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Abstract: In this paper, a spectral-based numerical study is presented for the fully developed two-dimensional flow of viscous
incompressible fluid through a rotating curved duct with square and rectangular cross section. Numerical calcu-
lations are carried out for the Dean number, Dn = 1000, with positive rotation of the duct for the Taylor number
Tr =100, 500 and 1000 over the aspect ratios 1, 2 and 3. Spectral method is used as a basic tool to solve the system of
non-linear partial differential equations. The main objective of the present study is to discuss the unsteady flow be-
havior i.e whether the unsteady flow is steady-state, periodic or chaotic, if 77 is increased. In order to investigate the
non-linear behavior of the unsteady solutions, time evolution calculations of the unsteady solutions are performed
and it is found that for the rotating square duct flow (aspect ratio 1) periodic flow turns into steady-state flow if T is
increased. It is found that the unsteady flow is periodic for Tr = 100 but it turns into steady-state at 7r = 500 and 1000.
For the rectangular duct flow of aspect ratios 2 and 3, however, time evolution calculations show that the unsteady
flow is always chaotic whatever the value of Tr is. Typical contours of secondary flow patterns and axial flow distri-
bution are obtained, and it is found that the unsteady flow is a two-, three- and four-vortex solutions for the rotating
curved square duct flow, while four- to twelve-vortex solutions for the rotating curved rectangular duct flows. It is also
found that the axial flow is shifted near the outer wall of the duct if Tr is increased in the positive direction.
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1. Introduction

Due to engineering applications and their intricacy, flow in a rotating curved duct has become one of the most
challenging research fields of fluid mechanics. Recently, great attention has been paid for the study of flows and heat
transfer through rotating curved ducts and channels because of their ample applications in chemical, mechanical,
bio-mechanical and biological engineering. A quantitative analogy between flows in stationary curved pipes and
orthogonally rotating straight pipes has been reported by Ishigaki [1, 2] . Taking this analogy as a basis, this study
describes the characteristics of more general and complicated flow in rotating curved ducts, which are relevant to
systems involving helically or spirally coiled pipes rotating about the coil axis. Such rotating flow passages are used in
cooling systems in rotating machinery such as gas turbines, turbo-machinery, electric generators and electric motors.
The readers are referred to Berger et al. [3] and Nandakumar and Masliyah [4] for some outstanding reviews on curved
duct flows.

One of the interesting phenomena of the flow through a curved duct is the bifurcation of the flow because gen-
erally there exist many steady solutions due to channel curvature. Many researches have performed experimental and
numerical investigation on developing and fully developed curved duct flows. An early complete bifurcation study of
two-dimensional (2D) flow through a curved duct with square cross-section was performed by Winters [5]. However
an extensive treatment of the flow through a curved square duct was performed by Mondal et al. [6]. He found a close

* Corresponding author.
E-mail address: rnmondal71@yahoo.com (Rabindra Nath Mondal)


http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:rnmondal71@yahoo.com

Rabindra Nath Mondal et al. / Int. ]. Adv. Appl. Math. and Mech. 3(1) (2015) 10-23 11

relationship between the unsteady solutions and the bifurcation diagram of steady solutions. Ishigaki [2] examined
the flow structure and friction factor numerically for both the counter-rotating and co-rotating curved circular pipe
with a small curvature. Selmi et al. [7] examined the combined effects of system rotation and curvature on the bifur-
cation structure of two-dimensional flows in a rotating curved duct with square cross section. Selmi and Nandakumer
[8] and Yamamoto et al. [9] performed the studies on the flow characteristics in rotating curved rectangular ducts.
Yamamoto et al. [9] , employing the spectral method, examined the flow structure and the flow rate ratio for the flow
in a rotating curved square duct and found a six-cell phenomenon of the secondary flow. Recently, Mondal et al.
[10] performed comprehensive numerical study on bifurcation structure and stability of solutions for laminar forced
convection in a rotating curved duct of square cross section, and revealed some new features on fluid flow.

The study of radiative heat and mass transfer in convection flow is found to be most important in industrial and
technologies. The applications are often found in situation such as fiber and granules insulation, geothermal systems
in the heating and cooling chamber, fossil fuel combustion, energy processes and astro-physical flows. Further, MHD
flows assumes greater significance in several biological and engineering systems. The study of heat and mass trans-
fer with chemical reaction is of particular interest to engineers and scientists due to its applications in several areas in
many branches of science, engineering and technology. Bhaskar Kalita [11] performed unsteady free convection MHD
flow of an incompressible viscous electrically conducting fluid under the action of transverse uniform magnetic field
between two heated vertical plates by using integral transform technique. Darji and Timol [12] analyzed free convec-
tive boundary-layer problem due to the motion of an elastic surface into an electrically conducting non-Newtonian
fluid. In that paper, particular attention was paid on the deductive group which provides the similarity solution of the
problem. Recently, Reddy [13] analyzed the effects of first order homogeneous chemical reaction and thermal diffu-
sion on hydro-magnetic free convection heat and mass transfer flow of viscous dissipative fluid past a semi-infinite
vertical moving porous plate embedded in a porous medium in the presence of thermal radiation.

The fluid flowing in a rotating curved duct is subjected to two forces: the Coriolis force, caused by the rotation of
the duct, and centrifugal force caused by the curvature of the duct. These two forces affect each other, as a result com-
plex behavior of the secondary flow and the axial flow can be obtained (Wang and Cheng [14] ). For isothermal flows
of a constant property fluid, however, the Coriolis force tends to produce vorticity while centrifugal force is purely
hydrostatic (Zhang et al. [15] ). When a temperature induced variation of fluid density occurs for non-isothermal
flows, both Coriolis and centrifugal type buoyancy forces can contribute to the generation of vorticity (Mondal et al.
[16]). These two effects of rotation either enhance or counteract each other in a non-linear manner depending on the
direction of wall heat flux and the flow domain. Therefore, the effect of the rotation of the system is more subtle and
complicated and yields new; richer features of flow and heat transfer in general, bifurcation and stability in particular,
for non-isothermal flows. Mondal et al. [16] performed numerical prediction of the non-isothermal flows through a
rotating curved square duct and revealed some of such new features. They performed numerical investigation of the
flows with a temperature difference between the vertical sidewalls for small Grashof number and obtained multiple
branches of solutions. Very recently, Mondal et al. [17] investigated the combined effects of the Coriolis force and
the centrifugal force on the flows in a rotating curved square duct numerically. The secondary flow characteristics
in a curved square duct were investigated experimentally by using visualization method by Yamamoto et al. [18] .
Three-dimensional incompressible viscous flow and heat transfer in a rotating U-shaped square duct were studied
numerically by Nobari et al. [19]. The effects of wall curvature and rotation on the flow field and heat transfer consid-
ering different directions of rotation were presented in that paper. However, there is no known study on bifurcation
and unsteady flow characteristics in a rotating curved square or rectangular duct with large rotational speed. The
present paper is, therefore, an attempt to fill up this gap.

Unsteady flows by time evolution calculation of curved duct flows was first initiated by Yanase and Nishiyama
[20] for a rectangular cross section. In that study, they investigated unsteady solutions for the case where dual solu-
tions exist. However, time-dependent behavior of the flow in a curved rectangular duct over a wide range of aspect
ratios was investigated, in detail, by Yanase et al. [21] numerically. They performed time-evolution calculations of the
unsteady solutions with and without symmetry condition, and observed that periodic oscillations are available with
symmetry condition while aperiodic time evolutions without symmetric condition. Wang and Yang [22, 23] performed
numerical as well as experimental investigation on fully developed periodic oscillation in a curved square duct. Flow
visualization in the range of Dean numbers from 50 to 500 was carried out in their experiment. They showed, both
experimentally and numerically, that the temporal oscillation takes place between symmetric/asymmetric 2-cell and
4-cell flows where there are no stable steady flows. Applying spectral method, Yanase et al. [24] performed compre-
hensive numerical study of the time-dependent solutions for the non-isothermal flows through a differentially heated
curved rectangular duct, and studied the effects of secondary flows on convective heat transfer. In order to study
the time-dependent behavior of the unsteady solutions, recently, Mondal et al. [25] performed numerical prediction
of the unsteady solutions through a stationary curved square duct flow for the isothermal flows. They showed that
periodic solutions turn into chaotic solution through a multi-periodic solution, if the Dean number is increased no
matter what the curvature is. However, transient behavior of the unsteady solutions, such as periodic, multi-periodic
or chaotic solutions are yet unresolved for the flow through a rotating curved rectangular duct at large pressure gradi-
ent and large rotational speed. This motivated the present study to investigate the non-linear behavior of the unsteady
solutions by time-evolution calculation.

In the present study, a comprehensive numerical study is presented for fully developed two-dimensional flow
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of viscous incompressible fluid through rotating curved ducts of square and rectangular cross section. Studying the
effects of rotation on the unsteady flow characteristics, caused by the combined action of the centrifugal and Coriolis
forces, is an important objective of the present study.

2. Flow model and mathematical formulations

Consider a hydro dynamically and thermally fully developed two-dimensional flow of viscous incompressible
fluid through a rotating curved duct with square and rectangular cross section. Let 2k and 2/ be the height and the
width of the cross section. Fig. 1 shows the coordinate system, where C is the center of the duct cross-section and L is
the radius of curvature of the duct. The x’and y’ axes are taken to be in the horizontal and vertical directions respec-
tively, and 7' is the coordinate along the center-line of the duct, i.e., the axial direction. The dimensional variables

v
are then non-dimensionalized by using the representative length [, the representative velocity Uy = 7 where v is the

kinematic viscosity of the fluid. We introduce the non-dimensional variables defined as

Fig. 1. Rotating coordinate system
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where, u, v and w are the non-dimensional velocity components in the x, yand z directions, respectively; ¢ is the

non-dimensional time, P is the non-dimensional pressure, § is the non-dimensional curvature defined as 6§ = I

Henceforth, all the variables are non-dimensionalized if not specified. Since the flow field is uniform in the z direction,
the sectional stream function v is introduced in the s and y-directions as
1 oy 1 61//

= _, = 1
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A new coordinate variable yis introduced in the j direction asy = a y, where a = — is the aspect ratio of the duct
cross section. Then, the basic equations for w and 1y are expressed in terms of non-dimensional variables as
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The non-dimensional parameters Dn, the Dean number, Tr, the Taylor number which appear in Egs. (2) and
(3) are defined as:

_GP 2l 2v2507F

D '
" u \ L vl

(5)

where, p is the viscosity of the fluid. In the present study, we take the curvature is constant as § = 0.1 and aspect ratio
a =1 (square duct) and a = 2 and 3 (rectangular duct). The rigid boundary conditions used here for w and vy are as

oy oy
wxly)=wkx, ) =yElLy) =y £l) = a(il,y) = W(X'ﬂ) =0 (6)

There is a class of solutions which satisfy the following symmetry condition with respect to the horizontal planey = 0.

w(x;_)/y t) = W(x»—y, t)) } (7)

W(xry; t) = —W(X,—y; t)»

The solution which satisfies the condition (7) is called a symmetric solution, and that which does not an asym-
metric solution.

3. Numerical calculations
3.1. Method of numerical calculation

In order to solve the Egs. (2) and (3) numerically the spectral method is used. This is the method which is
thought to be the best numerical method to solve the Navier-Stokes equations as well as the energy equation [Gottlieb
and Orazag [26] ]. By this method the variables are expanded in a series of functions consisting of the Chebyshev
polynomials. That is, the expansion functions

=(1-x%)Cpl),
Pn(x)=(1-x°) n(x)} ®

Wa(x) = (1 -x%)2C,(x)

where C,,(x) = cos(ncosf1 (x)) is the nth order Chebyshev polynomial. w(x, y, f) and ¥(x, y, t) are expanded in
terms of ¢, (x)and ¥, (x) as

M N
Wy, 0= Y Wnn()Pm (X)Pn(y)
m=0n=0

M N 9
VD= Y YmnOYm (X)W, (y).

m=0n=0

where, Mand N are the truncation numbers in the x and ydirections respectively. The expansion coefficients w,,,and
W mn are then substituted into the basic Egs. (2) and (3) and the collocation method is applied. As a result, the nonlin-
ear algebraic equations forw,,,and v ,,,,are obtained. The collocation points are taken to be

b3 (1 ! )
M+2
i
dise)
N+2
where i =1,..., M+1andj = 1,..., N+ 1. In this study, for necessary accuracy of the solutions, we use M = 20 and N = 20
for the square duct flow (aspect ratio 1) while M = 20 and N = 40 for rectangular duct flow of aspect ratio 2 and M = 20
and N = 60 for aspect ratio 3. In order to calculate the unsteady solutions, the Crank-Nicolson and Adams-Bashforth

methods together with the function expansion (9) and the collocation methods are applied. Details of the method is
available in Mondal et al. [6].

X; = COS , i=1,..,M+1,

(10

yi =Cos , j=lL.,N+1.

3.2. Resistance coefficient

The resistant coefficient A is used as the representative quantity of the flow state. It is also called the hydraulic
resistance coefficient, and is generally used in fluids engineering, defined as

Pi-Py A1 2

ae a2 (b
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where, quantities with an asterisk (*) denote dimensional ones, ( )stands for the mean over the cross section of the
duct and d, is the hydraulic diameter. The main axial velocity (w" ) is calculated by

1 1

v

(w*) = fdxfw x,7,t)dy. (12)
4\/2(561[71 4 ( Y ) Y

Since (P; — P;) /A« =G, A is related to the mean non-dimensional axial velocity (w) as

1= 8a\v26Dn

= , 13
(1 + a) (w)? (13

where, (w) = V261(w™) /v. In the present study, A is used to perform time evolution of the unsteady solutions.

4. Results and discussion

4.1. CaseI: Square duct (Aspect ratio 1)

4.1.1. Time evolution of the unsteady solutions for 7r = 100

In order to study the non-linear behavior of the unsteady solution, we first investigate time evolution of the
resistance coefficient for aspect ratio 1 (square duct). We first studied time evolution of A for Dn = 1000 and ¢r = 100
as shown in Fig. 2. It is found that the flow is periodic for for Dn = 1000 and ¢r = 100. Typical contours of secondary
flow patterns and axial flow distribution are shown in Fig. 3 for one period of oscillation. From this figure we find that
secondary flow is an asymmetric two-, three-, and four-vortex solution for the periodic oscillation. Fig. 3 shows that
the axial flow shifted to the outer wall of the duct where the Dean vortices are generated.

0.315F Dn=1000
Tr=100
0.3}
A
0.285
0.27}
20 25 30

Time

Fig. 2. Time evolution of A for the unsteady solutions at Dn = 1000 and T = 100 for the aspect ratio 1 (a =1)

Fig. 3. Contours of secondary flow patterns (top) and axial flow distribution (bottom) for Dn = 1000 and Tr = 100 at time
26.10<£t<27.10
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4.1.2. Time evolution of the unsteady solutions for 77 = 500

We studied time evolution of A for Dn = 1000 and Tr = 500 as shown in Fig. 4(a). As seen in Fig. 4(a), the unsteady
flow is a steady-state solution for Tr = 500. Since the flow is steady-state, we show a single contour of secondary flow
pattern and axial flow distribution in Fig. 4(b). As seen in Fig. 4(b), the secondary flow is a symmetric two-vortex
solution.
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0.56 Tr=500
0.48}

A 04 : .

0.32}
0.24}

0 r: 3 13 16

Time
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Fig. 4. (a) Time evolution of A for Dn = 1000 and Tr = 500 for the aspect ratio 1. (b) Contours of secondary flow pattern and axial
flow distribution for Dn = 1000 and Tr = 500 at time ¢ = 16.0

4.1.3. Time evolution of the unsteady solutions for 7r = 1000

We performed time evolution of A for Dn = 1000 and Tr = 1000 as shown in Fig. 5(a). We find that the flow is
also steady-state forTr = 1000. Since the flow is steady-state, we show a single contour of secondary flow pattern and
axial flow distribution in Fig. 5(b), where it is found that the secondary flow is also symmetric two-vortex solution.
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Fig. 5. (a) Time evolution of A for Dn = 1000 and Tr = 1000 for the aspect ratio 1. (b) Contours of secondary flow pattern and axial
flow distribution for Dn = 1000 and Tr = 1000 at time ¢ = 3.0

4.2. Case II: Rectangular duct (Aspect ratio 2)

4.2.1. Time Evolution of the unsteady solutions for 7r = 100

In order to study the non-linear behavior of the unsteady solution, then we investigated time evolution of A for
the curved rectangular duct of aspect ratio a = 2. We studied time evolution of A for Dn = 1000 and Tr = 100 as shown
in Fig. 6(a). Fig. 6(a) shows that the flow oscillates irregularly that means the flow is chaotic for Tr = 100. Typical
contours of secondary flow patterns and axial flow distribution for Dn = 1000 and Tr = 100 are shown in Fig. 6(b) for
26.0 < t < 28.0. As seen in Fig. 6(b), the secondary flow is four- to six-vortex solution. Fig. 6(b) also shows that the axial
flow is shifted near the outer wall of the duct, and it is consistent with the secondary vortices.
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Dn=1000
0.2k Te=100
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Fig. 6. (a) Time evolution of A for Dn = 1000 and Tr = 100 for the aspect ratio 2 (a = 2). (b) Contours of secondary flow patterns
(top) and axial flow distribution (bottom) for Dn = 1000 and 77 = 100 at time 26.0 < ¢ < 28.0

4.2.2. Time Evolution of the unsteady solutions for 7r = 500

We executed time evolution of A for Dn = 1000 and Tr = 500 as shown in the Fig. 7(a). We find that the flow
also oscillates irregularly that is the flow is chaotic for Tr = 500. Typical contours of secondary flow patterns and axial
flow distribution for Dn = 1000 and Tr = 500 are shown in Fig. 7(b). As seen in Fig. 7(b), the secondary flow is four-
to six-vortex solution for Tr = 500. The axial flow distribution shows that it is shifted to the outer wall of the duct and
consistent with the secondary vortices as shown in Fig. 7(b).

4.2.3. Time Evolution of the unsteady solutions for 7r = 1000

We studied time evolution of A for Dn = 1000 and Tr = 1000 as shown in Fig. 8(a). We find that the flow also
oscillates irregularly that means it is chaotic for Tr = 1000. The axial flow is shifted to the outer wall and the flow is
consistent with the secondary flow as shown in Fig. 8(b). Typical contours of secondary flow pattern and axial flow
distribution is shown in Fig. 8(b) for Dn = 1000 and Tr = 1000. As seen in Fig. 8(b), the secondary flow is a six-vortex
solution for the chaotic oscillation at Tr = 1000.

4.3. Case III: Rectangular duct (Aspect ratio 3)

4.3.1. Time Evolution of the unsteady solutions for 7r = 100

We investigated time evolution of A for the flow through a curved rectangular duct of aspect ratio a = 3. Fig. 9(a)
shows time evolution results for Dn = 1000, where we find that the unsteady flow oscillates irregularly that means the
flow is chaotic for for Dn = 1000 and Tr = 100 for the aspect ratio 3. Typical contours of secondary flow patterns and
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Fig. 7. (a) Time evolution of A for Dn = 1000 and Tr = 500 for the aspect ratio 2. (b) Contours of secondary flow patterns (top) and
axial flow distribution (bottom) for Dn = 1000 and 77 = 500 at time 19.0 < ¢ < 19.50

axial flow distribution for Dn = 1000 and Tr = 100 are shown in Fig. 9(b). As seen in Fig. 9(b), the secondary flow is an
asymmetric four- to eight-vortex solution. Fig. 9(b) also shows that the axial flow is shifted near the outer wall of the
duct and they are consistent with the secondary vortices.

4.3.2. Time evolution of the unsteady solutions for 77 = 500

We studied time evolution of A for Dn = 1000 and Tr =500 as shown in Fig. 10(a). Fig. 10(a) shows that the flow
is chaotic for Dn = 1000 and Tr = 500. Typical contours of secondary flow patterns and axial flow distribution for
Dn =1000 and Tr =500 are shown in Fig. 10(b) over the time interval 9.0 < £ <9.5. As seen in Fig. 10(b), the secondary
flow is an eight to twelve-vortex solution. Maximum axial flow is found to be shifted to the outer wall of the duct and
the flow is consistent with the secondary flows as shown in Fig. 10(b).

4.3.3. Time evolution of the unsteady solutions for 7r = 1000

We performed time evolution of A for Dn = 1000 and 77 = 1000 as shown in Fig. 11(a). We find that the flow also
oscillates irregularly, that is, the flow is strongly chaotic for Tr = 1000. Typical contours of secondary flow patterns and
axial flow distribution for Dn = 1000 and Tr = 1000 are shown in Fig. 11(b) over the time interval 34.0 < ¢ < 35.50. As
seen in Fig. 11(b), the secondary flow is ten- to twelve-vortex solution. It is found that maximum axial flow is shifted
near the outer wall of the duct as shown in Fig. 11(b). In this study;, it is found that maximum number of secondary
vortices is attained as the aspect ratio and the rotational speed is increased simultaneously.
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Fig. 8. (a) Time evolution of A for Dn = 1000 and Tr = 1000 for the aspect ratio a = 2 (b). Contours of secondary flow patterns (top)
and axial flow distribution (bottom) for Dn = 1000 and Tr = 1000 at time 9.0 < £ < 10.0
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Fig. 9. (a) Time evolution of A for Dn = 1000 and Tr = 100 for the aspect ratio 3 (a = 3). (b) Contours of secondary flow patterns
(top) and axial flow distribution (bottom) for Dn = 1000 and Tr = 100 at time 9.0 < £ < 10.0
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Fig. 10. (a) Time evolution of A for Dn = 1000 and T'r = 500 for the aspect ratio 3. (b) Contours of secondary flow (top) and axial
flow distribution (bottom) for Dn = 1000 and Tr =500 at9.0 < r < 9.5
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Fig. 11. (a) Time evolution of A for Dn = 1000 and Tr = 1000 for the aspect ratio 3. (b). Secondary flow patterns (top) and axial
flow distribution for Dn = 1000 and Tr = 1000
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5. Conclusion

A numerical study is presented for the fully developed two-dimensional flow of viscous incompressible fluid
through a rotating curved duct with square and rectangular cross sections by using a spectral method. Numerical
calculations were carried out for the constant Dean number, Dn = 1000, over the Taylor number Tr = 100,500 and
1000 for the aspect ratios 1, 2 and 3.

We investigated unsteady flow behavior and obtained contours of secondary flow patterns and axial flow distri-
bution for such flows at several values of Tr. In order to study the non-linear behavior of the unsteady solution, we first
investigated time evolution of the resistance coefficient A for the positive rotation of the curved square duct (aspect
ratio 1) and it is found that the flow is periodic for Tr = 100 but steady-state for Tr = 500 and 1000. The secondary flow
is asymmetric two- and four-vortex solutions for Tr = 100 but symmetric two-vortex for Tr = 500 and 1000. Thus we
see that if Tr is increased the periodic flow turns into steady-state solution. Then we investigated unsteady solutions
for the curved rectangular duct flow of aspect ratio 2 and 3 for Dn = 1000 at Tr = 100,500, 1000and it is found that the
unsteady flow is a chaotic solution for any value of Tr investigated in this study. We obtained contours of secondary
flow patterns and axial flow distribution for the chaotic oscillation at the above-mentioned parameters and it is found
that the secondary flow is six- to eight-vortex solutions for the aspect ratio 2; however, for the aspect ratio 3, we see
that the secondary flow is four- to twelve-vortex solutions. It is found that if Tr is increased the number of secondary
vortices also increases at large aspect ratio. It is also found that the maximum axial flow is shifted near the outer wall
of the duct as Tr is increased.
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