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Abstract: In this paper, an investigation is made to study the boundary layer flow of an electrically conducting, viscous incom-
pressible nanofluid over moving surface in the presence of uniform magnetic field with thermal radiation and Chem-
ical reaction. The governing model of partial differential equations for momentum, temperature and concentration
are transformed into non linear ordinary coupled differential equations by using a scaling group of transformation.
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1. Introduction

The fluid flow over a moving surface has potential applications and importance in several technical and in-
dustrial processes such as in the extrusion of polymer sheet from a die, the lamination and melt-spinning process
in the extrusion of polymers or the cooling of a large metallic plate in a bath, glass blowing continuous casting and
spinning of fibers. Also magneto hydrodynamic (MHD)has a great importance in many areas of science, engineering,
petroleum industries and agriculture field. Several authors [1-4] have investigated the problem under different flow
geometry.

The term "nanofluid" represents the fluid in which nano-scale particles are suspended in the base fluid with low
thermal conductivity such as water, ethylene glycol mixture and oils. Nanofluids have the potential to reduce thermal
resistances,and industrial groups such as electronics, medical, food and manufacturing which gives benefit from such
improved heat transfer. Also nanofluids can flow smoothly through micro channels without clogging them as they are
very small. Due to this fact many researchers have attracted to investigate the problem of heat transfer characteristics
in nanofluids and they found that in the presence of the nano particles in the fluids, the effective thermal conductivity
of the fluid and heat transfer characteristics increases appreciably. Firstly the concept of "nanofluid" was introduced
by the Choi [5]. The addition of a very small amount of nano particles to conventional heat transfer liquids increased
the thermal conductivity of the fluid up to twice was shown by Choi et al. [6]. The characteristic feature of nanofluids
is a thermal conductivity enhancement which is suggested by Masuda et al. [7]. This phenomenon suggests the
possibility nanofluids in advanced nuclear systems Buongiorno and Hu [8]. A detailed survey of convective transport
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is given by Buongiorno [9]. In recent years, most of the authors [10-14] have contributed to study convective flows of
nanofluids which are given in the references.

Radiation effects are very important especially at high operating temperatures in the field like space technol-
ogy. Hence the study of heat transfer with radiation has becomes very important, particularly in designing pertinent
equipment for use in engineering processes with high temperatures. In recent years, most of the authors have stud-
ied effects of thermal radiation. Jagdish Prasad and Shateyi [15] investigated a numerical approach for MHD laminar
boundary layer flow and heat transfer of nanofluids in the presence of thermal radiation. MHD boundary layer flow
of a nanofluid in the presence of thermal stratification due to solar radiation taking into consideration the effects of
Brownian motion and thermophoresisis given by Kandasamy et al. [16]. The flow and heat transfer characteristics of a
viscous nanofluid over a non linearly stretching sheet in the presence of the thermal radiation investigated by Hadey
etal. [17]. Also [18, 19] investigated the effects of thermal radiation and magnetic field on the boundary layer flow of
a nanofluid past a stretching sheet.

In the present study, we have considered the problem of boundary layer flow of an electrically conducting, vis-
cous incompressible nanofluid over a stretching surface in the presence of uniform magnetic field with thermal radi-
ation and Chemical reaction. A similarity solution is obtained.

2. Problem formulation

We consider the steady MHD boundary layer flow of a nanofluid over stretching surface in uniform free stream
velocity U in the presence of thermal radiation. The flow is takes place at y = 0 where y is the coordinate measured
normal to the moving surface. A uniform transverse magnetic field is applied at y-axis is the coordinate measured
normal to the moving surface. Also assumed that, at the surface, temperature T and the nanoparticles fraction C take
constant values T,, and C,, respectively where as the values of T and C when y tends to infinity are denoted by T, and
Co respectively. Consider the following model of conservation of mass, momentum, thermal energy and nanoparticle
respectively.
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here v=(u,v).

where p ¢ the density of base fluid, p is the dynamic viscosity, o is the electrical conductivity, p is the density, k is the
thermal conductivity, ¢ is volumetric volume expansion coefficient of the nanofluid, p, is the density of the particle,

(pc)r is the heat capacity of the fluid and (pc), is the effective heat capacity of the nanoparticle material, a= (00
is the thermal diffusivity of the fluid, g, is the heat flux, Dp is the Brownian diffusion coefficient, D is the ther-
mophoresis diffusion coefficient, By is the uniform magnetic field of the base fluid, K; is the rate of chemical reaction,
7= (pc)p/(pc)y is the ratio of nanoparticles heat capacity and the base fluid heat capacity, g is the gravitational accel-
eration.

The boundary conditions are:
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We now write the standard boundary layer approximation, based on a scale analysis and governing equations as:

6u ov ~0 6

ox Gy

op _ Fu

P ”62 oBju- pf(u—+v—)+[(1— Coo)P foo BE(T — Too) = (0p — P f0) 8(C— Coo)1 =0 @

0

3y = ®

6T+ oT aaZT aaqr oD acar &(6_T)] ©
ay ox® k ay Bayoy " To oy

u2C % - p, TC DIl o e (10)

ox 0y Bay2 T 02 *



Govind R Rajput et al. / Int. ]. Adv. Appl. Math. and Mech. 3(1) (2015) 139 — 144 141

Where u and v are the velocity components along x and y axes, also in keeping with the Oberbeck-Boussinesq approx-
imation and an assumption that the nanoparticle concentration is dilute, and with a suitable choice for the reference
pressure, the momentum equation (2) can be linearized and written in the form of equation (7). One can eliminate
p from equations (7) and (8) by cross differentiation. The stream wise velocity and the suction/injection velocity are
taken as

UX) =cx™, V(x) = Vox' T a1

Here ¢ > 0 is constant, T,, is wall temperature and m is constant. Here we consider c=1.
By using the Rosseland diffusion approximation the heat flux g, is given by
40* oT*
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where ¢ and Kj are the Stefan-Boltzman constant and the Rosseland mean absorption coefficient respectively. It is
assume that the temperature difference within the flow is so small that T* can be expressed as a linear function of Ty,
This can be obtained by expanding T* in a Taylor series about and T, and neglecting the higher order terms. Thus we
get

T = T2 +4(T - Too) TS, T4 =473 T-3T3, (13)
Using (12) and (13) in the following term of equation (9) we get
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Introducing the stream function
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so that equation(6) satisfied identically on the other hand we have the following equations.
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Along with the boundary conditions
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3. Group theoretic treatment

Similarity analysis by the group-theoretic method is based on concepts derived from the theory of continuous
group transformation group. This method was first introduced by Birkhoff [20] and Morgan [21] and later on a num-
ber of authors like Na and Hansen [22], Timol and Kalthia [23], Pakdemirli [24] and most recently Patil et al. [25]
have contributed much to the development of the theory.Recently, this theory is found to give more adequate treat-
ment of boundary layer equations (Refer Seshadri and Na [26]). We now introduce the simplified form of Lie-group
transformation, namely scaling group of transformation (Mukhopadhyay et al. [27]),
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where
ap,az,a3,d4,0as5,q6, A7

are transformation parameters and € is a small parameter. The transformation (19) may be considered as a
point transformation, which transformed the coordinates (x,y,1,u,v,0,¢)to coordinates (x*,y* ,w*,u*,v*,0",¢*). Using
relation (19) into equations (15-17)we get
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The above system will remains invariant under the group of transformation I" will have the following relations between
the parameters
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The boundary equation yield
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In view of these, the boundary conditions are transformed to
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Substituting these invariants in equations (15-18), we get the
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With the transformed boundary value conditions,
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parameter,y:? is the chemical reaction parameter,Rex:T is the local Reynolds number.

number,Ra,=

is the Brownian motion parameter, N;=

is the magnetic

4. Conclusion

Similarity solution of MHD boundary layer flow of an electrically conducting, viscous incompressible nanofluid
over a moving surface in the presence of uniform magnetic field with thermal radiation is studied. The governing
partial differential equations are transformed into nonlinear ordinary coupled differential equations by using scaling
group of transformation. This solution depends on the Lewis number Le, the Buoyancy ratio N, the Brownian motion
parameter Nb and the thermophoresis parameter Nt. Present similarity equations are in well agreement to those
available in literature.
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