On some properties of (k,h)-Pell sequence and (k,h)-Pell-Lucass sequence

Seyyed Hossein Jafari-Petroudi ${ }^{\text {a, * }}$, Behzad Pirouz ${ }^{\text {b }}$
${ }^{\text {a }}$ Department of Mathematics, Payame Noor University, P. O. Box 1935-3697, Tehran, Iran
${ }^{\mathrm{b}}$ Department of Mathematics, Azad University of Karaj, Karaj, Iran

Received 22 May 2015; accepted (in revised version) 15 August 2015

Abstract

In this note we first define (k, h)-Pell sequence and (k, h)-Pell-Lucas sequence. Then we derive some formulas for $n^{t h}$ term and sum of the first n terms of these sequences. Finally other properties of these sequences are represented. MSC: 15A15 • 15A60 Keywords: Pell-Lucass sequence • Recursion relation • Sum © 2015 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

In [1] Bueno studied (k, h)-Jacobsthal sequence of the form

$$
T_{n}=k T_{n-1}+2 h T_{n-2}
$$

He found a formula of $n^{\text {th }}$ term and sum of the first n terms of this sequence. In this note we first define (k, h)-Pell sequence and (k, h)-Pell-Lucas sequence. Then we derive some formulas for $n^{t h}$ term and sum of the first n terms of these sequences. Finally other properties of these sequences are represented. For more information about (k, h)Jacobsthal sequence, Fibonacci sequence and some generalizations of this sequence see [1] - [8].

Pell sequence $\left\{P_{n}\right\}$ has the recursive relation

$$
P_{n}=2 P_{n-1}+P_{n-2},
$$

where $P_{0}=0, P_{1}=1$. Now we define a generalization of this sequence which we call it (k, h)-Pell sequence and denote it by Φ_{n}. This sequence has the recursive relation

$$
\begin{equation*}
\Phi_{n}=2 k \Phi_{n-1}+h \Phi_{n-2}, \tag{1}
\end{equation*}
$$

where $\Phi_{0}=0$ and $\Phi_{1}=2 k$ and $k, h \in Z$ and $k^{2}+h>0$. Also we define (k,h)-Pell-Lucas sequence $\left\{\Lambda_{n}\right\}$ which has the recursive relation

$$
\begin{equation*}
\Lambda_{n}=2 k \Lambda_{n-1}+h \Lambda_{n-2}, \tag{2}
\end{equation*}
$$

where $\Lambda_{0}=2$ and $\Lambda_{1}=2 k$. It is known that

$$
\begin{align*}
& \sum_{k=0}^{n-1} x^{k}=1+x+x^{2}+\cdots+x^{n-1}=\frac{x^{n}-1}{x-1} \tag{3}\\
& \sum_{k=1}^{n-1} k x^{k}=\frac{(n-1) x^{n}-n x^{n-1}+1}{(x-1)^{2}} \tag{4}
\end{align*}
$$

[^0]
2. Main result

Theorem 2.1.

Let Φ_{n} be as in (1) then we have

$$
\Phi_{n}=\frac{2 k}{p}\left(\alpha^{n}-\beta^{n}\right)
$$

where $\alpha=k+\sqrt{k^{2}+h}, \beta=k-\sqrt{k^{2}+h}$ and $p=\alpha-\beta$.
Proof. The recursive relation (1) has the characteristic equation

$$
r^{2}-2 k r-h=0 .
$$

The roots of this equation are $\alpha=k+\sqrt{k^{2}+h}, \beta=k-\sqrt{k^{2}+h}$. Also we have $\alpha+\beta=2 k, \alpha-\beta=\sqrt{k^{2}+h}=p$ and $\alpha \beta=-h$. So the solution of the recursion relation (1) is

$$
\begin{equation*}
\Phi_{n}=c_{1} \alpha^{n}+c_{2} \beta^{n} \tag{5}
\end{equation*}
$$

If we use the initial values $\Phi_{0}=0$ and $\Phi_{1}=2 k$ we get a linear system with two equations $c_{1}+c_{2}=0$ and $c_{1} \alpha+c_{2} \beta=2 k$. This linear system has the solution $c_{1}=\frac{2 k}{p}$ and $c_{2}=\frac{-2 k}{p}$. By substituting these values in (5) we get

$$
\Phi_{n}=\frac{2 k}{p}\left(\alpha^{n}-\beta^{n}\right)
$$

Theorem 2.2.

Let Λ_{n} be as in (2) then we have

$$
\Lambda_{n}=\alpha^{n}+\beta^{n}
$$

where $\alpha=k+\sqrt{k^{2}+h}, \beta=k-\sqrt{k^{2}+h}$ and $\Lambda_{0}=2, \Lambda_{1}=2 k$.
Proof. The proof is similar to Theorem 2.1.

Theorem 2.3.

Let Φ_{n} be as in (1) then we have

$$
\sum_{m=0}^{n-1} \Phi_{m}=\frac{\Phi_{n}+h \Phi_{n-1}-2 k}{2 k+h-1}
$$

Proof. By Theorem 2.1 we have

$$
\sum_{m=0}^{n-1} \Phi_{m}=\frac{2 k}{p} \sum_{m=0}^{n-1}\left(\alpha^{m}-\beta^{m}\right)=\frac{2 k}{p}\left[\sum_{m=0}^{n-1} \alpha^{m}-\sum_{m=0}^{n-1} \beta^{m}\right]
$$

According to (3) we get

$$
\sum_{m=0}^{n-1} \Phi_{m}=\frac{2 k}{p}\left[\frac{1-\alpha^{n}}{1-\alpha}-\frac{1-\beta^{n}}{1-\beta}\right]=\frac{2 k}{p}\left[\frac{\left(1-\alpha^{n}\right)(1-\beta)-\left(1-\beta^{n}\right)(1-\alpha)}{(1-\alpha)(1-\beta)}\right]
$$

After some calculations we get

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m}=\frac{2 k}{p}\left(\frac{(\alpha-\beta)-\left(\alpha^{n}-\beta^{n}\right)+\alpha \beta\left(\alpha^{n-1}-\beta^{n-1}\right)}{1-(\alpha+\beta)+\alpha \beta}\right) \\
& =\frac{2 k}{p}\left[\frac{\frac{p \Phi_{1}}{2 k}-\frac{p \Phi_{n}}{2 k}+(-h) \frac{p \Phi_{n-1}}{2 k}}{1-2 k-h}\right]=\frac{\Phi_{1}-\Phi_{n}-h \Phi_{n-1}}{1-2 k-h}=\frac{\Phi_{n}+h \Phi_{n-1}-2 k}{2 k+h-1}
\end{aligned}
$$

So we have

$$
\sum_{m=0}^{n-1} \Phi_{m}=\frac{\Phi_{n}+h \Phi_{n-1}-2 k}{2 k+h-1}
$$

Theorem 2.4.

Let Φ_{n} be as in (1) then we have

$$
\sum_{m=0}^{n-1} \Phi_{m} \Phi_{m-1}=\frac{4 k^{2}}{p^{2}}\left[\frac{2 k-\Lambda_{3}+h \Lambda_{2 n-1}-h^{3} \Lambda_{2 n-3}}{(-h)^{3}+(-h)-(-h) \Lambda_{2}}+\frac{2 k}{h}\left(\frac{1-(-h)^{n}}{1+h}\right)\right]
$$

Proof. By Theorem 2.1 we have

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m} \Phi_{m-1}=\left(\frac{2 k}{p}\right)^{2} \sum_{m=0}^{n-1}\left(\alpha^{m}-\beta^{m}\right)\left(\alpha^{m-1}-\beta^{m-1}\right) \\
& =\frac{4 k^{2}}{p^{2}}\left[\sum_{m=0}^{n-1} \alpha^{2 m-1}+\sum_{m=0}^{n-1} \beta^{2 m-1}-(\alpha+\beta) \sum_{m=0}^{n-1}(\alpha \beta)^{m-1}\right] \\
& =\frac{4 k^{2}}{p^{2}}\left[\sum_{m=0}^{n-1} \alpha^{-1}\left(\alpha^{2}\right)^{m}+\sum_{m=0}^{n-1} \beta^{-1}\left(\beta^{2}\right)^{m}-\frac{(\alpha+\beta)}{\alpha \beta} \sum_{m=0}^{n-1}(\alpha \beta)^{m}\right]
\end{aligned}
$$

According to (3) we get

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m} \Phi_{m-1}=\frac{4 k^{2}}{p^{2}}\left[\left(\frac{1}{\alpha}\right) \frac{1-\alpha^{2 n}}{1-\alpha^{2}}+\left(\frac{1}{\beta}\right) \frac{1-\beta^{2 n}}{1-\beta^{2}}-\left(\frac{2 k}{-h}\right) \frac{1-(\alpha \beta)^{n}}{1-\alpha \beta}\right] . \\
& =\frac{4 k^{2}}{p^{2}}\left[\frac{1-\alpha^{2 n}}{\alpha-\alpha^{3}}+\frac{1-\beta^{2 n}}{\beta-\beta^{3}}+\frac{2 k}{h}\left(\frac{1-(-h)^{n}}{1+h}\right)\right] .
\end{aligned}
$$

After some calculations we get

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m} \Phi_{m-1}=\frac{4 k^{2}}{p^{2}}\left[\frac{(\alpha+\beta)-\left(\alpha^{3}+\beta^{3}\right)-\alpha \beta\left(\alpha^{2 n-1}+\beta^{2 n-1}\right)+\alpha^{3} \beta^{3}\left(\alpha^{2 n-3}+\beta^{2 n-3}\right)}{(\alpha \beta)^{3}+\alpha \beta-(\alpha \beta)\left(\alpha^{2}+\beta^{2}\right)}\right] \\
& +\frac{4 k^{2}}{p^{2}}\left[\frac{2 k}{h}\left(\frac{1-(-h)^{n}}{1+h}\right)\right] .
\end{aligned}
$$

So by Theorem 2.1 and Theorem 2.2 we conclude that

$$
\sum_{m=0}^{n-1} \Phi_{m} \Phi_{m-1}=\frac{4 k^{2}}{p^{2}}\left[\frac{2 k-\Lambda_{3}+h \Lambda_{2 n-1}-h^{3} \Lambda_{2 n-3}}{(-h)^{3}+(-h)-(-h) \Lambda_{2}}+\frac{2 k}{h}\left(\frac{1-(-h)^{n}}{1+h}\right)\right]
$$

Theorem 2.5.

Let Φ_{n} be as in (1) then we have

$$
\sum_{m=0}^{n-1} \Phi_{m}^{2}=\frac{4 k^{2}}{p^{2}}\left[\frac{h^{2} \Lambda_{2 n-2}-\Lambda_{2 n}-\Lambda_{2}+2}{h^{2}-\Lambda_{2}+1}+2 \frac{(-h)^{n}-1}{h+1}\right]
$$

Proof. By Theorem 2.1 we have

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m}^{2}=\sum_{m=0}^{n-1}\left[\frac{2 k}{p}\left(\alpha^{m}-\beta^{m}\right)\right]^{2}=\frac{4 k^{2}}{p^{2}} \sum_{m=0}^{n-1}\left(\alpha^{2 m}+\beta^{2 m}-2(\alpha \beta)^{m}\right) \\
& =\frac{4 k^{2}}{p^{2}}\left[\sum_{m=0}^{n-1}\left(\alpha^{2}\right)^{m}+\sum_{m=0}^{n-1}\left(\beta^{2}\right)^{m}-2 \sum_{m=0}^{n-1}(\alpha \beta)^{m}\right] .
\end{aligned}
$$

According to (3) we get

$$
\begin{aligned}
& \sum_{m=0}^{n-1} \Phi_{m}^{2}=\frac{4 k^{2}}{p^{2}}\left[\frac{\alpha^{2 n}-1}{\alpha^{2}-1}+\frac{\beta^{2 n}-1}{\beta^{2}-1}-2 \frac{(\alpha \beta)^{n}-1}{\alpha \beta-1}\right] \\
& =\frac{4 k^{2}}{p^{2}}\left[\frac{\alpha^{2} \beta^{2}\left(\alpha^{2 n-2}+\beta^{2 n-2}\right)-\left(\alpha^{2 n}+\beta^{2 n}\right)-\left(\alpha^{2}+\beta^{2}\right)+2}{(\alpha \beta)^{2}-\left(\alpha^{2}+\beta^{2}\right)+1}\right]+\frac{4 k^{2}}{p^{2}}\left[2 \frac{(-h)^{n}-1}{h+1}\right] .
\end{aligned}
$$

So by Theorem 2.1 and Theorem 2.2 we deduce that

$$
\sum_{m=0}^{n-1} \Phi_{m}^{2}=\frac{4 k^{2}}{p^{2}}\left[\frac{h^{2} \Lambda_{2 n-2}-\Lambda_{2 n}-\Lambda_{2}+2}{h^{2}-\Lambda_{2}+1}+2 \frac{(-h)^{n}-1}{h+1}\right] .
$$

Theorem 2.6.

Let Λ_{n} be as in (2) then we have

$$
\sum_{m=0}^{n-1} \Lambda_{m}=\frac{\Lambda_{n}+h \Lambda_{n-1}+2 k-2}{2 k+h-1}
$$

Proof. The proof is similar to Theorem 2.3.

Theorem 2.7.

Let Λ_{n} be as in (2) then we have

$$
\sum_{m=0}^{n-1} \Lambda_{m} \Lambda_{m-1}=\frac{2 k-\Lambda_{3}+h \Lambda_{2 n-1}-h^{3} \Lambda_{2 n-3}}{-h\left(1+\Lambda_{2}+h^{2}\right)}+\frac{2 k}{h}\left[\frac{(-h)^{n}-1}{h+1}\right] .
$$

Proof. The proof is similar to Theorem 2.4.

Theorem 2.8.

Let Λ_{n} be as in (2) then we have

$$
\sum_{m=0}^{n-1} \Lambda_{m}^{2}=\frac{2-\Lambda_{2}+h^{2} \Lambda_{2 n-2}-\Lambda_{2 n}}{1-\Lambda_{2}+h^{2}}+2 \frac{1-(-h)^{n}}{1+h}
$$

Proof. The proof is similar to Theorem 2.5.

Acknowledgments

Authors are very grateful to reviewers for their significant explanation for enhancement of this paper.

References

[1] A. C. F. Bueno, A note on (k, h)-Jacobsthal sequences, Math. sci. Lett, 1 (2013) 81-87.
[2] H. Campos, P. Catrino, On Some Identities of k-Jacobsthal-Lucas Numbers, Int. J. Math. Anal, 8 (10) (2014) 489 494.
[3] E. Dupree, B.Mathes, Singular values of k-Fibonacci and k-Lucas Hankel matrix, Int. J. Contemp. Math. Science, 7 (2012) 2327-2339.
[4] A. D. Godase, M. B. Dhakne, On the properties of generalized multiplicative coupled fibonacci sequence of rth order, Int. J. Adv. Appl. Math. and Mech, 2(3) (2015) 252-257.
[5] A. D. Godase, M. B. Dhakne, On the properties of generalized Fibonacci like polynomials, Int. J. Adv. Appl. Math. and Mech, 2(3) (2015) 234-251.
[6] A. D. Godase, M. B. Dhakne, On the properties of k-Fibonacci and k-Lucas numbers, Int. J. Adv. Appl. Math. and Mech. 2(1) (2014) 100-106.
[7] A. Nalli, M.Sen, On the norms of circulant matrices with generalized Fibonacci numbers, SelÃğuk J. Appl. Math, 11 (1) (2010) 107-116.
[8] S. Solak, M. Bahsi, On the spectral norms of Toeplitz matrices with Fibonacci and Lucas numbers, Hacet J Math Stat, 42(1) (2013) 15-19.

[^0]: * Corresponding author.

 E-mail addresses: hossein_5798@yahoo.com (Seyyed Hossein Jafari-Petroudi), behzadpirouz@gmail.com (Behzad Pirouz)

