
Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 1 - 9 (ISSN: 2347-2529)

Journal homepage: www.ijaamm.com

International Journal of Advances in Applied Mathematics and Mechanics

A novel computable extension of fractional kinetic equations arising in
astrophysics

Research Article

V.B.L. Chaurasiaa, Yudhveer Singhb, ∗

a Department of Mathematics, University of Rajasthan, -302055, Rajasthan, India
b Department of Mathematics, Jaipur National University, Jaipur-302025, Rajasthan, India

Received 24 Septamber 2014; accepted (in revised version) 13 July 2015
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1. Introduction

In last few decades fractional kinetic-equations have been extensively used in describing and solving various
problems of applied sciences. Fractional calculus and special functions have also contributed a lot to mathematical
physics and its various branches. Nuclear reactions are highly energetic process involving subatomic particles found
within the nuclei of atoms, are in two general forms. One in which reactions involve the splitting of atomic nuclei
in to smaller subatomic particles, called Fission and another one is the process which create larger atoms from the
nuclei of smaller atoms, called the Fusion. In the fusion the nuclei of two or more atoms collide with sufficient force,
they fuse to form a single, larger nucleus. During this process part of mass of the fused nucleus is converted in to
energy. This produced energy is released as heat, light and various forms of radiation. Such nuclear reactions require
extremely high temperature to induce the necessary immense collisions. Because such immense amount of heat en-
ergy are required, fusion reactions are also known as thermonuclear reactions. The stars themselves are formed and
fueled by thermonuclear reactions. Thus thermonuclear fusion play an important role in the formation of stars and
to keep them shining for billions of years. A star can be taken as a symmetric gas sphere in thermal and hydrostatic
equilibrium with negligible rotation and magnetic fields. The star is characterized by its mass, luminosity, effective
surface temperature, radius, central density and central temperature. The Steller structures and their mathematical
models are investigated on the basis of the above characteristics in addition to some additional information related to
the equation of state, nuclear energy generation rate, and opacity. The assumption of thermal equilibrium and hydro-
static equilibrium indicate that there is no time dependence in the mathematical model, which involve mathematical
equations describing the internal structure of the star ([1–3]). Energy in such stellar structures in being produced by
the process of chemical reactions. Computation of such chemical reactions is of the prime importance as it plays
the central role in the evolution of such stellar structures. The two important nuclear reactions in stars, during their
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evolution, are pp chain (proton-proton chain) and CNO cycle (involves nuclei of carbon, nitrogen and oxygen). The
total energy production and luminosity of the star is based on the pp chain and the composition of stellar plasma
described by CNO cycle. The production and destruction of nuclei in such chemical reactions can be described by
the reaction- equations. Solution of such reaction- (Linear/nonlinear) equations determine distribution function of

the dynamical states of single particle. The linear reaction- equation
d y

d x
= y q , lead to new insights into generalized

Boltzmann-Gibbs statistical mechanics which is called nonextensive statistical mechanics. Recently, Ferro et al. [4]
studied that a very small deviation from the Maxwell-Boltzman particle distribution and the use of nonextensive sta-
tistical mechanics can be applied to describe the modified nuclear reaction rate of stellar plasmas which is consistent
with need of the modification of the nuclear reaction rates of stellar plasma and their chemical composition. If an
arbitrary reaction is characterized by a time dependent quantity N = N(t) then it is possible to calculate the rate of

change of
d N

d t
by mathematical equation

d N

d t
= −d + p, (1)

where d is the distruction rate and p is the production rate of N.

Haubold and Mathai [5] have established a functional differential equation between rate of change of reaction,
the destruction rate and the production rate as follows

d N

d t
= −d (N t ) + p (N t ), (2)

where N = N(t) the rate of reaction, d = d(N) the rate of destruction, p = p(N) the rate of production and Nt denotes the
function defined by Nt (t∗) = N (t − t∗), t∗ > 0.

They have studied a special case of (2), for spatial fluctuations or inhomogeneities in the quantity N(t) are ne-
glected, given by the equation

d N i

d t
= −ci Ni (t ). (3)

with the initial condition that Ni (t = 0) = N0 is the number density of species i at time t = 0, ci > 0, known as standard
kinetic equation.

The solution of equation (3) is given by

Ni (t ) = N 0 e−ci t . (4)

An alternative form of the same equation can be obtained on integration

N (t ) − N0 = c 0D−1
t N (t ), (5)

where 0D−1
t is the standard integral operator. Haubold and Mathai [5] have given the fractional generalization of the

standard kinetic equation (5) as

N (t ) − N0 = cν 0D−ν
t N (t ), (6)

where 0D−ν
t is the well-known standard Riemann-Liouville fractional integral operator (Oldham and Spanier [6] ;

Samko et. al [7] ; Miller and Ross [8] ) defined by

0D−ν
t f (t ) = 1

Γ(ν)

∫ t

0

(t −u)ν−1 f (u) du, R(ν) > 0, (7)

the solution of the fractional kinetic equation (6) in the computable series representation is given by (Haubold and
Mathai [5] )

N (t ) = N 0

∞∑
k=0

(−1)k

Γ(νk +1)
(ct )νk , (8)

due to the importance of kinetic equation in mathematical physics many authors have generalized the standard ki-
netic equation time to time.
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In the recent paper of Haubold and Mathai [5] have derived the fractional kinetic equation and thermonuclear
function in terms of well known Mittag-Leffler function. As an extension of the work of Haubold and Mathai [5] , Sax-
ena et al. [9] have generalized the standard kinetic equation with generalized Mittag-Leffler functions and R-function.
Further, Chaurasia and Pandey [4] established a computable fractional generalization of the fractional kinetic equa-
tion, which can be used to compute the change of chemical composition in stars like the sun. Further, Chaurasia and
Kumar [11] generalized and studied the kinetic equation with generalized M-series of Sharma [12] .

The F-function (Hartley and Lorenzo [13] ), the Mittag-Leffler function (Mittag-Leffler [4]), the generalized
Mittag-Leffler function (Prabhakar [15] ), the R-function, the Lorenzo-Hartley function (Lorenzo and Hartley [16] )
and the new generalized Mittag-Leffler function (Salim and Faraj [17] ) are some generalized function for fractional
calculus. Such function provide direct solutions and understanding for fundamental linear fractional order differen-
tial equations and related initial value problems. In this paper, we introduce and investigate the further computable
generalization of the generalized fractional kinetic equation. The fractional kinetic equation and its solution, dis-
cussed in term of the new generalized Mittag-Leffler function and I-function [18] , are written in compact and easily
computable form.

2. Definitions

Definition 2.1.
The Swedish mathematician Mittag-Leffler [14] introduced the function Eν(z) defined as

Eν(z) =
∞∑

k=0

zk

Γ(νk +1)
z ∈C (9)

A generalization of Eν(z) was studied by Wiman [19] where he defined the function Eν,µ(z)as

Eν,µ(z) =
∞∑

k=0

zk

Γ(νk +µ)
, (z,ν,µ,∈ C ;R(ν) > 0,R(µ) > 0) (10)

Prabhakar [15] introduced the function Eγ
ν,µ(z) in the form

Eγ
ν,µ(z) =

∞∑
k=0

γk zk

Γ(νk+µ)k ! ,

(z,ν,µ,γ ∈C ;R(ν) > 0,Re(µ) > 0,Re(γ) > 0)
(11)

Shukla and Prajapati [20] (see also Srivastava and Tomovski [21] ]) defined and investigated the function Eγ,δ
ν,µ(z)as

Eγ,δ
ν,µ(z) =

∞∑
k=0

γδk
Γ(νk+µ)

zk

k ! ,

(z,ν,µ,γ ∈C ;R(ν) > 0,R(µ) > 0,R(γ) > 0,δ ∈ (0,1) ∪N )
(12)

A new generalization of Mittag-Leffler function was defined by Salim [22] as

Eγ,δ
ν,µ(z) =

∞∑
u=0

γk
Γ(νk+µ)

zk

(δ)k
,

(z,ν,µ,δ ∈ C , R(ν) > 0, R(µ) > 0, R(γ) > 0, R(δ) > 0)
(13)

Further he introduced a new generalization of Mittag-Leffler function defined as

Eγ,δ,q
ν,µ,α(z) =

∞∑
k=0

γqk

Γ(νk +µ)

zk

(δ)αk
, (14)

where z,ν,µ,γ,δ ∈ C ; mi n {R(ν), R(µ), R(γ), R(δ)} > 0; α, q > 0 and q ≤ R(ν) + α.
Equation (14) is a generalization of equations (9) – (13).

Eγ,δ,q
ν,µ,α(z) in terms of other functions:

Wright generalized function [23] as

Eγ,δ,q
ν,µ,α(z) = Γ(δ)

Γ(γ)
2ψ2

[
(γ,q), (1,1)

(δ,α),(µ,ν) ; z
]

. (15)

Fox’s H-function [24] as

Eγ,δ,q
ν,µ,α(z) = Γ(δ)

Γ(γ)
H

1,2

2,3

[
−z

∣∣∣(0,1), (1−γ,q)

(0,1), (1−µ,ν), (1−δ,α)

]
. (16)
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2.1. The I-function and its relationship with other functions

Definition 2.2.
Rathie [18] introduced the I-function is defined as Mellin-Barnes contour integral:

I
M ,N

P,Q [t ] = I
M ,N

P,Q

[
t

∣∣∣(a1,γ1,A1) ,..., (aP ,γP ,AP )

(b1,δ1,B1) ,..., (bQ ,δQ ,BQ )

]
= 1

2πω

∫ ω∞

−ω∞
θ(ξ) tξd t , (17)

where

θ(ξ) =
∏M

j=1{Γ(b j −δ jξ)}B j
∏N

j=1{Γ(1−a j +γ jξ)}A j∏Q
j=M+1{Γ(1−b j +δ jξ)}B j

∏P
j=N+1{Γ(a j −γ jξ)}A j

, (18)

where A j , j = 1, . . . , P, j = 1,. . . ,Q are not, in general, positive integers. Clearly for non-integral values A j or B j , ((17))
is not expressible as an H-function. Here t may be real or complex but is not equal to zero and an empty product is
interpreted as unity; P,Q,M and N are integers such that 0 ≤ M ≤ Q; 0 ≤ N ≤ P ; γ j > 0 ( j = 1, ...,P ), δ j > 0 ( j =
1, ...,Q); a j (j = 1,. . . ,P) and b j (j = 1,. . . ,Q) are complex parameters.

The contour in (17) is presumed to be the imaginary axis Re(ξ) = 0 which is suitable indented in order to avoid
the singularities of the gamma functions and to keep these singularities at appropriate sides. For A j not an integer, the
pole of the gamma functions of the numerator of (18) is converted to branch points. The branch cuts can be chosen in
order that the path of integration can be distorted for the contour Re(ξ) = 0 as long as there is no coincidence of poles
from Γ(b j −δ jξ) and Γ(1− a j +γ jξ). The sufficient conditions for the absolute convergence of the contour integral
(17) is given by

∇ =
M∑

j=1
|B jδ j | +

N∑
j=1

|A jγ j |−
Q∑

j=M+1
|B jδ j | −

P∑
j=N+1

|A jγ j | > 0, (19)

this condition provides exponential decay of the integrand in (17), and region of absolute convergence of (17) is

|ar g t | ≤ ∇π
2

(20)

If we take B j (j = 1,. . . ,M) and A j (j = 1,. . . ,N) unity in (17), I-function reduces to H̄-function (Gupta and Soni [25]
). When the exponents A j = 1 (j = 1,. . . ,P) and B j = 1 (j = 1,. . . ,Q) in (17) the I-function reduces to the familiar Fox’s
H-function defined by Fox [24] .

3. Extensions of generalized fractional kinetic equations

Theorem 3.1.
Let t ,ν,µ,γ,δ ∈ C , mi n {R(ν),R(µ),R(γ),R(δ)} > 0; α > 0, q > 0, c > 0, d > 0, then for the solution of the fractional
kinetic equation

N (t ) −N0 tµ−1 E
γ,δ,q

ν,µ,α(−dνtν) = −cν 0D−ν
t N (t ), (21)

has a solution of the form

N (t ) = N 0 tµ−1
∞∑

r=0
(−cνtν)r E

γ,δ,q

ν,νr+µ,α(−d v t v ). (22)

Proof. We know that (Erdélyi et al. [26] ) the Laplace transform of the Riemann-Liouville fractional integration is
given by

L {0D−v
t f (t ) ; p} = p−νF (p), (23)

where

F (p) =
∫ ∞

0

e−pu f (u) du. (24)
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Now taking Laplace transform of both sides of (21), we have

L {N (t ); p} − N0 L {tµ−1 E
γ,δ,q

ν,µ,α(−dνtν); p} = L {− cν 0D−ν
t N (t ) ; p}

N (p) − N0

∫ ∞

0

e−pt tµ−1
∞∑

k=0

(γ)qk (−dνtν)k

Γ(νk +µ) (δ)αk
d t = − cν p−νN (p) , (25)

N (p) − N0

∞∑
k=0

(γ)qk (−dν)k

Γ(νk +µ) (δ)αk

∫ ∞

0

e−pt tνk+µ−1 d t = − cν p−ν N (p)

N (p) [1+ cνp−ν] = N0

∞∑
k=0

(γ)qk (−dν)k

(δ)αk pνk+µ

N (p) = N 0

∞∑
k=0

(γ)qk (−dν)k

(δ)αk

{
p−(νk+µ)

∞∑
r=0

(−1)r (cνp−ν)r
}

. (26)

Taking Inverse Laplace transform of both side of equation (26), we have

L−1{N (p)} = N0

∞∑
k=0

(γ)qk (−dν)k

(δ)αk

{
L−1

[ ∞∑
r=0

(cν)r p−(νk+νr+µ)
] }

, (27)

N (t ) = N 0

∞∑
k=0

(γ)qk (−dν)k

(δ)αk

{ ∞∑
r=0

(−1)r (cν)r tνk+νr+µ−1

Γ(νk +νr +µ)

}
, (28)

N (t ) = N 0 tµ−1
∞∑

r=0
(−cνtν)r E

γ,δ,q

ν,νr+µ,α (−dνtν), (29)

which is equation (22), this completes the proof of Theorem.

Theorem 3.2.
If ν > 0, µ > 0, c > 0, d > 0, γ j > 0( j = 1, ...,P ) and δ j > 0( j = 1, ...,Q), then for the solution of fractional kinetic
equation

N (t ) − N0 tµ−1 I
M ,N

P,Q

[
−dνtν

∣∣∣(a1,γ1,A1) ,..., (aP ,γP ,AP )

(b1,δ1,B1) ,..., (bQ ,δQ ,BQ )

]
= −cν 0D−ν

t N (t ), (30)

has a solution of the form

N(t) = N0 tµ−1
∞∑

r=0
(−cνtν)r I

M, N+1

P+1,Q+1

[
−dνtν

∣∣∣(1−µ,ν;1), (a1 ,γ1,A1) ,..., (aP ,γP ,AP)

(b1,δ1,B1) ,..., (bQ,δQ,BQ),(1−µ−νr,ν;1)

]
(31)

Proof. Applying the Laplace transform both side of equation (30), we get

N (p) − N0
1

2πω

∫ ω∞

−ω∞
θ(ξ) (−dν)ξ

Γ(νξ+µ)

pνξ+µ
dξ= −cν p−ν N (p), (32)

N (p) = N0

(1+ cνp−ν)

1

2πω

∫ ω∞

−ω∞
θ(ξ) (−dν)ξ

Γ(νξ+µ)

pνξ+µ
dξ,

N (p) = N 0

∞∑
r=0

(−1)r (cνp−ν)
1

2πω

∫ ω∞

−ω∞
θ(ξ) (−dν)

Γ(νξ+µ)

pνξ+µ
dξ, (33)

Now taking Inverse Laplace transform both side of (33), we obtain the desired result(31).
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4. special cases

Corollary 4.1.
If mi n {R(ν),R(ν−µ),R(γ),R(δ)} > 0, α, q,c,d > 0, then for the solution of equation

N (t ) − N0 tν−µ−1 E
γ,δ,q

ν,ν−µ,α (−dν tν) = −cν 0D−ν
t N (t ), (34)

the following result holds If mi n {R(ν),R(ν−µ),R(γ),R(δ)} > 0, α, q,c,d > 0, then for the solution of equation

N (t ) − N0 tν−µ−1 E
γ,δ,q

ν,ν−µ,α (−dν tν) = −cν 0D−ν
t N (t ), (35)

the following result holds.

N (t ) = N 0 tν+µ−1
∞∑

r=0
(−cν tν)r E

γ,δ,q

ν,νr+ν−µ,α(−dν tν). (36)

If we put α = q = 1 in (21), then we arrive at the following result.

Corollary 4.2.
If R(ν) > 0, R(µ)> 0, R(γ) > 0, c > 0 and d > 0, then for the solution of equation

N (t ) − N0 tµ−1 E
γ,δ

ν,µ(−dν tν) = −cν 0D−ν
t N (t ), (37)

the following result hold

N (t ) = N 0 tµ−1
∞∑

r=0
(−cν tν)r E

γ,δ

ν,νr+µ(−dν tν). (38)

If we take δ = α = q = 1 and c = d in (21), then we arrive at the following result obtained by Saxena et al. [9].

Corollary 4.3.
If R(ν) > 0, R(µ) > 0, R(γ)> 0 and c > 0, then for the solution of the equation

N (t ) − N0 tµ−1 E
γ

ν,µ(−cν tν) = −cν 0D−ν
t N (t ), (39)

the following result hold

N (t ) = N 0 tµ−1 Eγ+1
ν,µ (−cν tν). (40)

If we set δ = α = q = γ = 1 in equation (21), then we arrive the results obtained by the Saxena et al.[27] .

Corollary 4.4.
If R(ν) > 0, R(µ)> 0, c > 0 and d > 0, then for the solution of the equation

N (t ) − N0 tµ−1 Eν,µ(−dνtν) = −cν 0D−ν
t N (t ), (41)

the following result holds

N (t ) = N 0
tµ−ν−1

cν−dν
[Eν,µ−ν(−dνtν) − Eν,µ−ν(−cνtν)]. (42)

when δ =α = q = γ = 1 and c = d in equation (21), then we arrive at the following result given by Saxena et al. [27].
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Corollary 4.5.
If R(ν) > 0, R(µ) > 0 and c > 0, then for the solution of the equation

N (t )− N0 tµ−1 Eν,µ(−cνtν) = −cν 0D−ν
t N (t ), (43)

the following result holds.

N (t ) = N0tµ−1

ν
[Eν,µ−1 (−cνtν)+ (1+ν−µ)Eν,µ(−cνtν)]. (44)

If we take A j ( j = N +1, . . . ,P ) and B j ( j = 1, . . . , M) unity in equation (30), then we arrive at the result.

Corollary 4.6.
If ν > 0, µ > 0, c > 0, d > 0, γ j > 0( j = 1, ...,P ) and δ j > 0( j = 1, ...,Q), then for the solution of equation

N (t ) − N 0 tµ−1 H̄
M ,N

P,Q

[
−dν tν

∣∣∣(a j ,γ j ;A j )1,N , (a j ,γ j )N+1,P

(b j ,B j )1,M , (b j ,δ j ;B j )M+1,Q

]
= −cν 0D−ν

t N (t ), (45)

the following result holds

N (t ) = N 0 tµ−1
∞∑

r=0
(−cνtν)r H̄

M ,N+1

P+1,Q+1

[
−dνtν

∣∣∣(1−µ,ν;1),(a j ,γ j ;A j )1,N ,(a j ,γ j )N+1,P

(b j ,δ j )1,M ,(b j ,δ j ;B j )M+1,Q ,(1−µ−νr,ν;1)

]
. (46)

For existence condition of H̄-function (Gupta and Soni [25] ).

Corollary 4.7.
If ν > 0, µ > 0, c > 0, d > 0, γ j > 0( j = 1, ...,P ) and δ j > 0( j = 1, ...,Q), then for the solution of equation

N (t ) − N 0 tµ−1 H̄
M ,N

P,Q+1

[
−dν tν

∣∣∣(a j ,γ j ;A j )1,N , (a j ,γ j )N+1,P

(b j ,B j )1,M , (b j ,δ j ;B j )M+1,Q ,(1−µ,ν;1)

]
= −cν 0D−ν

t N (t ), (47)

the following result holds

N (t ) = N 0 tµ−1
∞∑

r=0
(−cνtν)r H̄

M ,N

P,Q+1

[
−dνtν

∣∣∣(a j ,γ j ;A j )1,N ,(a j ,γ j )N+1,P

(b j ,δ j )1,M ,(b j ,δ j ;B j )M+1,Q ,(1−µ−νr,ν;1)

]
. (48)

For A j = B j = 1 in equation (47), we arrive at the result.

Corollary 4.8.
If ν > 0, µ > 0, c > 0, d > 0, γ j > 0 and δ j > 0, then for the solution of equation

N (t ) − N 0 tµ−1 H
M ,N

P,Q+1

[
−dν tν

∣∣∣ (a j ,γ j )N+1,P

(b j ,δ j )1,Q , (1−µ,ν)

]
= −cν 0D−ν

t N (t ), (49)

the following result holds

N (t ) − N 0 tµ−1
∞∑

r=0
(−cνtν)r H

M ,N

P,Q+1

[
−dν tν

∣∣∣ (a j ,γ j )1,P

(b j ,δ j )1,Q , (1−µ−νr,ν)

]
(50)

Finally, for existence condition of H-function, we refer to the book Srivastava et al. [28].

On specializing the parameters in above Corollary 4.8 suitable and then making some obvious changes there in,
we arrive at the result recently obtained by the Chaurasia and Kumar [11] .

Corollary 4.9.
If ν> 0, µ > 0, c > 0 and d > 0, then for the solution of equation

N (t ) − N0 tµ−1
P

ν,µ
M Q (a1, ..., aP ; b1, ...,bQ ; −dνtν) = −cν 0D−ν

t N (t ), (51)

the following result holds

N (t ) = N 0 tµ−1
∞∑

r=0
(−cν tν)r

P

ν,µ+rν
M Q (a1, ..., aP ; b1, ...,bQ ;−dνtν). (52)
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5. Concluding remarks

Kinetic equations are used in computation of chemical changes in star (like the sun). Haubold and Mathai
[5] investigated the standard kinetic equation which is suitable for incorporating changes in the Maxwell-Boltzmann
distribution function. Further Saxena, Mathai and Haubold [9, 27] investigated some other fractional generalizations
of the standard kinetic equation which contain the thermonuclear function as a time constant.

In this paper, we have introduced an extended fractional generalization of the standard kinetic equation and
established solution for the same. Fractional kinetic equations can be used to compute the particle reaction rate and
describe the statistical mechanics associated with the particles distribution function. The generalized fractional ki-

netic equation discussed in this paper, involves the generalized Mittag-Leffler function E
γ,δ,q

ν,µ,α(−dνtν)and I-function. It
can be seen that the fractional kinetic equation, discussed in this paper, contain a number of the known (and also new)
fractional kinetic equations involving various other special functions (the generalized Mittag-Leffler function, Mittag-
Leffler functions, H̄-function, Fox H-function and generalized M-series etc.). The results obtained in the present
paper provide an extension of the results given by Haubold and Mathai [5] , Saxena, Mathai and Haubold [9, 27] and
Chaurasia and Kumar [11] .
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