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Abstract: In this paper we charecterize the integrability and introduce an explicit expression of first integral then consequently
the curves which are formed by the trajectories of the planar differentials systems of the form{

x′ = Pn
(
x, y

)+xRm
(
x, y

)
y ′ =Qn

(
x, y

)+ yRm
(
x, y

) ,

and {
x′ = x

(
Pn

(
x, y

)+Rm
(
x, y

))
y ′ = y

(
Qn

(
x, y

)+Rm
(
x, y

))
where Pn

(
x, y

)
, Qn

(
x, y

)
, Rm

(
x, y

)
homogeneous polynomials of degree n, n, m respectively. Concrete examples

exhibiting the applicability of our result is introduced.
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1. Introduction and statement of the main results

The autonomous differential system on the plane given by
x ′ = d x

d t
= F

(
x, y

)
,

y ′ = d y

d t
=G

(
x, y

)
.

(1)

where F
(
x, y

)
and G

(
x, y

)
are reals functions

In the qualitative theory of planar dynamical systems see [1–7], one of the most important topics is related to
the second part of the unsolved Hilbert 16th problem, There is a huge literature about limit cycles, most of them
deal essentially with their detection, their number and their stability and rare are papers concerned by giving them
explicitly see [8–13].

There exist three main open problems in the qualitative theory of real planar differential systems, the distinc-
tion between a centre and a focus, the determination of the number of limit cycles and their distribution, and the
determination of its integrability. The importance for searching first integrals of a given system was already noted by
Poincaré in his discussion on a method to obtain polynomial or rational first integrals. One of the classical tools in the

∗ Corresponding author.
E-mail address: bendjeddou@univ-setif.dz (Ahmed Bendjeddou), rachid_boukecha@yahoo.fr (Rachid Boukoucha)

http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:bendjeddou@univ-setif.dz
mailto:rachid_boukecha@yahoo.fr


Ahmed Bendjeddou, Rachid Boukoucha / Int. J. Adv. Appl. Math. and Mech. 3(1) (2015) 110 – 115 111

classification of all trajectories of a dynamical system is to find first integrals, for or more details about first integral
see for instance [14–23].

System (1) is integrable on an open setΩ of R2 if there exists a non constant C 1 function H :Ω→R, called a first
integral of the system onΩ , which is constant on the trajectories of the system (1) contained inΩ, i.e. if

d H
(
x, y

)
d t

= ∂H
(
x, y

)
∂x

F
(
x, y

)+ ∂H
(
x, y

)
∂y

G
(
x, y

)≡ 0 in the points ofΩ.

Moreover, H = h is the general solution of this equation, where h is an arbitrary constant. It is well known that for
differential systems defined on the plane R2 the existence of a first integral determines their phase portrait see [24].

In this paper we are interested in studying the integrability and the curves which are formed by the trajectories
of the 2-dimensional polynomial systems of the form{

x ′ = Pn
(
x, y

)+xRm
(
x, y

)
y ′ =Qn

(
x, y

)+ yRm
(
x, y

) , (2)

and {
x ′ = x

(
Pn

(
x, y

)+Rm
(
x, y

))
y ′ = y

(
Qn

(
x, y

)+Rm
(
x, y

)) (3)

where Pn
(
x, y

)
, Qn

(
x, y

)
, Rm

(
x, y

)
homogeneous polynomials of degree n, n, m respectively.

The autonomous differential system (3) on the plane known as Kolmogorov system see [25] . There are many
natural phenomena which can be modeled the Kolmogorov systems such as mathematical ecology and population
dynamics see [26] chemical reactions, plasma physics see [27], hydrodynamics see [17], economics etc.

We define the trigonometric functions

f1 (θ) = Pn (cosθ, sinθ)cosθ+Qn (cosθ, sinθ)sinθ, f2 (θ) = Rm (cosθ, sinθ) ,

f3 (θ) =Qn (cosθ, sinθ)cosθ−Pn (cosθ, sinθ)sinθ,

g1 (θ) = Pn (cosθ, sinθ)cos2θ+Qn (cosθ, sinθ)sin2θ,

g2 (θ) =Qn (cosθ, sinθ)cosθ sinθ−Pn (cosθ, sinθ)cosθ sinθ.

Our main result on the integrability and the curves which are formed by the trajectories of the planar differentials
systems (2) and (3) is the following.

Theorem 1.1.
Consider polynomials systems (2) and (3), then the following statements hold.
(a) If f3 (θ) 6= 0 and λ 6= 0, then system (2) has the first integral

H
(
x, y

)= (
x2 + y2) λ2 exp

(
−λ

∫ arctan y
x

A (ω)dω

)
−λ

∫ arctan y
x

exp

(
−λ

∫ w
A (ω)dω

)
B (w)d w

where A (θ) = f1 (θ)

f3 (θ)
, B (θ) = f2 (θ)

f3 (θ)
, and λ= n −m −1

Moreover, the curves which are formed by the trajectories of the differential system (2), written as

x2 + y2 =
[

h exp

(
λ

∫ arctan y
x

A (ω)dω

)
+λexp

(
λ

∫ arctan y
x

A (ω)dω

)∫ arctan y
x

exp

(
−λ

∫ w
A (ω)dω

)
B (w)d w

] 2
λ

(b) If f3 (θ) 6= 0 and λ= 0, then system (2) has the first integral

H
(
x, y

)=√
x2 + y2 exp

(
−

∫ arctan y
x

(A (ω)+B (ω))dω

)

Moreover, the curves which are formed by the trajectories of the differential system (2), written as

√
x2 + y2 = h exp

(∫ arctan y
x

(A (ω)+B (ω))dω

)

(c) If f3 (θ) = 0 for all θ ∈R, then system (2) has the first integral H
(
x, y

)= y

x
.
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Moreover, the curves which are formed by the trajectories of the differential system (2), written as y = hx where
h ∈R

(d) If g2 (θ) 6= 0 and λ+1 6= 0, then system (3) has the first integral

H
(
x, y

)= (
x2 + y2) λ+1

2 exp

(
− (λ+1)

∫ arctan y
x

C (ω)dω

)
− (λ+1)

∫ arctan y
x

exp

(
− (λ+1)

∫ w
C (ω)dω

)
D (w)d w

where C (θ) = g1 (θ)

g2 (θ)
, D (θ) = f2 (θ)

g2 (θ)
, and λ= n −m −1

Moreover, the curves which are formed by the trajectories of the differential system (3), written as

x2 + y2 =
 h exp

(
(λ+1)

∫ arctan y
x C (ω)dω

)
+

(λ+1)exp
(
(λ+1)

∫ arctan y
x C (ω)dω

)∫ arctan y
x exp

(− (λ+1)
∫ w C (ω)dω

)
D (w)d w


2

λ+1

(e) If g2 (θ) 6= 0 and λ+1 = 0, then system (3) has the first integral

H
(
x, y

)=√
x2 + y2 exp

(
−

∫ arctan y
x

(C (ω)+D (ω))dω

)

Moreover, the curves which are formed by the trajectories of the differential system (3), written as√
x2 + y2 = h exp

(∫ arctan y
x

(C (ω)+D (ω))dω

)

(f) If g2 (θ) = 0 for all θ ∈R, then system (3) has the first integral H
(
x, y

)= y

x
,

Moreover, the curves which are formed by the trajectories of the differential system (3), written as y = hx where
h ∈R

Proof. In order to prove our results (a), (b) and (c) we write the polynomial differential system (2) in polar coordinates
(r,θ) , defined by x = r cosθ, and y = r sinθ, then system (2) becomes{

r ′ = f1 (θ)r n + f2 (θ)r m+1

θ′ = f3 (θ)r n−1 (4)

where the functions f1 (θ) , f2 (θ) and f3 (θ) are given in introduction, and r ′ = dr

d t
, θ′ = dθ

d t
.

If f3 (θ) 6= 0, and λ 6= 0
We take as new independent variable the variable θ, then the differential system (4) becomes the differential

equation

dr

dθ
= A (θ)r +B (θ)r 1−λ (5)

where the functions A (θ) and B (θ) are the ones defined in statement (a) of theorem 1, and λ= n −m −1.
We note that the differential equation (5) is a Bernoulli differential equation. By introducing the standard change

of variables ρ = rλ the Bernoulli differential equation becomes the linear equation

dρ

dθ
=λ(

A (θ)ρ+B (θ)
)

(6)

The general solution of linear equation (6) is

ρ (θ) = exp

(
λ

∫ θ

A (ω)dω

)[
α+λ

∫ θ

exp

(
−λ

∫ w
A (ω)dω

)
B (w)d w

]
where α ∈R, which has the first integral

H
(
x, y

)= (
x2 + y2) λ2 exp

(
−λ

∫ arctan y
x

A (ω)dω

)
−λ

∫ arctan y
x

exp

(
−λ

∫ w
A (ω)dω

)
B (w)d w

The curves H = h with h ∈R, which are formed by trajectories of the differential system (2), can be written as

x2 + y2 =
 h exp

(
λ

∫ arctan y
x A (ω)dω

)
+

λexp
(
λ

∫ arctan y
x A (ω)dω

)∫ arctan y
x exp

(−λ∫ w A (ω)dω
)

B (w)d w


2
λ
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Hence statement (a) of Theorem 1.1 is proved.
Suppose now that f3 (θ) 6= 0 , and λ= 0.
Taking as new independent variable the coordinate θ, this differential system (4) writes

dr

dθ
= (A (θ)+B (θ))r (7)

The general solution of equation (7) is

r (θ) =αexp

(∫ θ

(A (ω)+B (ω))dω

)
where α ∈R , which has the first integral

H
(
x, y

)=√
x2 + y2 exp

(
−

∫ arctan y
x

(A (ω)+B (ω))dω

)

The curves H = h with h ∈R, which are formed by trajectories of the differential system (2), can be written as√
x2 + y2 = h exp

(∫ arctan y
x

(A (ω)+B (ω))dω

)

Hence statement (b) of Theorem 1.1 is proved.
Assume now that f3 (θ) = 0 for all θ ∈ R, then, from (4) it follows that θ′ = 0. So the straight lines through the

origin of coordinates of the differential system (2) are invariant by the flow of this system. Hence, H
(
x, y

)= y

x
is a first

integral of the system, then since all straight lines through the origin are formed by trajectories. Then the curves H = h
with h ∈R, which are formed by trajectories of the differential system (2), can be written as y = hx where h ∈R.
This completes the proof of statement (c) of Theorem 1.1.

In order to prove our results (d) , (e) and
(

f
)

, we write the polynomial differential system (3) in polar coordinates
(r,θ) , defined by x = r cosθ, and y = r sinθ, then system (3) becomes

{
r ′ = g1 (θ)r n+1 + f2 (θ)r m+1

θ′ = g2 (θ)r n (8)

where f2 (θ) , g1 (θ) , g2 (θ) the trigonometric functions are given in introduction.
If g2 (θ) 6= 0 , and λ+1 6= 0
Taking as new independent variable the coordinate θ, then the differential system (8) becomes the differential

equation

dr

dθ
=C (θ)r +D (θ)r−λ (9)

where the functions C (θ) and D (θ) are the ones defined in statement (d) of Theorem 1, and λ= n −m −1
which is a Bernoulli equation. By introducing the standard change of variables ρ = rλ+1 we obtain the linear

equation

dρ

dθ
= (λ+1)

(
C (θ)ρ+D (θ)

)
(10)

The general solution of linear Eq. (10) is

ρ (θ) = exp

(
(λ+1)

∫ θ

C (ω)dω

)[
α+ (λ+1)

∫ θ

exp

(
− (λ+1)

∫ w
C (ω)dω

)
D (w)d w

]
where α ∈R, which has the first integral

H
(
x, y

)= (
x2 + y2) λ+1

2 exp

(
− (λ+1)

∫ arctan y
x

C (ω)dω

)
− (λ+1)

∫ arctan y
x

exp

(
− (λ+1)

∫ w
C (ω)dω

)
D (w)d w

The curves H = h with h ∈R, which are formed by trajectories of the differential system (3), can be written as

x2 + y2 =
 h exp

(
(λ+1)

∫ arctan y
x C (ω)dω

)
+

(λ+1)exp
(
(λ+1)

∫ arctan y
x C (ω)dω

)∫ arctan y
x exp

(− (λ+1)
∫ w C (ω)dω

)
D (w)d w


2

λ+1

Hence statement (d) of Theorem 1.1 is proved.
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Suppose now that g2 (θ) 6= 0 , and λ+1 = 0
Taking as new independent variable the coordinate θ, this differential system (8) writes

dr

dθ
= (A (θ)+B (θ))r (11)

The general solution of equation (11) is

r (θ) =αexp

(∫ θ

(C (ω)+D (ω))dω

)
where α ∈R , which has the first integral

H
(
x, y

)=√
x2 + y2 exp

(
−

∫ arctan y
x

(C (ω)+D (ω))dω

)
The curves H = h with h ∈R, which are formed by trajectories of the differential system (3), can be written as√

x2 + y2 = h exp

(∫ arctan y
x

(C (ω)+D (ω))dω

)
Hence statement (e) of (1.1) is proved.

Assume now that g2 (θ) = 0 for all θ ∈ R, then, from system (8) it follows that θ′ = 0. So the straight lines through

the origin of coordinates of the differential system (3) are invariant by the flow of this system. Hence, H
(
x, y

)= y

x
is a

first integral of the system, then since all straight lines through the origin are formed by trajectories. Then the curves
H = h with h ∈R, which are formed by trajectories of the differential system (3), can be written as y = hx where h ∈R.
This completes the proof of statement (f) of Theorem 1.1.

2. Examples

The following examples are given to illustrate our result.

Example 2.1.
if we take P3

(
x, y

)= x3 −x2 y +x y2 − y3, Q3
(
x, y

)= x3 +x2 y +x y2 + y3, R0
(
x, y

)=−1, then system (2) reads{
x ′ =−x +x3 −x2 y +x y2 − y3

y ′ =−y +x3 +x2 y +x y2 + y3

which has the first integral H
(
x, y

)= (
x2 + y2 −1

)
exp

(
−2arctan

y

x

)
.

The curves which are formed by the trajectories of the differential system written as x2+y2−1 = h exp
(
2arctan

y

x

)
where h ∈R.

Example 2.2.
if we take P3

(
x, y

)= 2x3 +2x y2, Q3
(
x, y

)= 4x3 + y3 +4x y2 +x2 y, R2
(
x, y

)= 3x2 +3y2, then system (3) reads{
x ′ = x

(
2x3 +2x y2 +3x2 +3y2

)
y ′ = y

(
4x3 + y3 +4x y2 +x2 y +3x2 +3y2

)
which has the first integral H

(
x, y

)= (2x +3)
(
2x + y

)
x

(
2x + y +3

) .

The curves which are formed by the trajectories of the differential system written as
(2x +3)

(
2x + y

)
x

(
2x + y +3

) = h where

h ∈R.

Example 2.3.
if we take P3

(
x, y

)= x3 +x y2, Q3
(
x, y

)= 2x3 + y3 +2x y2 +x2 y, R2
(
x, y

)=−x2 − y2, then system (3) reads{
x ′ = x

(
x3 +x y2 −x2 − y2

)
y ′ = y

(
2x3 + y3 +2x y2 +x2 y −x2 − y2

)
which has the first integral H

(
x, y

)= −x − y +x y +x2

−x +x y +x2 .

The curves which are formed by the trajectories of the differential system written as
−x − y +x y +x2

−x +x y +x2 = h where

h ∈R.
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