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Abstract: In this letter, the homotopy perturbation transform method is used to obtain analytical approximate solutions to
the systems of nonlinear fractional partial differential equations. The proposed method was derived by combining
Laplace transform and homotopy perturbation method. It yields solutions in convergent series forms with easily
computable terms. The fractional derivative is described in the Caputo sense. Illustrative examples demonstrate the
efficiency of new method.
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1. Introduction

Fractional partial differential equations started to be used in describing of real world phenomena [1]. The ana-
lytic results on uniqueness and existence of solutions of fractional differential equation were favorite topics of many
researches [2].

Recently, there are many methods used to solve fractional partial differential equations such as, Adomian de-
composition method [3–5], variational iteration method [6–8], homotopy perturbation method [8, 9], differential
transform method [10, 11], iterative method [12], homotopy analysis method [13] and another methods. There are
several definitions of a fractional derivative and integral of order µ , the Caputo fractional derivative of f (x, y, t ) is
defined as [2]:

Dµ
t f (x, y, t ) = ∂µ f (x, y, t )

∂tµ
=

{
J m−µ

[
∂m f (x,y,t )

∂t m

]
, m −1 <µ≤ m,

∂m f (x,y,t )
∂t m , µ= m,m ∈ N .

(1)

where Jµ denotes the Riemann-Liouville fractional integral f (x, y, t ) defined by:

Jµt f (x, y, t ) = 1

Γ(µ)

∫ t

0

f (x, y,τ)dτ

(t −τ)1−µ , t > 0, (2)

J 0
t f (x, y, t ) = f (x, y, t ). (3)

The Caputo fractional derivative is considered here because it allows traditional initial conditions to be included in
the formulation of the problem [2]. In this paper, our aims are to present the coupling method of Laplace transform
and homotopy perturbation method, which is called as the fractional homotopy perturbation transform method, and
to use it to solve the system of nonlinear fractional differential equations.
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2. Fractional Homotopy Perturbation Transform Method

We illustrate the basic idea of this method, by considering a system of fractional partial differential equations
with the initial conditions of general form:

∂αi ui (x, y, t )

∂tαi
+Ni (U ) = gi (x, y, t ), i = 1,2, ...,n (4)

with the initial conditions

ui (x, y,0) = fi (x, y), (5)

where U = [
u1(x, y, t ),u2(x, y, t ), . . . ,un(x, y, t )

]
, Ni are nonlinear local fractional differential operator, and gi (x, y, t )

are the source term .
The method consists of first applying the Laplace transform to both sides of (4) and then by using initial conditions
(5), we have

L

[
∂αi ui (x, y, t )

∂tαi

]
+L [Ni (U )] = L

[
gi (x, y, t )

]
. (6)

Using the property of the Laplace transform, we have

L
[
ui (x, y, t )

]= fi (x, y)

sαi
+ 1

sαi
L

[
gi (x, y, t )

]− 1

sαi
L [Ni (U )] . (7)

Applying inverse Laplace transform on both sides of (7), we get

ui (x, y, t ) = Ki (x, y, t )−L−1
(

1

sαi
L [Ni (U )]

)
, (8)

where Ki (x, y, t ) = L−1
(

fi (x, y)

sαi
+ 1

sαi
L

[
gi (x, y, t )

])
.The second step in homotopy perturbation transform method is

that we represent solution as an infinite series given below

ui (x, y, t ) =
∞∑

n=0
pnui n(x, y, t ), (9)

and the nonlinear term can be decomposed as

Ni (U ) =
∞∑

n=0
pn Hi n (U ) , (10)

for some He’s polynomials Hi n (U ) [14], that are given

Hi n (U ) = 1

n!

∂n

∂pn

[
Ni

( ∞∑
m=0

pmui m(x, y, t )

)]
p=0

,n = 0,1, . . . (11)

Substituting (9) and (10) in (8), we get

∞∑
n=0

pnui n(x, y, t ) = Ki (x, y, t )−p

[
L−1

(
1

sαi
L

[ ∞∑
n=0

pn Hi n (U )

])]
, (12)

which is the coupling of the Laplace transform and the homotopy perturbation method using He’s polynomials.
Equating the terms with identical powers in p in (12), we obtain the following approximations:

p0 : ui 0(x, y, t ) = Ki (x, y, t )

p1 : ui 1(x, y, t ) = L−1
(

1

sαi
L [Hi 0 (U )]

)
p2 : ui 2(x, y, t ) = L−1

(
1

sαi
L [Hi 1 (U )]

)
(13)

...

pn+1 : ui (n+1)(x, y, t ) = L−1
(

1

sαi
L [Hi n (U )]

)
.

The best approximation for the solution are

ui (x, y, t ) = lim
p→1

ui n(x, y, t ) = ui 0(x, y, t )+ui 1(x, y, t )+ui 2(x, y, t )+·· · (14)
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3. Applications

In this section, we shall apply fractional homotopy perturbation transform method for solving system of non-
linear fractional partial differential equations.

Example 3.1.
Consider the system of nonlinear fractional partial differential equations:

Dα
t u − vx wy = 1,

Dβ
t v −wx uy = 5, (15)

Dσ
t w −ux vy = 5,0 <α,β,σ≤ 1.

with the initial condition

u(x, y,0) = x +2y,

v(x, y,0) = x −2y, (16)

u(x, y,0) =−x +2y,

Taking Laplace transform both of sides (15), subject to the initial conditions, we have

u(x, y, s) = 1

s2α + 1

sα
(x +2y)+ 1

sα
L

[
vx wy

]
,

v(x, y, s) = 5

s2β
+ 1

sβ
(x −2y)+ 1

sβ
L

[
wx uy

]
, (17)

w(x, y, s) = 5

s2σ + 1

sσ
(−x +2y)+ 1

sσ
L

[
ux vy

]
.

Applying inverse Laplace transform, we get

u(x, y, t ) = tα

Γ(1+α)
+x +2y +L−1

(
1

sα
L

[
vx wy

])
,

v(x, y, t ) = 5tβ

Γ(1+β)
+x −2y +L−1

(
1

sβ
L

[
wx uy

])
, (18)

w(x, y, t ) = 5tσ

Γ(1+σ)
−x +2y +L−1

(
1

sσ
L

[
ux vy

])
.

In view of the algorithm given in (13), we obtained the components as follows

u0(x, y, t ) = tα

Γ(1+α)
+x +2y,

p0 : v0(x, y, t ) = 5tβ

Γ(1+β)
+x −2y, (19)

w0(x, y, t ) = 5tσ

Γ(1+σ)
−x +2y,

u1(x, y, t ) = L−1
(

1

sα
L

[
v0x w0y

])= 2tα

Γ(1+α)
,

p1 : v1(x, y, t ) = L−1
(

1

sβ
L

[
w0x u0y

])=− 2tβ

Γ(1+β)
, (20)

w1(x, y, t ) = L−1
(

1

sσ
L

[
u0x v0y

])= 2tσ

Γ(1+σ)
,

u2(x, y, t ) = L−1
(

1

sα
L

[
v1x w0y + v0x w1y

])= 0,

p2 : v2(x, y, t ) = L−1
(

1

sβ
L

[
w1x u0y +w0x u1y

])= 0, (21)

w2(x, y, t ) = L−1
(

1

sσ
L

[
u1x v0y +u0x v1y

])= 0.
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Therefore, the solution of system (15) is given below

u(x, y, t ) = 3tα

Γ(1+α)
+x +2y,

v(x, y, t ) = 3tβ

Γ(1+β)
+x −2y, (22)

w(x, y, t ) = 3tσ

Γ(1+σ)
−x +2y.

If α=β=σ= 1 in (22) we have the exact solution of (15), which is

u(x, y, t ) = x +2y +3t ,

v(x, y, t ) = x −2y +3t , (23)

w(x, y, t ) =−x +2y +3t .

Example 3.2.
Let us consider the system of nonlinear fractional partial differential equations:

Dα
t u − vx wy − vy wx =−u,

Dβ
t v −ux wy +uy wx = v, (24)

Dσ
t w −ux vy +uy vx = w,0 <α,β,σ≤ 1.

with the initial conditions

u(x, y,0) = ex+y ,

v(x, y,0) = ex−y , (25)

w(x, y,0) = e−x+y .

Applying the same procedure as applied in previous example we construct the following:

u(x, y, t ) = ex+y +L−1
(

1

sα
L

[
vy wx − vx wy −u

])
,

v(x, y, t ) = ex−y +L−1
(

1

sβ
L

[
v −uy wx −ux wy −u

])
, (26)

w(x, y, t ) = e−x+y +L−1
(

1

sσ
L

[
w −ux vy −uy vx −u

])
.

In view of the algorithm given in (13), we obtained the components as follows

u0(x, y, t ) = ex+y ,

p0 : v0(x, y, t ) = ex+y , (27)

w0(x, y, t ) = ex+y .

u1(x, y, t ) = L−1
(

1

sα
L

[
v0y w0x − v0x w0y −u0

])=− tα

Γ(1+α)
ex+y ,

p1 : v1(x, y, t ) = L−1
(

1

sβ
L

[
v0 −u0y w0x −u0x w0y

])= tβ

Γ(1+β)
ex−y , (28)

w1(x, y, t ) = L−1
(

1

sσ
L

[
w0 −u0x v0y −u0y v0x

])= tσ

Γ(1+σ)
e−x+y ,

u2(x, y, t ) = L−1
(

1

sα
L

[
(v1y w0x − v0y w1x )− (v1x w0y + v0x w1y )−u1

])= t 2α

Γ(1+2α)
ex+y ,

p2 : v2(x, y, t ) = L−1
(

1

sβ
L

[
v1 − (u0y w1x +u1y w0x )− (u0x w1y +u1x w0y )

])= t 2β

Γ(1+2β)
ex−y , (29)

w2(x, y, t ) = L−1
(

1

sσ
L

[
w1 − (u1x v0y +u0x v1y )− (u1y v0x +u0y v1x

])= t 2σ

Γ(1+2σ)
e−x+y ,
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and so on, in this manner the rest components of the decomposition series were obtained. Substituting the values of
(27)-(29) into (9) gives the solution in a series form and a closed form by

u(x, y, t ) = Eα(−tα)ex+y ,

v(x, y, t ) = Eβ(tβ)ex−y , (30)

w(x, y, t ) = Eσ(tσ)e−x+y .

If α=β=σ= 1 in (30) we have the exact solution of (24), which is

u(x, y, t ) = ex+y−t ,

v(x, y, t ) = ex−y+t , (31)

w(x, y, t ) = e−x+y+t .

The exact solution of the given problems in this paper is the same results as that obtained by the variational
iteration method [7].

4. Conclusions

In this work, we employed the homotopy perturbation transform method for solving nonlinear system of frac-
tional partial differential equations. The proposed method is successfully implemented by using the initial conditions
only. It may be consulted that the homotopy perturbation transform method is very powerful and efficient technique
in finding exact solutions for wide classes of problems.
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