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Abstract: In this paper a mathematical model that describes the flow of infectious disease in a population is proposed and stud-
ied. It is assumed that the disease divided the population into three classes: susceptible individuals S, first infected
individuals I and second infected individuals I∗. The main objective of this paper is to study the effect of external
Source and treatment of behaviors of this model. The existence, uniqueness and boundedness of the solution of this
model are investigated. The local and global dynamical behaviors of the model are studied. Finally, in order to confirm
our obtained results and specify the effects of model’s parameters on the dynamical behavior, numerical simulation
of this model is performed.
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1. Introduction

The mathematical models have become important tools in analyzing the spread and control of infectious dis-
eases. The development of such models is aimed at both understand observed epidemiological patterns and pre-
dicting the consequences of the introduction of public health interventions to control the spread of diseases. Some
diseases not confer immunity against the disease but other diseases confer immunity so recovered individuals gain
immunity against disease. These types of disease can be modifications by SI and SIS where S susceptible and I infective
respectively. Both epidemic models (SI and SIS) are one of the most basic and most important models in describing of
many diseases. Therefore, it attached many authors attention and a number of papers have been published. For exam-
ple Gao and Hethcote [1], considered an SIS model with a standard disease incidence and density-dependent demo-
graphics. Li and Ma [2], studied an SIS model with vaccination and temporary immunity. Kermack and Mckendeick
[3], proposed a simple SIS model with infective immigrants. X. Zhou [4], studied HBV infection disease. Muhammad
A. [5], proposed SE I R epidemic model with non-linear saturated incidence and temporary immunity. In recent years,
many papers found treatment function for example, Li et al [6] and Goodluck [7], proposed the SIS model with a lim-
ited resource for treatment. Shurowq k. Shafeeq [8], studied the effect of treatment, immigrants and vaccinated on the
dynamic of SIS epidemic model. In this paper we proposed and studied a mathematical model consisting of epidemic
model with treatment, in which it is assumed that the disease transmitted by contact as well as external sources in the
environment. The local as well as global stability analysis of this model is investigated.
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2. Model development

From a simple epidemiological model in which the total population ( say N(t)) at time t is divided into two sub
classes the susceptible individuals S(t) and infected individuals I (t ). Such model can be represented as follows:

dS

d t
=Λ−β1SI −µS

d I

d t
=β1SI −µI

(1)

Here Λ > 0 is the recruitment rate of the population, µ > 0 is the natural death rate of the population, β1 > 0 is the
infected rate (incidence rate) of susceptible individuals due to directed contact with the infected individuals. Now,
since there are many infectious disease for example (The flue., tube rculosis and cholera), spread in the environment
by different factors including insects, contact or other vectors, therefore, we assumed that the disease in the a above
model will transmitted between the population individuals by contact as well as external source of disease in the envi-
ronment with an external source incidence rate β◦ ≥ 0 . Also it is assumed that the nature recovery rate from infected
individuals returns to be susceptible class with a constant rate α≥ 0 and ψ≥ 0 is the rate of infected individuals from
disease I into new disease I∗. Finally θ > 0, β2 > 0 the disease related death from second disease and the infected
rate by contact between the susceptible individuals and infected individuals of second disease respectively. Then if
addition above assumption system (1) can be rewritten in the form:

dS

d t
=Λ− (β◦+β1I +β2I∗)S −µS +αI

d I

d t
= (β◦+β1I )S − (α+µ+ψ)I

d I∗

d t
=β2SI∗+ψI − (µ+θ)I∗

(2)

Keeping the above in view, in order to study the effect of treatment on the system (2) let T (I ) represented the treatment
function which given by [6]:

T (I ) =
{

r I∗ i f 0 < I∗ É I◦∗,

k i f I∗ > I◦∗.
(3)

Therefore, system (2) can be modified to:

dS

d t
=Λ− (β◦+β1I +β2I∗)S −µS +αI +T (I∗)

d I

d t
= (β◦+β1I )S − (α+µ+ψ)I

d I∗

d t
=β2SI∗+ψI − (µ+θ)I∗−T (I∗)

(4)

her k = r I∗◦ this means that the treatment rate is proportional to the number of the infected individuals when the
capacity of treatment is not reached, and otherwise takes the maximal capacity. Therefore at any point of time t the
total number of population becomes N (t ) = S(t )+I (t )+I∗(t ). Obviously, due to the biological meaning of the variables
S(t ), I (t ) and I∗, system (4) has the domain R3

+ = {
(S, I , I∗) ∈ R3

+,S ≥ 0, I ≥ 0, I∗ ≥ 0
}

which is positively in variant for
system (4). Clearly, the interaction functions on the right hand said of system (4) are continuously differentiable. In
fact they are Liptschizan function on R3

+. Therefore, the solution of system (4) exits and unique. Further, all solutions
of system (4) with non-negative initial conditions are uniformly bounded as shown in the following theorem.

Theorem 2.1.
All the solutions of system (1), which are initiate in R3

+, are uniformly bounded.

Proof. Let
(
S(t ), I (t ), I∗(t )

)
be any solution of the system (4) with non-negative initial conditions

(
S(0), I (0), I∗(0)

)
.

Since N = S(t )+ I (t )+ I∗(t ), then:

d N

d t
= dS

d t
+ d I

d t
+ d I∗

d t

This gives:

d N

d t
=Λ−µ{(

S, I , I∗)
)−θI∗

}
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So,

d N

d t
+µN ÉΛ

Now, by using Gronwall Lemma [? ], it obtains that:

N (t ) ≤ Λ
µ

(1−e−µt )+N (0)e−µt

Therefore, N (t ) ≤ Λ
µ

, as →∞, hence all the solutions of system (4) that initiate in R3
+ are confined in the reign:

Γ=
{

(S, I , I∗) ∈ R3
+ : N ≤ Λ

µ

}
which complete the proof.

3. Existence of equilibrium point of system (4)

The system (4) has at most three biologically feasible points, namely Ei = (Si , Ii , I∗i ), i = 0,1,2. The existence
conditions for each of these equilibrium points are discussed in the following:
1) If I = 0 and I∗ = 0, then the system ((??) has an equilibrium point called a disease free equilibrium point and
denoted by E0 = (S0,0,0) where:

S0 = Λ
µ

(5)

2) If I∗ = 0, then the system (4) has an equilibrium point called a second disease free equilibrium point and denoted
byE1 = (S1, I1,0) where S1 and I1 represented the positive solution of the following set of equations:

Λ− (β◦+β1I )S −µS +αI = 0

(β◦+β1I )S − (α+µ)I = 0
(6)

From Eq. (1) of above system we get:

S1 = Λ+αI1

β◦+β◦I1 +µ
(7)

Substituting S1 in Eq. (2) of system (6) we get:

I1 = −D2

2D1
− 1

2D1

√
D2

2 −4D1D3 (8)

here

D1 =−β1µ

D2 =Λ
{
β1 −µ(β◦+α+µ)

}
D3 =β◦Λ

Clearly, Eq. (8) has a unique positive root by I1 and then (E2) exists uniquely in Int. R3
+ if and only if D2 > 0.

3)If I 6= 0 and I∗ 6= 0 then the system (4) has an equilibrium point called endemic equilibrium point and denoted
by E2 = (S2, I2, I∗2 ), where, S2,I2 and I∗2 represented the positive solution of the following set of equations in case
(0 < I∗ < I∗◦ ) of Eq. (3) (treatment function):

Λ− (β◦+β1I +β2I∗)S −µS +αI + r (I∗) = 0

(β◦+β1I )S − (α+µ+ψ)I = 0

β2SI∗+ψI − (µ+θ− r )I∗ = 0

(9)

Straightforward computation to solve the above system of equations and from Eqs. (2) and 3 of system (9) gives that:

S2 = (µ+α+ψ)I2

β2 +β1I2
(10)
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I∗2 = −ψI2(β◦+β1I2

β2I2(µ+α+ψ)− (µ+θ+ r )(β◦+β1I2)
(11)

While, I∗2 positive root if and only if

β2I2(µ+α+ψ) < (µ+θ+ r )(β◦+β1I2)

Now, substituting S2 and I∗2 in Eq. (1) of system (9) we get:

A1I 3
2 + A2I 2

2 + A3I2 + A4 = 0 (12)

here

A1 =β1
{
(µ+α+ψ)

[
β1(µ+θ+ r )+αβ2

]+β1ψr − [β2(µ+α+ψ)2 +β2ψ(µ+α+ψ)+β1α(µ+θ+ r )]
}

A2 =
{
2β◦β1ψr + (µ+α+ψ)

[
Λβ1β2 +β◦β2α+β◦β1(µ+θ+ r )

]−[
β2(µ+α+ψ)

[
β◦ψ+ (β◦+µ)(µ+α+ψ)

]+β1(µ+θ+ r ) (Λβ1 +2αβ◦)
]}

A3 =
{
(µ+α+ψ)

[
Λβ◦β2 + (µ+θ+ r )

(
β2
◦+β◦β1 +β◦µ+β1µ

)] +β2
◦ψr −β◦(µ+θ+ r )(2β1 +αβ◦)

}
A4 =−Λβ2

◦(µ+θ+ r ) < 0

A4 =−Λβ2
◦(µ+θ+ r ) < 0

Clearly, Eq. (12) has a unique positive root by I2 and then (E2) exists uniquely in Int R3
+. if and only if A1 > 0 then we

have the following three cases:
Case (1): If the following conditions hold:

A2 > 0

A3 > 0
(13)

Case (2): If the following conditions hold:

A2 < 0

A3 < 0
(14)

Case (3): If the following conditions hold:

A2 > 0

A3 < 0
(15)

4. Local Stability of system (4)

In this section, the local stability analysis of the equilibrium points Ei , i = 0,1,2 of the system (4) studied as
shown in the following theorems.

Theorem 4.1.

The disease free equilibrium point E◦ = (
Λ

µ
,0,0) of system (4) is locally asymptotically stable provided that:

α< β1Λ

µ
<µ+α+ψ (16)

r < β2Λ

µ
<µ+θ+ r (17)

(
β1Λ

µ
−α

)[
β◦+2µ+α+ψ− β1Λ

µ

]
>ψ(r − β2Λ

µ
) (18)
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Proof. The Jacobian matrix of system (4) at E◦ that denoted by J (E◦) and can be written as

J (E◦) = [
ai j

]
3×3

where

a11 =−(β◦+µ); a12 =α− β1Λ

η
; a13 = r − β2Λ

µ

a21 =β◦; a22 = β1Λ

µ
− (µ+α+ψ); a23 = a31 = 0

a32 =ψ; a33 = β2Λ

µ
− (µ+θ+ r )

Then the characteristic equation of J (E◦) is given by:

λ3 +Ω1λ
2 +Ω2λ+Ω3 = 0 (19)

here

Ω1 =− [a11 +a22 +a33] = (β◦+µ)− (
β1S0 − (µ+α+ψ)

)− (
β2S0 − (µ+θ+ r )

)
Ω2 = a11a22 −a12a21 +a11a33 +a22a33

Ω3 = [a12a21a33 −a11a22a33 −a21a32a13]

= [
β◦

(
α−β1S0

)(
β2S0 − (µ+θ+ r )

)+ (
β◦+µ

) (
β1S0 − (µ+α+ψ)

)(
β2S0 − (µ+θ+ r )

)−β◦ψ(r −β2S0)
]

Further

∆=Ω1Ω2 −Ω3 =−a2
11 (a22 +a33)−a2

22 (a11 +a33)−a2
33 (a11 +a22)−a11a22a33 +a21 [a12 (a11 +a22)+a32a13]

=−(
β◦+µ

)2 [
β1S0 − (µ+α+ψ)+β2S◦− (µ+θ+ r )

]− (
β1S0 − (µ+α+ψ)

)2 [−(β◦+µ)+β2S◦− (µ+θ+ r )
]

−(
β2S◦− (µ+θ+ r )

)2 [−(β◦+µ)+β1S0 − (µ+α+ψ)
]+ (β◦+µ)(β1S0 − (µ+α+ψ)(β2S◦− (µ+θ+ r )+β◦×[

(α−β1S0)
(−(β◦+µ)+β1S0 − (µ+α+ψ)

)+ψ(r −β2S0
]

Now, according to (Routh-Hurwitz) criterion [10], E0 will be locally asymptotically stable provided that Ω1 > 0 and
Ω3 > 0. Clearly, provided that conditions (16)-(17) hold. While, ∆=Ω1Ω2 −Ω3 > 0 Provided that conditions (16)-(18)
hold. Hence the proof is complete.

Theorem 4.2.
The second disease free equilibrium point (E1) of system (4) is locally asymptotically stable if the following sufficient
conditions are satisfied:

µ> M ax.
{
2(β1S1 −α−ψ),2(β2S1 − r )−θ}

(20)

Proof. The Jacobian matrix of system (4) at (E1) that denoted by J (E1) can be written as:

J (E1) = [
bi j

]
3×3

Where

b11 =−(β◦+β1I1 +µ) ; b12 =α−β1S1 ; b13 = r −β2S1

b21 =β◦+β1I1 ; b22 =β1S1 − (µ+α+ψ) ; b23 = 0

b31 = 0 ; b23 =ψ ; b33 =β2S1 − (µ+θ+ r )

Now, according to Gersgorin theorem [11] if the following condition holds:

|bi i | >
3∑

i=1,i 6= j

∣∣bi j
∣∣

Then all eigenvalues of J (E1) exists in the region:

℘=∪
{

U∗ ∈C :
∣∣U∗−bi i

∣∣< 3∑
i=1,i 6= j

∣∣bi j
∣∣}

Therefore, according to the given condition (20) all the eigenvalues of J (E1) exists in the left half plane and hence, E1

is locally asymptotically stable.
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Theorem 4.3.
The endemic equilibrium point (E2) of system (4) is locally asymptotically stable if the following sufficient conditions
are satisfied:

µ> M ax.
{
2(β1S2 −α−ψ),2(β2S2 − r )−θ}

(21)

Proof. The Jacobian matrix of system (4) at (E2) that denoted by J (E2) can be written as:

J (E2) = [
ci j

]
3×3

Where:

c11 =−(β◦+β1I2 +β2I∗2 +µ) ; c12 =α−β1S2 ; c13 = r −β2S2

c21 =β◦+β1I2 ; c22 =β1S2 − (µ+α+ψ) ; c23 = 0

c31 =β2I∗2 ; c23 =ψ ; c33 =β2S2 − (µ+θ+ r )

Now, according to Gersgorin theorem [8] if the following condition holds:

|ci i | >
3∑

i=1,i 6= j

∣∣ci j
∣∣

Then all eigenvalues of J (E2) exists in the region:

ς=∪
{

U∗ ∈C :
∣∣U∗− ci i

∣∣< 3∑
i=1,i 6= j

∣∣ci j
∣∣}

Therefore, according to the given condition (21) all the eigenvalues of J (E2) exists in the left half plane and hence, E2

is locally asymptotically stable.

5. Globally stability of all equilibrium point

In this section, the global dynamics of system (4) is studied with the help of Lyapunov function as shown in the
following theorems.

Theorem 5.1.
Assume that, the disease free equilibrium point E0 of system (4) is locally asymptotically stable. Then the basin of attrac-
tion of E0, say B(E0) ⊂ R3

+, it is globally asymptotically stable if satisfy the following condition:(
β◦+β1I +β2I∗S

)< (
αI + r I∗

)
(22)

Proof. Consider the following positive definite function:

V1 =
(
S −S0 −S0ln

S

S0

)
+ I + I∗

Clearly, V1 : R3
+ → R is a continuously differentiable function such that V1(S0,0,0) = 0 and V1(S, I , I∗) > 0,∀(S, I , I∗) 6=

(S0,0,0). Further we have:
dV1

d t
=

(
S −S0

S

)
dS

d t
+ d I

d t
+ d I∗

d t

By simplifying this equation we get:

dV1

d t
=−µ

S
(S −S0)2 +

[
β◦+β1I +β2I∗− (αI + r I∗)

S

]
S0 −µ(I + I∗)−θI∗

Obviously,
dV1

d t
< 0, for every initial points and then V1 is a Lyapunov function provided that condition (22) hold. Thus

E0 is globally asymptotically stable in the interior of B(E0) which means that B(E0) is the basin of attraction and that
complete the proof.
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Theorem 5.2.
Assume that, the second disease free equilibrium point E1 of system (4) is locally asymptotically stable. Then the basin
of attraction of E1, say B(E1) ⊂ R3

+, it is globally asymptotically stable if satisfy the following conditions:(
β1S1I − (αI +β◦S +β1SI1

SI

)2

< 4

(
µ+α+ψ−β1S

I

)(
β◦+µ+β1I

S

)
(23)

(
β2S1I∗

)< (
r S1 + (µ+θ)S

)
I∗ (24)

Proof. Consider the following positive definite function:

V2 =
(
S −S1 −S1ln

S

S1

)
+

(
I − I1 − I1ln

I

I1

)
+ I∗

Clearly, V2 : R3
+ → R is a continuously differentiable function such that V2(S1, I1,0) = 0 and V2(S, I , I∗) > 0,∀(S, I , I∗) 6=

(S1, I1,0). Further we have:
dV2

d t
=

(
S −S1

S

)
dS

d t
+

(
I − I1

I

)
d I

d t
+ d I∗

d t

By simplifying this equation we get:

dV2

d t
=−q11(S −S1)2 −q12(S −S1)(I − I1)−q22(I − I1)2 − (β2 − r

S
)(S −S1)I∗+β2SI∗+ψI − (µ+θ+ r )I∗

With:

q11 = β◦+µ+β1I

S
; q22 = (µ+α+ψ)−β1S

I
;

q12 = β1S1I − (αI +β◦S +β1SI1)

SI

Therefore, according to (23) it is obtaining that:

dV2

d t
É−[p

q11 (S −S1)+p
q22 (I − I1)

]2 +β2S1I∗+ψI − (
r S1 + (µ+θ)S

)
I∗

Obviously,
dV2

d t
< 0 for every initial points satisfying condition (24) and then V2 is a Lyapunov function provided that

conditions (23)-(24)) hold. Thus E2 is globally asymptotically stable in the interior of B(E2), which means that B(E2)
is the basin of attraction and that complete the proof.

Theorem 5.3.
Let the endemic equilibrium point E2 of system (4) is locally asymptotically stable. Then it is globally asymptotically
stable provided that:

M ax.

{
µ+α+ψ

β1
,
µ+θ+ r

β2

}
< S2 (25)

(β◦+β1I +α−β1S2)2 < (β◦+µ+β1I +β2I∗)(µ+α+ψ−β1S2) (26)

(β2I∗+ r −β2S2)2 < (β◦+µ+β1I +β2I∗)(µ+θ+ r −β2S2) (27)

ψ2 < (µ+α+ψ−β1S2)(µ+θ+ r −β2S2) (28)
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Proof. Consider the following positive definite function:

V3 = (S −S2)2

2
+ (I − I2)2

2
+ (I∗− I∗2 )2

2
Clearly, V3 : R3

+ → R is a continuously differentiable function such that V3(S2, I2, I∗2 ) = 0 and V3(S, I , I∗) > 0,∀(S, I , I∗) 6=
(S2, I2, I∗2 ). Further we have:

dV3

d t
= (S −S2)

dS

d t
+ (I − I2)

d I

d t
+ (I∗− I∗2 )

d I∗

d t
By simplifying this equation we get:

dV3

d t
=−p11

2
(S −S2)2 +p12 (S −S2) (I − I2)− p22

2
(I − I2)2 − p11

2
(S −S2)2 +p13 (S −S2)

(
I∗− I∗2

)
−p33

2

(
I∗− I∗2

)2 − p22

2
(I − I2)2 +p23 (I − I2)

(
I∗− I∗2

)− p33

2

(
I∗− I∗2

)2

with
p11 =

(
β◦+µ+β1I +β2I∗

)
; p12 =

(
β◦+β1I +α−β1S2

)
p22 = (µ+α+ψ)−β1S2 ; p13 =

(
β2I∗+ r −β2S2

)
p33 = (µ+θ+ r )−β2S2 ; p23 =ψ

Therefore, according to the conditions (25)-(28) we obtain that:

dV3

d t
É−

[√
p11

2
(S −S2)−

√
p22

2
(I − I2)

]2

−
[√

p11

2
(S −S2)+

√
p33

2

(
I∗− I∗2

)]2

−
[√

p22

2
(I − I2)+

√
p33

2

(
I∗− I∗2

)]2

Obviously,
dV3

d t
< 0, and then V3 is a Lyapunov function provided that conditions (25)-(28) hold. Thus E3 is globally

asymptotically stable.

6. Numerical Simulation

In this section, the system (1) is solved numerically for different sets of hypothesis data and different sets of initial
conditions, and then the time series for the trajectories of system (1) are confirm our obtained analytical results. By
using (150, 100, 90), (250, 200, 150) and (350, 150, 200) as initial points and the numerical simulations are carried out
in the following cases:
Case I For the disease free equilibrium point E0, we choose the following data:

Λ= 500,β◦ = 0,β1 = 0.001,β2 = 0.001,µ= 0.2,α= 2,r = 2,ψ= 0.6,θ = 0.4 (29)

Therefore, the disease free equilibrium point E0 of system (1) is globally asymptotically stable and then the trajectories
of the system (1) is approaches to (2500,0,0) for any time. (See Fig. 1)
Case II For the second equilibrium point E1, we choose the following data and using (150, 100, 90), (250, 200, 150) and
(350, 150, 200) as initial points:

Λ= 500,β◦ = 0.1,β1 = 0.001,β2 = 0.001,µ= 0.2,α= 2,r = 2,ψ= 0,θ = 0.4 (30)

Therefore, the second equilibrium point E1 of system (1) is globally asymptotically stable and then the trajectories of
the system (1) is approaches to (1890,609,0) for any time. (See Fig. 2)
Case III For the endemic equilibrium pointE2, we choose the following data and using (150, 100, 90), (250, 200, 150)
and (350, 150, 200) as initial points:

Λ= 500,β◦ = 0.1,β1 = 0.001,β2 = 0.001,µ= 0.2,α= 2,r = 2,ψ= 0.6,θ = 0.4 (31)

Therefore, the endemic equilibrium point E2 of system (1) is globally asymptotically stable and then the trajectories
of the system (1) is approaches to (1845,193,153) for any time. (See Fig. 3)
Case IV We choose the incidence rate of disease resulting from external sources β◦ = 0,0.3,0.6 respectively, keeping
other parameters fixed as given in Eq. (31), we get the disease free equilibrium point of system (1) becomes unstable
point and the trajectory of system (1) approaches asymptotically to the endemic equilibrium point. but the number
of infected in first disease individuals and infected in second disease individuals increases. (See Figs. 4(a)-4(b) ),
Similar results are obtained, as those shown in case of increasing β◦, in case of increasing the incidence rate of disease
resulting by contact between susceptible and infected in first disease, that is means increasing β1 but increasing the
incidence rate of disease resulting by contact between susceptible and infected in second disease β2 and keeping
other parameters fixed as given in (31) we get the number of infected in first disease individuals decrease and infected
in second disease individuals increase.
Case V Now we choose treatment rate r = 0,2,5,9 respectively, keeping other parameters fixed as given in Eq. (31),
we get the trajectories of system (1) still approaches to endemic equilibrium point but the number of infected in first
disease individuals increase and infected in second disease individuals decreases. (See Figs. 5(a)-5(b))
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Fig. 1. Phase plot of system (1) starting from different initial points which show that E0 is globally asymptotically stable.

Fig. 2. Phase plot of system (1) starting from different initial points which show that E1 is globally asymptotically stable.

7. Conclusion and discussion

In this paper, we proposed and analyzed an epidemiological model that described the dynamical behavior of an
epidemic model, where the infectious disease transmitted directly from external sources as well as through contact
between them. The model included fore non-linear autonomous differential equations that describe the dynamics
of three different populations namely susceptible individuals (S) infected individuals for first disease (I ) and infected
individuals for second disease (evolution of first disease) (I∗). The boundedness of system (1) has been discussed.
The conditions for existence, stability for each equilibrium points are obtained. Further, it is observed that the disease
free equilibrium point E0 exists when I = 0 and locally stable if the conditions are hold (16)-(18) and it is globally
stable if and only if the condition (22) holds. The second disease free equilibrium point E1 exists if (D2 > 0) holds and
locally stable if the conditions (20) are hold while it is globally stable if and only if the conditions (21)-(23)) hold. The
endemic equilibrium point E2 exists if (A1 > 0) and one of three conditions is hold (13)-(15), and locally stable if the
conditions (21) hold more than it is globally stable if and only if the conditions (25)-(28) hold. Finally, to understand
the effect of varying each parameter on the global system (1) and confirm our above analytical results, the system (1)
has been solved numerically for different sets of initial points and different sets of parameters given by Eq. (29), and
the following observations are made:

1. The system (1) do not has periodic dynamic, instead it they approach either to the all equilibrium point.
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Fig. 3. Phase plot of system (1) starting from different initial points which show that E2 is globally asymptotically stable.

(a) For I . (b) For I∗.

Fig. 4. Time series of the trajectories of system (1).

2. As the incidence rate of disease (external incidence rateβ◦ orβ1 contact incidence rate) increase, the asymptotic
behavior of the systems (1) approaching to endemic equilibrium point. In fact are βi , i = ◦,1 increase it are
observed that the number of (S) decrease and the number of (I ) and I∗ increase.

3. As the incidence rate of disease (contact incidence rate β2) increase, the asymptotic behavior of the systems (1)
approaching to endemic equilibrium point. In fact as β2 increase it is observed that the number of (S) and (I )
decrease and the number of I∗ increase. As the treatment rate r , the asymptotic behavior of the systems (1)
approaching to endemic equilibrium point with increase it is observed that the number of (S) and (I ) increase
and the number of I∗ decrease.
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(a) For I . (b) For I∗.

Fig. 5. Time series of the trajectories of system (4).
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