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1. Introduction

The security of electronic communication has been extensively studied since the invention of the public key
cryptography [1–3]. Other subjects as authentication, zero-knowledge and digital signature were explored. One of
the most known cryptosystem is RSA algorithm [2]. A signature protocol allows to sign an electronic contract. Let us
review the principle of the method. The signer Alice has two kinds of keys. A private one, must be kept secret and
the second is public. If she likes to sign a document M , she has to solve a hard mathematical equation. It depends
of the message M , and of her public key. With the help of her private key, Alice can give a solution to the problem.
The verifier Bob checks if the answer calculated by Alice is valid. Nobody is able to imitate her signature, even the
interrogator himself.

Existing signatures schemes were designed by developing hard problems, like discrete logarithm and factoring
[2–9]. These algorithms, for the time being, appear safe and secure. But in a near future they can be broken. Hence,
the need of creating new alternatives.

At Eurocrypt’88 Guillou and Quisquater introduced first, an interactive zero-knowledge protocol. In 1990, they
published a paper [6] where they exposed a remarkable digital signature system. Their technique was based on RSA
algorithm.

In this work, we present a variant of Guillou-Quisquater scheme and create a new signature method. We analyze
its efficiency and security. For its theoretical interest, we also give a general form of our system equation.

The paper is organized as follows: In section 2 we recall the basic Guillou-Quisquater signature scheme. We
review some possible attacks. Then we present our new variant with a theoretical generalization in section 3. Section
4 is devoted to the conclusion.

In the sequel, we will respect Guillou-Quisquater paper notations [6]. N, Z are respectively the sets of integers
and non-negative integers. For every positive integer n, we denote by Z/nZ the finite ring of modular integers and by
(Z/nZ)∗ the multiplicative group of its invertible elements. Let a,b,c be three integers. The great common divisor of
a and b is denoted by g cd(a,b). We write a ≡ b (mod c) if c divides the difference a −b, and a = b mod c if a is the
remainder in the division of b by c. The bit-length of an integer n is the number of bits in its binary representation.
a||b is the concatenation of a and b.

We start by describing the Guillou-Quisquater signature method.
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2. Guillou-Quisquater signature scheme

In this section we review Guillou-Quisquater signature system[6]. We Also discuss some known attacks. The
protocol needs three short steps: generating parameters, signing message and verifying signature.

2.1. Guillou-Quisquater algorithm

Let h be a secure public hash function like SHA1 [10, chap.9] or [11, chap.5].

1. To generate the keys:

– Alice chooses randomly two large primes P and Q, then she calculates n = PQ.

– She takes an integer 0 < v <ϕ(n), where ϕ(n) is the phi-Euler function.

– She selects randomly an identification variable B and computes:

J = B v mod n (1)

We consider then that (n, v, J ) and B are respectively Alice public and private key.

2. Assume that Alice wants to sign the message M < n. She must solve the following modular equation:

t v ≡ T J h(M ||T )(mod n) (2)

where t ,T are unknown variables.

To solve equation (2), Alice fixes arbitrary T to be T = r v mod n, where r is chosen randomly. Then she finds:

t ≡ r B h(M ||T )(mod n) (3)

As Alice knows the secret key B , she computes the second unknown variable t by congruence (3). Note that there
are many couples (t ,T ) solutions of the relation (2).
3. Bob can verify the signature by checking if equation (2) is valid for the variables t and T furnished by Alice.
Now, we discuss some possible attacks.

2.2. Main known attacks

In this subsection we present situations where the dishonest Oscar is able to forge Alice signature.

Attack 1:
The first attack is cited in the "handbook of applied cryptography" ([10] , chap.11). In Guillou-Quisquater sys-

tem, the integer v must be sufficiently large. This choice excludes the possibility of forging Alice signature. We briefly
describe this attack.
Oscar chooses a message M . He computes l = h(M ||T ) where

T ≡ J−s (mod n) (4)

for many values of s, until obtaining l ≡ s (mod v) He determines an integer x, such as

s = xv + l (5)

then he calculates

t = J−x mod n (6)

To sign the document M , Oscar must solve the following congruence with the unknowns T and t :

t v ≡ T.J l (mod n) (7)

He uses (4), (5) and (6) to prove (7) as follows :

T J l ≡ J−s J l ≡ J−s+l ≡ (J−x )v ≡ (t )v (mod n)

So in this case, Oscar has forged Alice signature. Hence the need of using a large value of the integer v .
We move to the second possible attack.

Attack 2:
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Let (nA , v A , J A ,B A) and (nO , vO , JO ,BO) be respectively Alice and Oscar keys in a Guillou-Quisquater signature
protocol. Suppose that Oscar tries to forge fraudulently Alice signature for the message M . He replaces, in the key
server distribution, Alice’s public key by (nO , vO , JO). He signs the message M by giving (TO , tO) to the verifier Bob. As
consequence, it is recommended to use a very secure key server distribution.
There is another possible attack.

Attack 3:
Let (n, v, J ) be Alice public key. If Oscar obtains the signature of two messages M1 and M2 he can make the following
operations:


t v

1 ≡ T1 J h(M1||T1)(mod n)

t v
2 ≡ T2 J h(M2||T2)(mod n)

so

(t1t2)v ≡ T1T2 J h(M1||T1)+h(M2||T2)(mod n) (8)

If Oscar finds an interesting message M where:

h(M ||T1T2) = h(M1||T1)+h(M2||T2)

congruence (8) becomes:

(t1t2)v ≡ T1T2 J h(M ||T1T2)(mod n)

As Oscar knows T1, t1, T2 and t2, he proves illegally that Alice has signed the document M . Now, we propose our
Guillou-Quisquater signature variant.

3. Our Protocol and its Theoretical Generalization

In this section we describe a new variant of Guillou-Quisquater signature scheme based on an equation with
three unknown variables.

3.1. Our protocol

Assume that h is a secure public hash function like SHA1 ([10] , chap. 9) or ([11], chap. 5).

1. To generate the parameters:

– Alice chooses randomly two large primes P and Q, then she calculates n = PQ.

– She takes an integer 0 < v <ϕ(n).

– She selects randomly two identifications messages B1 and B2, then computes:
J1 = B v

1 mod n

J2 = B v
2 mod n

We consider then that (n, v, J1, J2) is Alice public key, and (B1, B1) her private one.

2. If Alice wants to sign the contract M < n. She must solve the following modular equation:

Z v ≡ T t J h(M ||T )
1 J h(M ||t )

2 (mod n) (9)

where T, t and Z are the unknown variables.
To solve equation (9), Alice fixes arbitrary T to be T = r v

1 mod n and t to be t = r v
2 mod n, where r1 and r2 are

chosen randomly. Then she finds:

Z ≡ r1r2B h(M ||T )
1 B h(M ||t )

2 (mod n) (10)

As Alice detains the secret key (B1, B2), she can find the third unknown variable Z by congruence (10).

3. Bob checks if the signature (T, t , Z ) is valid for the relation (9).

Our system has the advantage that Oscar must solve two hard problems instead of one. To illustrate this algorithm,
we give an example.
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3.2. Example

Let (n, v, J1, J2)=(12393217, 127, 9468104, 631477) and (B1,B2)=(4536, 19519) be respectively Alice public and
private key. Suppose that she wants to sign the message M=2015. To simplify, we assume that the hash function
h(x) result the sum of the digits of the integer x modulo 100. Alice chooses randomly (r1,r2)=(119, 205). She starts
by computing T = r v

1 mod n = 6581159 and t = r v
2 mod n = 6301624. Then h(M ||T ) = h(20156581159) = 43 and

h(M ||t ) = h(20156301624) = 30. Hence

Z ≡ r1r2B h(M ||T )
1 B h(M ||t )

2 mod n = 9322383.

To validate the signature, we check that

Z v mod n = T t J h(M ||T )
1 J h(M ||t )

2 mod n = 1018378

Now, we study the security of our method.

3.3. Security analysis

Assume that Oscar is Alice’s opponent.

Attack 1:
As in Guillou-Quisquater system, in our protocol the integer v must be sufficiently large. This choice excludes

the possibility of imitating Alice signature. We briefly describe this attack.
The fraudulent Oscar chooses a message M . He computes

l1 = h(M ||T ) and l2 = h(M ||t ) where

T ≡ J−s1
1 (mod n) (11)

t ≡ J−s2
2 (mod n) (12)

for many values of s1 and s2, until obtaining l1 ≡ s1(mod v) and l2 ≡ s2(mod v). He determines two integers x and y ,
such as

s1 = xv + l1 (13)

s2 = y v + l2 (14)

then he calculates

Z ≡ J−x
1 J−y

2 (mod n) (15)

To sign the document M , Oscar must solve the following congruence with T , t and Z as unknown variables:

Z v ≡ T t J l1
1 J l2

2 (mod n) (16)

He uses (11), (12), (13), (14) and (15) to prove (16) as follows:

T t J l1
1 J l2

2 ≡ J−s1
1 J−s2

2 J l1
1 J l2

2 ≡ (J−x
1 J−y

2 )v = Z v (mod n)

So in this case, Oscar has forged Alice signature.
As a recommendation, cryptography designers must always use a large value of the integer v .

Attack 2:
Knowing All public signature parameters for a document M , Oscar tries to find Alice secret keys B1 and B2. He

is confronted to two hard modular equations instead of one in Guillou-Quisquater scheme.

Attack 3:
Oscar wants to imitate Alice signature for a contract M . He fixes arbitrary two unknown variables and tries to

find the third parameter.
(1) Suppose that he fixes T and t , and likes to solve the modular congruence (9). But here, he will face a modular
polynomial equation. We don’t know a method for solving that kind of problems.
(2) Suppose that he fixes (T, Z ) or (t , Z ), and wants to solve equation (9). But here, we have a weird equation and today
there is no way to find its solution.
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3.4. Complexity of our algorithm

As in [12], let Texp , Tmul t and Th be respectively the time to perform a modular exponentiation, a modular
multiplication and hash function computation of a message M. We ignore the time required for modular additions,
substraction, comparisons and make the conversion Texp = 240Tmul t .
From subsection 3.1, we see that the signer Alice needs to perform six modular exponentiations, three modular mul-
tiplications and two hash functions computation. The global required time is:

Ts = 6Texp +3Tmul t +2Th = 1443Tmul t +2Th

The verifier Bob needs to perform three modular exponentiations, three modular multiplications and two hash func-
tions computation. The global required time is:

Tv = 3Texp +3Tmul t +2Th = 723Tmul t +2Th

Now, for its theoretical interest, we give a general form.

3.5. Theoretical generalization

Assume that h is a secure public hash function like SHA1 [10, chap.9] and [11, chap.5].

1. To generate the parameters:

– Alice chooses randomly two large primes P and Q, then she calculates n = PQ.

– She takes an integer 0 < v <ϕ(n).

– She selects randomly N identifications variables B1,B2,B3,...,BN then computes:
J1 = B v

1 mod n
J2 = B v

2 mod n
J3 = B v

3 mod n
...
JN = B v

N mod n

We consider then that (n, v, J1, J2, J3, ..., JN ) is Alice public key, and (B1, B1, B3,..., BN ) her private one.

2. If Alice wants to sign the contract M < n. She must solve the following modular equation:

Z v ≡ T1T2T3...TN J h(M ||T1)
1 J h(M ||T2)

2 J h(M ||T3)
3 ...J h(M ||TN )

N (mod n) (17)

where T1,T2,T3, ...,TN and Z are unknown variables.
To solve equation (17), Alice fixes arbitrary T1 to be T1 = r v

1 mod n, T2 to be T2 = r v
2 mod n, T3 to be T3 = r v

3
mod n, ... and TN to be TN = r v

N mod n, where r1, r2, r3,... and rN are chosen randomly. Then she finds:

Z = r1r2r3...r4B h(M ||T1)
1 B h(M ||T2)

2 B h(M ||T3)
3 ...B h(M ||TN )

N mod n (18)

As Alice detains the secret key (B1, B1, B3, ..., BN ), she can find the last unknown variable Z by congruence (18).

3. Bob checks whether or not the signature (T1,T2,T3, ...,TN , Z ) is valid for the relation (17).

Although the signature schemes are based on solving hard mathematical problems, there are many attempts to
investigate other directions[13–15].

4. Conclusion

In this work, we presented a new protocol that can be useful if the old signature systems are broken. Our method
is derived from Guillou-Quisquater signature. The proposed scheme requires a moderate time complexity in signing
and verifying algorithm. Also some possible attacks have been discussed and we have shown that our algorithm is
secured against them.
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