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Abstract: In this article we study the superconvergence properties of parabolic partial differential equation for the h-p finite
element method. After the finite element solution is obtained postprocessing done elementwise and finite element
correction were carried out so that convergence rate can be improved globally. Error estimates for h-p approximation
were proved for the heat equation. After h-p approximation the solution uhp was corrected by postprocessing tech-
nique using Lobatto polynomials. Finally based on the corrected solution the error estimate shows improved rate of
convergence globally.
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1. Introduction

Superconvergence in the finite element method (FEM) is a phenomenon, where the order of convergence of the
finite element error, at certain special points in an element, is higher than the order of convergence of the maximum
of the finite element error over that element. These special points are called natural superconvergence points. This
phenomenon was first addressed in superconvergence of standard and mixed finite element is well known and practi-
cally useful topic in finite element analysis. We call a finite element method to be superconvergent, if at special points
the rate of convergence is higher leading to higher global rate of convergence than the usual one Doughlas [1]-[4]. The
investigations regarding finite element superconvergence has a long history since the 1970s. For the literature, the
reader is referred to books [5]-[10]. Mostly superconvergence analysis are done for the h version of the FEM. There are
only few studies done on the p-version and h-p version of the finite element method [14]-[17].

Many postprocessing methods were suggested to achieve higher rate of convergence. Dupont [18],Zhang [19],
Zhu and Zhao [20], Chen et. al [21] were some of them to propose certain type of correction methods. But these
superconvergence methods are basically based on h version. Zhang [22] proposed superconvergence for spectral
collocation methods for p version finite element method. Guo [26] studied the superconvergence of h − p version
FEM for two-point boundary value problem. Numerical solutions to unsteady problems were analysed by different
numerical techniques by Parag [23], Najat [24] and Fakhrodin [25]. In this paper, h −p version of superconvergence
for parabolic problem have been analysed. We generalise the correction procedure proposed by Guo [26].

2. Model problem and h-p finite element discretization

We consider the following 1-D heat equation:{
ut = uxx + f (x, t ) in (a,b)× (0,T ),

u(a) = u(b) = 0,u(x,0) = u0(x).
(1)
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We obtain a variational formulation of the heat equation: Let I = (a,b) given f ∈ L2(I )× (0,T ], for any t > 0, find
u(·, t ) ∈ H 1

0 (I ),ut ∈ L2(I ) such that

〈ut , v〉+a(u, v) = 〈 f , v〉, ∀v ∈ H 1
0 (I ) (2)

where a(u, v) =
∫
I

u′ v ′ d x and 〈 f , v〉 =
∫
I

f v d x. We then introduce the Sobolev space for time dependent functions

Lq (0,T ; H k (I )) := {u(x, t ) | ||u||Lq (0,T ;H k (I )) :=
 T∫

0

||u(·, t )||qk d t


1
q

<∞}

Given f ∈ L2(0,T ; H−1(I )) and u0 ∈ H 1
0 (I ), find u ∈ L2(0,T ; H 1

0 (I )) such that{
〈ut , v〉+a(u, v) = 〈 f , v〉, ∀v ∈ H 1

0 (I )and t ∈ (0,T )

u(·,0) = u0
(3)

This problem is well-posed. For existence and uniqueness refer to Evans [27].

2.1. Semi-discretization in space

Let {ℑh ,h → 0} be a family of triangulations on I . The semi-discretized finite element method is: given by f ∈
V ′

h × (0,T ], u0,h ∈Vh , find uh ∈ L2(0,T ;Vh) such that{
〈∂t uh , vh +a(uh , vh) = 〈 f , vh〉, ∀v ∈Vh , t ∈R+.

uh(·,0) = u0,h
(4)

We can expand uh =
N∑

i=1
ui (t )φi (x), where φi be a basis for Vh . The solution uh can be computed by solving an ODE

system

u̇+A u = f

where u = (u1,u2, . . .uN )t , A is the stiffness matrix, and f = ( f1, f2, . . . , fN )t .

2.2. Legendre and Lobatto polynomials

Let

Ln(ξ) = 1

2n n!

d n

dξn [(ξ2 −1)n], n Ê 0

be the Legendre polynomials which forms an orthogonal basis of L2[−1,1]. By the mapping of standard element to an
arbitrary element these polynomials can be scaled to L2(e). The scaled versions of Lobatto polynomials are ω0(x) = 1,

ω1(x) =
√

1

2
h−1

e (x −xe +he ) and

ωi (x) = h
1
2
e

(
1p

(2i −1)(2i +1)
L̃i (x)− 1p

(2i −1)(2i −3)
�Li−2(x)

)
, i Ê 2

where L̃i (x) is the scaled version of the Legendre polynomial.

Lemma 2.1.
The Legendre {L̃i (x)} and Lobatto polynomials {ωi (x)} satisfy the following properties:

(1) 〈L̃i , L̃ j 〉e = δi j ,ω′
i+1(x) = h

− 1
2

e L̃i (x),

(2) ωi (xe ±he ) = 0, i Ê 2,

(3) 〈ωi ,ϕi−3〉e = 0, ∀ϕi−3 ∈ Pi−3(e), i Ê 3,

(4) ||ωi ||2L2(e) =
2he

(2i −3)(2i +1)
, i Ê 2

For the proof refer to paper Guo [26].
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2.3. Projection operators

Let Π̃pe be the element projection operator such that

Π̃pe : H 1(e) → Ppe (e), Π̃pe u(x) =
pe∑

j=0
β jω j (x), ∀x ∈ e

and Πp be the global projection operator such that

Πp : H 1(I ) →V , Πp u|e = Π̃pe u, ∀e ∈ℑh .

3. Error estimates

Lemma 3.1.
Let I = (a,b) be an interval and let ℑh be any mesh in I . Assume that u ∈ H 1(I ) satisfies u′ ∈ H k (e) with integer k Ê 0.
Then there holds

||u − Π̃pe u||m,e ÉC
hµ+1−m

e

pk+1−m
e

||u||k+1,e , m = 0,1 (5)

where µ= min{pe ,k}

For the proof refer to Guo [26].

Theorem 3.1.
Let ℑh be a quasi-uniform partition over I and let Vh be the corresponding finite element space over this partition with
uniform degree p. Then the finite element solution uhp satisfy the following error estimate

||u −uhp ||L∞([0,T ];H m (I )) É ||u0 −uhp,0||k+1,I

+C
hµ+1−m

pk+1−m

(||u0||k+1,I +||ut ||L1((0,T ),H k+1(I ))

) (6)

where µ= min{p,k} and m = 0,1

Proof. We can prove for the case m = 0. Using Lemma (3.1), we can get the L2-estimate

||u(t )−Πp u(t )||L2(I ) ÉC
hµ+1

pk+1
||u(t )||k+1,I , ∀t ∈ [0,T ] (7)

Let us perform the analysis by comparing uh not directly to u, but rather to an appropriate representative wh ∈
C 1([0,T ],Vh). For wh we choose the elliptic projection of u, defined by

a(wh , v) = a(u, v), v ∈Vh , 0 É t É T.

Using the estimate Eq (7) we have the following estimate

||u(t )−wh(t ))||L2(I ) ÉC
hµ+1

pk+1
||u(t )||k+1,I , ∀t ∈ [0,T ] (8)

If we differentiate the Eq (8), we see that
∂wh

∂t
is the elliptic projection of

∂u

∂t
, so

||∂u

∂t
(t )− ∂wh

∂t
(t )|| ÉC

hµ+1

pk+1
||∂u

∂t
(t )||k+1, t ∈ [0,T ]

〈∂wh

∂t
, v〉+a(wh , v) = 〈∂wh

∂t
, v〉+a(u, v)

= 〈∂(wh −u)

∂t
, v〉+〈 f , v〉, v ∈Vh , 0 É t É T.

(9)

Let eh = wh −uhp . Substracting Eq (3) from Eq (9), we get

〈∂eh

∂t
, v〉+a(eh , v) = 〈∂(wh −u)

∂t
, v〉, v ∈Vh , 0 É t É T.



38 On the Superconvergence of h-p finite element method for parabolic equation

For each t , let v = eh(t ) ∈Vh .

||eh ||
d

d t
||eh ||+a(eh ,eh) = 〈∂(wh −u)

∂t
,eh〉 É ||∂(wh −u)

∂t
|| ||eh ||, (10)

d

d t
||eh || É ||∂(wh −u)

∂t
|| ÉC

hµ+1

pk+1
||∂u

∂t
(t )||k+1

Integrating over [0, t ] we get

||eh(t )|| É ||eh(0)||+C
hµ+1

pk+1
||ut ||L1([0,T ];H k+1(I ))

||eh(0)|| = ||wh(0)−uhp (0)||
É ||wh(0)−u(0)||+ ||u0 −uhp (0)||

ÉC
hµ+1

pk+1
||u0||k+1 +||u0 −uh(0)||.

Assuming sufficient smoothness on exact solution and initial data we get estimate in terms of wh −uhp . Using
the estimate Eq (7) and triangle inequality we get the estimate Eq (6). Same analysis can be done for the case m = 1.

4. Finite element correction

We can improve the global convergence rate by correction scheme after computing the finite element solution
uhp . For u(·, t ) ∈ H k+1(I ), withk Ê 1, ∀t then uxx = ut − f . We can get

βl (t ) = h
1
2
e 〈ux ,�Ll−1〉e

=−he〈uxx ,ωl 〉e = he〈 f −ut ,ωl 〉e

= he〈 f −∂t uhp ,ωl 〉e +he〈∂t uhp −ut ,ωl 〉e , l Ê 2, ∀t

Define β∗
l (t ) = he〈 f −∂t uhp ,ωl 〉e . Then

|βl (t )−β∗
l (t )| = |he 〈∂t uhp −ut ,ωl 〉e |

ÉC he ||∂t (uhp −u)(t )||0,e ||ωl ||0,e

Let

u∗
hp (x, t ) = uhp (x, t )+

p∗∑
l=p+1

β∗
l (t )ωl (x), ∀x ∈ e, ∀e ∈ℑh , ∀t

where p∗ Ê p + 1, and u∗
hp is the corrected value of uhp which can be calculated. This correction requires u(·, t ) ∈

H k+1(I ).

Theorem 4.1.
Let ℑh be a quasi-uniform partition over the interval I and let Vh be the corresponding finite element space over this
partition with uniform degree p. Let u∗

hp be the finite element correction defined above and u ∈ H k+1(I ), p∗= [p1+σ] be

the smallest integer no less than p1+σ with 0 <σ< 2, then

||u(t )−u∗
hp (t )||0,I ÉC

[(
hµ∗+1

p(k+1)(1+σ)
+ hµ+3

pk+3

)
||u(t )||k+1,I +

hµ+3

pk+2
||ut (t )||k+1,I

]
(11)

Proof.

u(x, t )−u∗
hp (x, t ) = (u − Π̃p∗)(x, t )+ (Π̃p −uhp )(x, t )

+
(�Πp∗u − Π̃p u −

p∗∑
l=p+1

β∗
l (t )ωl

)
(x, t ),∀t

(12)

Using Lemma (3.1)

||u(t )− Π̃p∗u(t )||m,e ÉC
hµ∗+1−m

p∗k+1−m
||u(t )||k+1,e , m = 0,1
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where µ∗= min{p∗,k}.

||�Πp∗u(t )− Π̃p u(t )−
p∗∑

l=p+1
β∗

l (t )ωl ||0,e = ||
p∗∑

l=p+1
(βl (t )−β∗

l (t ))ωl ||0,e

ÉC he

p∗∑
l=p+1

||ωl ||20,e ||∂t (uhp −u)(t )||0,e

ÉC
h2

e

p
||∂t (uhp −u)(t )||0,e , ∀t

Using this in the expression Eq (12) for the last term and substituting expressions for the other two terms from previous
results. We get the desired estimate.

5. Conclusion

In this paper we studied the h-p version of FEM for parabolic partial differential equations. Postprocessing
technique is applied to h-p version of the FEM and the solution is corrected. Error estimates shows the improved
order of convergence for u∗

hp compared with uhp . Future scope of the work includes generalization of these results to
higher dimensional problems.
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