

i j = M 23
i j = 0, M 22

i j =
∫ ηe+1

ηe

(ψe
i )(ψe

j )dη,

K 31
i j = 0, K 23

i j = S
∫ ηe+1

ηe

[(ψe
i )(ψe

j )]dη, M 31
i j = M 32

i j = 0, M 33
i j =

∫ ηe+1

ηe

(ψe
i )(ψe

j )dη,

K 22
i j =−B

∫ ηe+1

ηe

[(ψe
i )(
∂ψe

j

∂η
)]dη+ 1

Pr

∫ ηe+1

ηe

[(
∂ψe

i

∂η
)(
∂ψe

j

∂η
)dη],

K 32
i j = 0, K 33

i j =−B
∫ ηe+1

ηe

[(ψe
i )(
∂ψe

j

∂η
)]dη,b1e

i = [(ψe
i )(
∂u

∂η
)]ηe+1
ηe

,

b2e
i = [

ψe
i

Pr
(
∂θ

∂η
)]ηe+1
ηe

, b3e
i = [

ψe
i

Sc
(
∂φ

∂η
)]ηe+1
ηe

The whole domain is divided into a set of 60 intervals of equal length 0.1. At each node 3 functions are to be evaluated.
Hence after assembly of the elements we obtain a set of 143 equations. The system of equations after assembly of
elements, are non-linear and consequently an iterative scheme is employed to solve the matrix system, which are
solved using the Gauss Elimination method maintaining an accuracy of 0.0005.

4. Results and discussions

The formulation of the problem that accounts for the transient magnetohydrodynamic free convection flow
past a vertical porous plate in presence of viscous dissipation is performed in the preceding sections. The governing
equations of the flow field are solved numerically by using a finite element method. The above presented equations
enable us to carry out numerical computations. The following parameter values are adopted for computations unless
otherwise indicated in the figures and table: Gr = 2.0,Gc = 1.0, M = 0.0,K = 0.5,Pr = 0.7,S = 1.0,Ec = 0.001,Sc =
0.6,Up = 0.5, A = 0.5,ε= 0.2,n = 0.1, t = 1.0. The boundary conditions for η−→∞ are replaced by those at ηmax where
the value of ηmax is sufficiently large, so that the velocity at η = ηmax is equal to the relevant free stream velocity.
We choose ηmax = 6 . To assess the accuracy of the present method, comparisons between the present results and
previously published data Chamkha [6], Table 1 shows the comparison between values of skin-friction coefficient τ.
Table 2 shows the comparison between values of Nusselt number of Nu, also Table 3 shows the comparison between
values of Sherwood number Sh . In fact, this results show a close agreement, hence an encouragement for further
study of the effects of other varies of parameters on the continuous moving surface.
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Figs. 2 and 3 exhibit the effect of thermal Grashof number and solutal Grashof numbers on the velocity profile
with other parameters are fixed. The Grashof number signifies the relative effect of the thermal buoyancy force to the
viscous hydrodynamic force in the boundary layer. As expected, it is observed that there is a rise in the velocity due to
the enhancement of thermal buoyancy force. Also, as increases, the peak values of the velocity increases rapidly near
the porous plate and then decays smoothly to the free stream velocity. The solutal Grashof number defines the ratio of
the species buoyancy force to the viscous hydrodynamic force. As expected, the fluid velocity increases and the peak
value is more distinctive due to increase in the species buoyancy force. The velocity distribution attains a distinctive
maximum value in the vicinity of the plate and then decreases properly to approach the free stream value. It is noticed
that the velocity increases with increasing values of the solutal Grashof number. The effect of the Hartmann number M
is shown in Fig. 4. It is observed that the velocity of the fluid decreases with the increase of the magnetic field number
values. The decrease in the velocity as the Hartmann number M increases is because the presence of a magnetic
field in an electrically conducting fluid introduces a force called the Lorentz force, which acts against the flow if the
magnetic field is applied in the normal direction, as in the present study. This resistive force slows down the fluid
velocity component as shown in Fig. 4. The Permeability parameter K as defined in Eq. (5) is inversely proportional
to the actual permeability KâĂš of the porous medium. An increase in K will therefore increase the resistance of the
porous medium (as the permeability physically becomes less with increasing KâĂš) which will tend to accelerate the
flow and increases the velocity. This behavior is evident from Fig. 5.

The effect of the viscous dissipation parameter i.e., the Eckert number Ec on the velocity and temperature are
shown in Figs. 6 and 7 respectively. Eckert number is the ratio of the kinetic energy of the ïňĆow to the boundary
layer enthalpy deference. It embodies the conversion of kinetic energy into internal energy by work done against the
viscous fluid stresses. The positive Eckert number implies cooling of the plate i.e., loss of heat from the plate to the
fluid. Hence, greater viscous dissipative heat causes a rise in the temperature as well as the velocity, which is evident
from Figs. 6 and 7.

Figs. 8 and 9 illustrate the influence of heat absorption parameter on the velocity and temperature at t = 1.0 re-
spectively. Physically speaking, the presence of heat absorption (thermal sink) effects has the tendency to reduce the
fluid temperature. This causes the thermal buoyancy effects to decrease resulting in a net reduction in the fluid veloc-
ity. These behaviors are clearly obvious from Figs. 8 and 9 in which both the velocity and temperature distributions
decrease as S increases. It is also observed that the both the hydrodynamic (velocity) and the thermal (temperature)
boundary layers decrease as the heat absorption effects increase. The effect of Schmidt number Sc on the velocity
and concentration are shown in Figs. 10 and ??. As the Schmidt number increases, the velocity and concentration
decreases. This causes the concentration buoyancy effects to decrease yielding a reduction in the fluid velocity. Re-
ductions in the velocity and concentration distributions are accompanied by simultaneous reductions in the velocity
and concentration boundary layers.

Table 1-Table 3 depict the effects of the solutal Grashof number Gc , the heat absorption coefficient S and the
Schmidt number Sc on the skin-friction coefficient τ , Nusselt number Nu and the Sherwood number Sh , respec-
tively. It is observed from these tables that as Gc increases, the skin-friction coefficient increases whereas the Nusselt
and Sherwood numbers remain unchanged. However, as the heat absorption effects increase, both the skin-friction
coefficient and the Nusselt number decrease whereas the Sherwood number remains unaffected. Also, increases in
the Schmidt number cause reductions in the skin-friction coefficient and the Sherwood number while the Nusselt
number remains constant.

Table 1. Effects of Gr on Skin-friction, Nusselt number and Sherwood number when Ec = 0.

Gr Present results Previous results of Ali J Chamka [6]

τ Nu Sh τ Nu Sh

0.0 2.7200 -1.7167 -0.8098 2.7200 -1.7167 -0.8098

1.0 3.2772 - 1.7167 -0.8098 3.2772 -1 .7167 -0.8098

2.0 3.8343 -1.7167 -0.8098 3.8343 -1.7167 -0.8098

3.0 4.3915 -1.7167 -0.8098 4.3915 -1.7167 -0.8098

4.0 4.9487 -1.7167 -0.8098 4.9487 -1.7167 -0.8098

Table 2. Effects of S on Skin-friction,Nusselt number and Sherwood number when Ec = 0.

S Present results Previous results of Ali J Chamka [6]

τ Nu Sh τ Nu Sh

0.0 3.4595 -1.7167 -0.8098 2.7200 -1.7167 -0.8098

1.0 3.2772 -1.7167 -0.8098 3.2772 -1.7167 -0.8098

2.0 3.1933 -2.1193 -0.8098 3.1933 -2.1193 -0.8098

3.0 3.1378 -2.4388 -0.8098 3.1378 -2.4388 -0.8098



32 Transient MHD free convection flow past a porous vertical plate in presence of viscous dissipation

Table 3. Effects of Sc on Skin-friction, Nusselt number and Sherwood number when Ec = 0.

Sc Present results Previous results of Ali J Chamka [6]

τ Nu Sh τ Nu Sh

0.16 3.4328 -1.7167 -0.2231 3.4328 -1.7167 -0.2231

0.6 3.2772 -1.7167 -0.8098 3.2772 -1.7167 -0.8098

1.0 3.1847 -1.7167 -1.3425 3.1847 -1.7167 -1.3425

2.0 3.0481 -1.7167 -2.6741 3.0481 -1.7167 -2.6741

Fig. 2. Effect of Gr on velocity profiles Fig. 3. Effect of Gc on velocity profiles

Fig. 4. Effect of M on velocity profiles Fig. 5. Effect of K on velocity profiles
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Fig. 6. Effect of E c on velocity profiles Fig. 7. Effect of E c on temperature profiles

Fig. 8. Effect of S on velocity profiles Fig. 9. Effect of S on temperature profiles

Fig. 10. Effect of Sc on velocity profiles
Fig. 11. Effect of Sc on concentration profiles
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5. Conclusion

This paper considered transient magnetohydrodynamic free convection flow past a vertical porous plate in pres-
ence of viscous dissipation. The non-dimensional governing equations are solved with the help of finite element
method, which have wide application in different fields of engineering. The conclusions of the study are as follows:

1. The velocity increases with the increase in thermal Grashof number and solutal Grashof number.

2. The velocity decreases with an increase in the magnetic parameter.

3. The velocity increases with an increase in the permeability of the porous medium parameter.

4. An increase in the Eckert number increases the velocity and temperature.

5. Increasing the heat absorption parameter reduces both velocity and temperature.

6. The velocity as well as concentration decreases with an increase in the Schmidt number
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