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1. Introduction

In [1] Bueno studied (k,h)-Jacobsthal sequence of the form

Tn = kTn−1 +2hTn−2.

He found a formula of nth term and sum of the first n terms of this sequence. In this note we first define (k,h)-Pell
sequence and (k,h)-Pell-Lucas sequence. Then we derive some formulas for nth term and sum of the first n terms
of these sequences. Finally other properties of these sequences are represented. For more information about (k,h)-
Jacobsthal sequence, Fibonacci sequence and some generalizations of this sequence see [1] - [8].

Pell sequence {Pn} has the recursive relation

Pn = 2Pn−1 +Pn−2,

where P0 = 0,P1 = 1. Now we define a generalization of this sequence which we call it (k,h)-Pell sequence and denote
it byΦn . This sequence has the recursive relation

Φn = 2kΦn−1 +hΦn−2, (1)

where Φ0 = 0 and Φ1 = 2k and k,h ∈ Z and k2 +h > 0. Also we define (k,h)-Pell-Lucas sequence {Λn} which has the
recursive relation

Λn = 2kΛn−1 +hΛn−2, (2)

whereΛ0 = 2 andΛ1 = 2k. It is known that

n−1∑
k=0

xk = 1+x +x2 +·· ·+xn−1 = xn −1

x −1
, (3)

n−1∑
k=1

kxk = (n −1)xn −nxn−1 +1

(x −1)2 . (4)
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2. Main result

Theorem 2.1.
LetΦn be as in (1) then we have

Φn = 2k

p

(
αn −βn)

,

where α= k +
√

k2 +h,β= k −
√

k2 +h and p =α−β.

Proof. The recursive relation (1) has the characteristic equation

r 2 −2kr −h = 0.

The roots of this equation are α = k +
√

k2 +h,β = k −
√

k2 +h. Also we have α+β = 2k,α−β =
√

k2 +h = p and
αβ=−h. So the solution of the recursion relation (1) is

Φn = c1α
n + c2β

n . (5)

If we use the initial valuesΦ0 = 0 andΦ1 = 2k we get a linear system with two equations c1+c2 = 0 and c1α+c2β= 2k.

This linear system has the solution c1 = 2k

p
and c2 = −2k

p
. By substituting these values in (5) we get

Φn = 2k

p

(
αn −βn)

.

Theorem 2.2.
LetΛn be as in (2) then we have

Λn =αn +βn ,

where α= k +
√

k2 +h,β= k −
√

k2 +h andΛ0 = 2,Λ1 = 2k.

Proof. The proof is similar to Theorem 2.1.

Theorem 2.3.
LetΦn be as in (1) then we have

n−1∑
m=0

Φm = Φn +hΦn−1 −2k

2k +h −1
.

Proof. By Theorem 2.1 we have

n−1∑
m=0

Φm = 2k

p

n−1∑
m=0

(
αm −βm)= 2k

p

[
n−1∑
m=0

αm −
n−1∑
m=0

βm

]

According to (3) we get

n−1∑
m=0

Φm = 2k

p

[
1−αn

1−α − 1−βn

1−β
]
= 2k

p

[
(1−αn)(1−β)− (1−βn)(1−α)

(1−α)(1−β)

]
.

After some calculations we get

n−1∑
m=0

Φm = 2k

p

(
(α−β)− (αn −βn)+αβ(αn−1 −βn−1)

1− (α+β)+αβ
)

= 2k

p

[ pΦ1
2k − pΦn

2k + (−h) pΦn−1
2k

1−2k −h

]
= Φ1 −Φn −hΦn−1

1−2k −h
= Φn +hΦn−1 −2k

2k +h −1
.

So we have

n−1∑
m=0

Φm = Φn +hΦn−1 −2k

2k +h −1
.
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Theorem 2.4.
LetΦn be as in (1) then we have

n−1∑
m=0

ΦmΦm−1 = 4k2

p2

[
2k −Λ3 +hΛ2n−1 −h3Λ2n−3

(−h)3 + (−h)− (−h)Λ2
+ 2k

h

(
1− (−h)n

1+h

)]
.

Proof. By Theorem 2.1 we have

n−1∑
m=0

ΦmΦm−1 =
(

2k

p

)2 n−1∑
m=0

(
αm −βm)(

αm−1 −βm−1)

= 4k2

p2

[
n−1∑
m=0

α2m−1 +
n−1∑
m=0

β2m−1 − (α+β)
n−1∑
m=0

(αβ)m−1

]

= 4k2

p2

[
n−1∑
m=0

α−1(α2)m +
n−1∑
m=0

β−1(β2)m − (α+β)

αβ

n−1∑
m=0

(αβ)m

]
According to (3) we get

n−1∑
m=0

ΦmΦm−1 = 4k2

p2

[
(

1

α
)

1−α2n

1−α2 + (
1

β
)

1−β2n

1−β2 − (
2k

−h
)

1− (αβ)n

1−αβ
]

.

= 4k2

p2

[
1−α2n

α−α3 + 1−β2n

β−β3 + 2k

h

(
1− (−h)n

1+h

)]
.

After some calculations we get

n−1∑
m=0

ΦmΦm−1 = 4k2

p2

[
(α+β)− (α3 +β3)−αβ(α2n−1 +β2n−1)+α3β3(α2n−3 +β2n−3)

(αβ)3 +αβ− (αβ)(α2 +β2)

]

+4k2

p2

[
2k

h

(
1− (−h)n

1+h

)]
.

So by Theorem 2.1 and Theorem 2.2 we conclude that

n−1∑
m=0

ΦmΦm−1 = 4k2

p2

[
2k −Λ3 +hΛ2n−1 −h3Λ2n−3

(−h)3 + (−h)− (−h)Λ2
+ 2k

h

(
1− (−h)n

1+h

)]
.

Theorem 2.5.
LetΦn be as in (1) then we have

n−1∑
m=0

Φ2
m = 4k2

p2

[
h2Λ2n−2 −Λ2n −Λ2 +2

h2 −Λ2 +1
+2

(−h)n −1

h +1

]
.

Proof. By Theorem 2.1 we have

n−1∑
m=0

Φ2
m =

n−1∑
m=0

[
2k

p
(αm −βm)

]2

= 4k2

p2

n−1∑
m=0

(
α2m +β2m −2(αβ)m)

= 4k2

p2

[
n−1∑
m=0

(α2)m +
n−1∑
m=0

(β2)m −2
n−1∑
m=0

(αβ)m

]
.

According to (3) we get

n−1∑
m=0

Φ2
m = 4k2

p2

[
α2n −1

α2 −1
+ β2n −1

β2 −1
−2

(αβ)n −1

αβ−1

]

= 4k2

p2

[
α2β2(α2n−2 +β2n−2)− (α2n +β2n)− (α2 +β2)+2

(αβ)2 − (α2 +β2)+1

]
+ 4k2

p2

[
2

(−h)n −1

h +1

]
.

So by Theorem 2.1 and Theorem 2.2 we deduce that

n−1∑
m=0

Φ2
m = 4k2

p2

[
h2Λ2n−2 −Λ2n −Λ2 +2

h2 −Λ2 +1
+2

(−h)n −1

h +1

]
.
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Theorem 2.6.
LetΛn be as in (2) then we have

n−1∑
m=0

Λm = Λn +hΛn−1 +2k −2

2k +h −1
.

Proof. The proof is similar to Theorem 2.3.

Theorem 2.7.
LetΛn be as in (2) then we have

n−1∑
m=0

ΛmΛm−1 = 2k −Λ3 +hΛ2n−1 −h3Λ2n−3

−h(1+Λ2 +h2)
+ 2k

h

[
(−h)n −1

h +1

]
.

Proof. The proof is similar to Theorem 2.4.

Theorem 2.8.
LetΛn be as in (2) then we have

n−1∑
m=0

Λ2
m = 2−Λ2 +h2Λ2n−2 −Λ2n

1−Λ2 +h2 +2
1− (−h)n

1+h
.

Proof. The proof is similar to Theorem 2.5.
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