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Abstract: The present paper investigates the peristaltic motion of a Newtonian fluid with wall properties in a two dimensional
flexible channel under long wave length approximation. A perturbation method of solution is obtained in terms of
wall slope parameter and closed form of expressions has been derived for axial velocity and pressure gradient. The
effects of elastic parameters and on axial velocity, pressure rise and friction force have been computed numerically. It
is noted that pressure rise decreases with increase in elasticity parameters. The friction force has an opposite behavior
compared with pressure rise.

MSC: 74F10 • 92C10

Keywords: Peristaltic motion • Newtonian fluid • Pressure drop and Friction force
© 2015 The Author. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

Peristalsis is known to be one of the main mechanisms for fluid transport in many biological systems. Peristal-
sis is a mechanism for fluid transport, which is achieved by the passage of progressive waves of area contraction and
expansion over flexible walls of a tube containing fluid. The word Peristalsis stems from the Greek work ’Peristaltikos’
which means clasping and compressing. It consists in narrowing and transverse shortening of a portion of a tube,
which then relaxes while the lower portion becomes shortened and narrowed. In physiology, mechanism is found
in many physiological situations like urine transport from kidney to the bladder through the ureter, swallowing food
through the esophagus, movement of chyme in the gastrointestinal tract, transport of spermatozoa in the ducts effer-
entâĂŹs of the male reproductive organ, movement of ovum in the female fallopian tube, vasomotion of small blood
vessels, motion of spermatozoa in cervical canal, transport of bile in bile duct. Mechanical devices like finger pumps,
roller pumps use peristalsis to pump blood, slurries and corrosive fluids.

The initial mathematical models of peristalsis obtained by a train of sinusoidal waves in an infinitely long sym-
metric channel or tube have been investigated by Shapiro et al. [1] and Fung and Yih [2] have been made on peristalsis
with reference to mechanical and physiological situations. Several studies (Raju and Devanathan [3], Mitra and Prasad
[4], Shubha Verma et al.[5], Venugopal Reddy et al. [6], Raghunath rao et al.[7]) have been made on peristalsis with
reference to mechanical and physiological situations.

The study of peristaltic transport in a symmetric channel has been brought out by Eytan and Elad [8] with an
application in intra uterine fluid flow in a non-pregnant uterus. Mishra and Rao [9] have investigated the flow in an
asymmetric channel generated by peristaltic waves propagating on the walls with different amplitudes and phases.
Furthermore, Haroun [10] studied the effect of wall compliance on peristaltic transport of a Newtonian fluid in an
asymmetric channel. Ebaid [11] studied the effects of magnetic field and wall slip condition on the peristaltic transport
of a Newtonian fluid in an asymmetric channel. Kothandapani and Srinivas [12] discussed the non-linear peristaltic
transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Wang et al.[13] have
studied the magneto hydrodynamic peristaltic flow of a Sisko fluid in a symmetric or asymmetric channel, Sobh [14]
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studied the slip flow in peristaltic transport of a Carreau fluid in an asymmetric channel. Radhakrishnamacharya
et al.[15] studied Influence of wall properties on peristaltic transport with heat transfer. Raghunath rao et al. [16]
investigated the effect of heat transfer on peristaltic transport of Viscoelastic fluid in a channel with wall properties
and Raghunath rao et al.[17] also studied the interaction of peristalsis with heat transfer of Viscoelastic Rivlin Erickson
fluid through a porous medium under the magnetic field.

The present research aimed is to investigate the interaction of peristalsis for the motion of a Newtonian fluid with
wall properties in an asymmetric flexible channel under long wavelength approximation. A perturbation method of
solution is obtained in terms of wall slope parameter and closed form of expressions has been derived for axial velocity
and pressure drop. The effects of elasticity parameters on axial velocity, pressure rise and friction force at upper and
lower wall have been computed numerically.

2. Formulation of the problem

We consider a peristaltic flow of a Newtonian fluid in an asymmetric channel of width d1 +d2 and the walls of
the channel are assumed to be flexible and are taken as a stretched membrane on which traveling sinusoidal waves of
moderate amplitude are imposed.
The geometry of flexible walls are represented by

h 1(x, t ) = d1 +a1Cos
2π

λ
(x − ct ), upper wall (1)

h 2(x, t ) =− d2 −a2Cos

[
2π

λ
(x − ct )+ θ

]
, lower wall (2)

Where a1 , a2 are the amplitudes of the peristaltic waves, ’c’ is the wave velocity, ′λ′ is the wave length, t is the time
and θ (0 É θ É π) is the phase difference. It should be noted that θ = 0 corresponds to symmetric channel with waves
out of phase, θ = π with waves in phase, and further a1 , a2 , d1 , d2 and θ satisfy the following inequality, Mishra and
Rao [9]

a1
2 +a2

2 +2a1a2 cosθ É (d1 +d2)2

The equation of continuity and the equations of motion are
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where u, v are the velocity components, ’p’ is the fluid pressure, ′ρ′ is the density of the fluid, âĂŸυâĂŹ is the coefficient
of kinematic viscosity.
The governing equation of motion of the flexible wall may be expressed as

L

{
h1

h2

}
= p −p0 (6)

where ′L′ is an operator, which is used to represent the motion of stretched membrane with damping forces such that

L ≡−T
∂2

∂x2 +m
∂2

∂t 2 +C
∂

∂t
(7)

Here T is the elastic tension in the membrane, m is the mass per unit area and C is the coefficient of viscous
damping forces, p0 is the pressure on the outside surface of the wall due to tension in the muscles. This tension may
be obtained through the constitutive relation of the muscles when the displacements are known. For simplicity, we
assume p0 = 0.

The horizontal displacement will be assumed zero. Hence the boundary conditions for the fluid are

u = 0 at

{
y = h1

y = h2
(8)

Continuity of stresses requires that at the interfaces of the walls and the fluid p must be same as that which acts
on the fluid at y = h 1 and y = h2. The use of x momentum equation leads to
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(9)
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In view of the incompressibility of the fluid and two-dimensionality of the flow, we introduce the Stream function
ψsuch that

u = ∂ψ

∂y
and v =−∂ψ

∂x
(10)

and introducing non-dimensional variables

x ′ = x

λ
, y ′ = y

d
, u′ = u

c
, v ′ = v

cδ
, ψ′ = ψ

cd
, t ′ = ct

λ
, h1

′ = h1

d1
, h2

′ = h2

d1
, p ′ = pd 2

µcλ
(11)

in equations of motion and the conditions (10)-(2) and (4)-(5), we finally get (after dropping primes)

h 1(x, t ) = 1+aCos2π(x − t ) (12)

h 2(x, t ) =−d −bCos [2π(x − t )+θ] (13)
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Eliminating p from the Eqs. (14)-(15), we get
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where

∇2 = ∂2

∂y2 +δ2 ∂2

∂x2

The non-dimensional parameters are:

R = cd

υ
is the Reynolds number.

a = a1

d1
, b = a2

d1
, d = d2

d1
and d = d2

d1
are geometric parameters.

E1 =− T d 3

λ3ρυc
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λ3ρν
, E3 = C d 3
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are c parameters.

3. Method of solution

We seek perturbation solution in terms of small parameter δ as follows:

ψ=ψ0 +δψ1 +δ2ψ2 + ..... (19)

p = p0 +δ p1 +δ2p2 + ...... (20)

Substituting Eqs. (19)-(20) in Eqs. (14) to (18) and collecting the coefficients of various powers of δ
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The corresponding boundary conditions are
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3.1. Zeroth-order problem

On solving the Eqs. (21) and (22) subject to the conditions (24) and (2), we get

ψ0 = A1
y3

6
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y2

2
+ A3 y (25)

∂p0
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The first order equations are(
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The corresponding boundary conditions are
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3.2. First-order problem

On solving the Eqs. (27) and (28) subject to the conditions (29) and (30), we obtain

ψ1 = R

[
y7

2520
A1 A6 + y6

360
A2 A6 + y5

120
(A4 + A2 A7 + A3 A6 + A1 A8)+ y4

24
(A5 + A3 A7)

]
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6
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2
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(
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(
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2

)
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The pressure rise (drop) over one cycle of the wave can be obtained as

∆ p =
∫ 1

0

d p

d x
d x (33)

where
d p
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+ δ

∂p1
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+ ....

The dimensionless frictional force F at the wall across one wavelength is given by

F1 =
∫ 1

0
h 1

2
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2
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where
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2
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It is observed that, if we put b = d = 1 and θ = 1 then the results of the problem agree with the work of Mitra and Prasad
[4].
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Fig. 1. Effect of the rigidity of the wall E1 on variation of
axial velocity u for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E2 = 0.2,E3 = 0.3

Fig. 2. Effect of the stiffness of the wall E2 on variation of
axial velocity u for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E1 = 0.1,E3 = 0.3

Fig. 3. Effect of the damping nature of the wall E3 on
variation of axial velocity u for d = 0.1,b = 0.1,θ =π/3, a =
0.1,δ= 0.01,R = 1,E1 = 0.1,E2 = 0.2

Fig. 4. Effect of the phase difference θ on variation of axial
velocity u for d = 0.1,b = 0.1, a = 0.1,δ= 0.01,R = 1,E1 =
0.1,E2 = 0.2,E3 = 0.3

Fig. 5. Effect of the rigidity of the wall E1 on variation of
Pressure drop ∆p for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E2 = 0.2,E3 = 0.3

Fig. 6. Effect of the rigidity of the wall E2 on variation of
Pressure drop ∆p for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E1 = 0.1,E3 = 0.3

4. Results and discussions

In this section, we have presented the graphical results of the solutions. The expression for axial velocity u,
pressure rise ∆p, Friction force at upper wall F1 and Friction force at lower wall F2 are calculated numerically using
mathematics software for the different values of the rigidity of the wall (E1), the stiffness of the wall (E2), damping
nature of the wall (E3) and phase difference (θ). The axial velocity u is shown in Figs. 1 to 4, We noticed that the
variation u with respect to E1,E2 and θ is appreciably large in the central region y = 0 and approaches the prescribed
value at y = 1, while the variation with E3 is much less than that u with respect to E3. The axial velocity enhances with
E1,E2,E3,θ. The pressure rise is shown in Figs. 5 to 8. The pressure rise decreases with increase in E1,E2,E3,θ. The
Frictional force F is shown in Figs. 9 to 16 for the different values of E1,E2,E3,θ. Figs. 9-12 represent the variation of
Frictional force F1 at upper wall against y for a different parametric values. These figures show that frictional force at
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Fig. 7. Effect of the damping nature of the wall E3 on
variation of Pressure drop ∆p for d = 0.1,b = 0.1,θ =
π/3, a = 0.1,δ= 0.01,R = 1,E1 = 0.1,E2 = 0.2

Fig. 8. Effect of the phase difference θ on variation of
Pressure drop ∆p for d = 0.1,b = 0.1, a = 0.1,δ= 0.01,R =
1,E1 = 0.1,E2 = 0.2,E3 = 0.3

Fig. 9. Effect of the rigidity of the wall E1 on variation of
Friction force F1 for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E2 = 0.2,E3 = 0.3

Fig. 10. Effect of the stiffness of the wall E2 on variation of
Friction force F1 for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E1 = 0.1,E3 = 0.3

Fig. 11. Effect of the damping nature of the wall E3 on
variation of Friction force F1 for d = 0.1,b = 0.1,θ =
π/3, a = 0.1,δ= 0.01,R = 1,E1 = 0.1,E2 = 0.2

Fig. 12. Effect of the phase difference θ on variation of
Friction force F1 for d = 0.1,b = 0.1, a = 0.1,δ= 0.01,R =
1,E1 = 0.1,E2 = 0.2,E3 = 0.3

upper wall increases with increase in E1,E2,E3,θ. Frictional force at upper wall opposite behavior in comparison with
pressure rise (Sobh) [13]. Figs. 13-16 represents the Frictional force F2 at lower wall. From Figs. 13-14, F2 increases
with E1,E2 and θ in the region y = 0 to y = 0.8 and F2 graphically enhances in magnitude in the remaining region. F2

graphically enhances in magnitude with increase in E3.

5. Conclusions

In the present paper we have discussed the peristaltic transport of a Newtonian fluid with wall properties in an
asymmetric channel. The governing equations of motion are solved analytically using long wave length approxima-
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Fig. 13. Effect of the rigidity of the wall E1 on variation of
Friction force F2 for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E2 = 0.2,E3 = 0.3

Fig. 14. Effect of the stiffness of the wall E2 on variation of
Friction force F2 for d = 0.1,b = 0.1,θ =π/3, a = 0.1,δ=
0.01,R = 1,E1 = 0.1,E3 = 0.3

Fig. 15. Effect of the damping nature of the wall E3 on
variation of Friction force F2 for d = 0.1,b = 0.1,θ =
π/3, a = 0.1,δ= 0.01,R = 1,E1 = 0.1,E2 = 0.2

Fig. 16. Effect of the phase difference θ on variation of
Friction force F2 for d = 0.1,b = 0.1, a = 0.1,δ= 0.01,R =
1,E1 = 0.1,E2 = 0.2,E3 = 0.3

tion. Furthermore, the effect of elastic parameters and phase difference on pressure rise and friction force have been
computed numerically and explained graphically. We conclude the following observations:

1. The axial velocity enhances with E1,E2,E3 and θ.

2. Pressure rise ∆p experiences depreciation with E1,E2,E3 and θ.

3. The frictional force at upper wall increases with increase in E1,E2,E3 and θ.

4. The frictional force at lower wall increases with E1,E2, and θ.

5. F2 graphically enhances in magnitude with increase in E3.

6. We observe that the Friction force F has an opposite behavior compared with pressure rise.
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