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Abstract: The objective of this paper is to investigate the complete controllability property of a nonlinear nonlocal fractional
stochastic control system with poisson jumps in a separable Hilbert space. By employing a fixed point technique,
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1. Introduction

During the past three decades, fractional differential equations and their applications have gained a lot of im-
portance, mainly because this field has become a powerful tool in modeling several complex phenomena in numerous
seemingly diverse and widespread fields of science and engineering [1–8] .

Stochastic differential equations have attracted great interest due to its applications in various fields of science
and engineering. There are many interesting results on the theory and applications of stochastic differential equa-
tions, (see [9–14] ) and the references therein). To build more realistic models in economics, social sciences, chem-
istry, finance, physics and other areas, stochastic effects need to be taken into account. Therefore, many real world
problems can be modeled by stochastic differential equations. The deterministic models often fluctuate due to noise,
so we must move from deterministic control to stochastic control problems. Recently, there is observed an increasing
interest in the study of stochastic differential equations with jumps [15, 16] . Luo and Liu [17] established the exis-
tence and uniqueness theory of mild solutions to stochastic partial functional differential equations with Markovian
switching and Poisson jumps, R. Sakthivel and Y. Ren [18] studied the complete controllability property of a nonlinear
stochastic control system with jumps in a separable Hilbert space. It should be noted that most of the literature in this
direction was mainly concerned with results on controllability of stochastic equations without jumps.

To the best of our knowledge, the complete controllability for a class of nonlinear nonlocal fractional stochastic
dynamical systems with jumps is an untreated topic in the literature and this fact is the motivation of the present
work.

The paper is organized as follows: in Section 2, we present some essential facts in fractional calculus, semigroup
theory, stochastic analysis and control theory that will be used to obtain our main results. In Section 3, we formulate
and prove sufficient conditions for ensuring the complete controllability for nonlinear nonlocal fractional stochastic
control systems with jumps. Finally, in Section 4, an example is provided to illustrate the abstract theory.
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2. Formulation of the problem

Let X be a separable Hilbert space with norm ‖·‖X . Let Y be another Hilbert space with norm ‖·‖Y . We denote by
L(Y , X ) the set of all linear bounded operators from Y into X which is equipped with the usual operator norm ‖·‖ .Let
(Ω,Γ,P ) be a complete probability space equipped with some filtration {Γt }t , t ∈ [0,b], satisfying the usual conditions
(i.e. it is right continuous and Γ0 contains all P null-sets). Let {w(t ) : t ≥ 0} denote a Y -valued Wiener process defined
on the probability space (Ω,Γ,P ) with covariance operator Q,that is E 〈w(t ), x〉Y

〈
w(s), y

〉
Y = (t ∧ s)

〈
Qx, y

〉
Y , for all

x, y ∈ Y , where Q is a positive, self-adjoint, trace-class operator on Y . In particular, we denote by w(t ) a Y -valued Q-
Wiener process with respect to {Γt }t≥0. Let βn(t )(n = 1,2,3, ...) be a sequence of real-valued one-dimensional standard
Brownian motions mutually independent on

(Ω,Γ, {Γt }t≥0,P ). Now, w(t ) can be defined by [19]

w (t ) =
∞∑

n=1

√
λnβn(t )en , t ∈ J , e ∈ Y ,

here λn are eigenvalues of Q and en ,n ∈N are the corresponding eigenvectors, i.e. Qen =λnen ,n = 1,2, ...,
In order to define stochastic integrals with respect to the Q-Wiener process w(t ) we introduce the subspace

Y0 =Q1/2(Y ) of Y which is endowed with the inner product 〈v1, v2〉Y0 =
〈
Q−1/2v1,Q−1/2v2

〉
Y . Moreover, it is a Hilbert

space.
Let L0

2 = L2(Y0, X ) denote the space of all Hilbert–Schmidt operators from Y0 into X . It turns out to be a separable

Hilbert space equipped with the norm
∥∥µ∥∥2

L0
2
= tr ((µQ1/2)(µQ1/2)∗) for any µ ∈ L0

2. Clearly for any bounded operators

µ ∈ L(Y , X ) this norm reduces to
∥∥µ∥∥2

L0
2
= tr (µQµ∗).

Letχ : [0,b] → L0
2 be a predictable, Γb-adapted process such that

∫ t

0
E

∥∥χ(s)
∥∥2

L0
2

d s <∞. Then we can define an X -

valued stochastic integral
∫ t

0
χ(s)d w(s) which is a continuous square-integrable martingale. Let q = (q(t )), t ∈ Dq , be

a stationary Γt -Poisson point process with characteristic measure λ. Let N (d t ,dη) be the Poisson counting measure
associated with q , i.e. N (t , Z ) = ∑

s∈Dq ,s≤t
IZ (q(s)) with measurable set Z ∈ B(Y − {0}), which denotes the Borel σ-field

of Y − {0}. Let Ñ (d t ,dη) = N (d t ,dη)−d tλ(dη) be the compensated Poisson measure that is independent of w(t ). Let

P 2([0,b]×Z ; X ) be the space of all predictable mappings g : [0,b]×Z ×Ω→ X for which
∫ b

0

∫
Z

E
∥∥g (t ,η)

∥∥2
X d tλ(dη) <

∞. Then, we can define the X -valued stochastic integral
∫ b

0

∫
Z

g (t ,η)Ñ (d t ,dη), which is a centred square-integrable

martingale.
In this paper, we consider a mathematical model given by the following fractional nonlocal stochastic differen-

tial equations with poisson jumps and control variable,

C Dq
t x(t ) = Ax(t )+Bu(t )+ f (t , x(t ))+σ(t , x(t )) d w(t )

d t

+
∫

Z g(t ,x(t ),η)Ñ(d t ,dη)
d t , t ∈ J = [0,b] ,

(1)

x(0)+h (x(t )) = x0, (2)

where 0 < q < 1,C Dq
t denotes the Caputo fractional derivative operator of order q. Let X and Y be two Hilbert spaces

and the state x(·) takes its values X ; A is the infinitesimal generator of a compact semigroup of uniformly bounded
linear operators {S(t ) = e At , t ≥ 0} and we suppose that M0 = sup

t≥0
‖S(t )‖ < ∞. The control function u(·) is given in

L2
Γ([0,b],U ) of admissible control functions, U is a Hilbert space. B is a bounded linear operator from U into X ; f :

J×X → X , g : J×X ×Z → X , σ : J×X → L0
2 and h : C (J , X ) → X are appropriate functions; x0 is Γ0 measurable X -valued

random variables independent of w .

Definition 2.1.
The fractional integral of order β with the lower limit 0 for a function f is defined as

Iβ f (t ) = 1

Γ
(
β
) ∫ t

0

f (s)

(t − s)1−β d s, t > 0, β> 0

provided the right-handside is pointwise defined on [0,∞), where Γ(·) is the gamma function.
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Definition 2.2.
Riemann–Liouville derivative of order β with lower limit zero for a function f : [0,∞) → R can be written as

LDβ f (t ) = 1

Γ
(
n −β) d n

d t n

∫ t

0

f (s)

(t − s)β+1−n
d s, t > 0, n −1 <β< n.

Definition 2.3.
The Caputo derivative of order β for a function : [0,∞) → R can be written as

c Dβ f (t ) =L Dβ

(
f (t )−

n−1∑
k=0

t k

k !
f (k)(0)

)
, t > 0, n −1 <β< n.

Remark 2.1. (a) If f (t ) ∈C n[0,∞), then

c Dβ f (t ) = 1

Γ
(
n −β) ∫ t

0

f n(s)

(t − s)β+1−n
d s = I n−β f n(s), t > 0, n −1 <β< n.

(b) The Caputo derivative of a constant is equal to zero.

(c) If f is an abstract function with values in E , then integrals which appear in Definitions 2.1 and 2.2 are taken in
Bochner’s sense.

The following results will be used through out this paper.

Lemma 2.1 ([20]).

Let G : [0,b]×Ω→ L0
2 be a strongly measurable mapping such that

∫ b

0
E ||G(t )||p

L0
2

d t <∞.Then

E

∣∣∣∣∣∣∣∣∫ t

0
G(s)d w(s)

∣∣∣∣∣∣∣∣p

≤ LG

∫ t

0
E ||G(s)||p

L0
2

d s

for all 0 ≤ t ≤ b and p ≥ 2, where LG is the constant involving p and b

Lemma 2.2.
Consider the following linear fractional stochastic system

Dq
t x(t ) = Ax(t )+ (Bu)(t )+σ (t ) d w(t )

d t , t ∈ [0,b],
x(0) = x0

(3)

Let us now introduce the following operators.
Define the operator Lb

0 : L2([0,b],U ) → L2(b, X ), the controllability operator Πb
0 : L2(b, X ) → L2(b, X ) associated

with (3), and the controllability operatoΨb
0 associated to the linear fractional stochastic system of (3) as

Lb
0 u =

∫ b

0
(b − s)q−1S (b − s)Bu (s)d s,

Πb
0 (·) =

∫ b

0
(b − s)2(q−1)S (b − s)BB∗S ∗(b − s)E (· | Γs )d s,

Ψb
0 =

∫ b

0
(b − s)2(q−1)S (b − s)BB∗S ∗(b − s)d s,

where B∗ denotes the adjoint of B and S ∗(t ) is the adjoint of S (t ).

Lemma 2.3 ([20]).
If the linear stochastic system (3) is completely controllable, then for some η> 0,

E
〈
Πb

0 z, z
〉
≥ ηE ‖z‖2 , for some η> 0 and all z ∈ L2(b, X ),

and consequently

E

∥∥∥∥(
Πb

0

)−1
∥∥∥∥2

≤ 1

η



44 Complete controllability of nonlocal fractional stochastic differential evolution equations ...

3. Complete controllability

In this section, we formulate and prove conditions for the existence and the complete controllability results for
nonlocal fractional stochastic eqs. (1)-(2) by using a fixed point approach. To prove the required results, we impose
some Lipschitz and linear growth conditions on the functions f ,σ,h and g .

Further, let L2(b, X ) be the Banach space of all Γb-measurable square integrable random variables with val-
ues in the Hilbert space X . Let D(J ;L2(Γ, X )) be the Banach space of the càdlàg (right continuous with left limit)
processes from J into L2(Γ, X ) satisfying the condition sup

t∈J
E ‖x(t )‖2 < ∞. Let H2(J ; X ) be the closed subspace of

D(J ;L2(Γ, X )) consisting of measurable and Γt -adapted X -valued process x ∈ D(J ;L2(Γ, X )) endowed with the norm

‖x‖H2 =
(
sup
t∈J

E ‖x(t )‖2
X

)1/2

.

Now, we present the mild solution of the problem (1)-(2).

Definition 3.1 ([21–23]).
A stochastic process x ∈ H2([0,b], X ) is a mild solution of (1)-(2) if for each u ∈ L2

Γ([0,b],U ), it satisfies the following
integral equation,

x(t ) =T (t ) (x0 −h (x))+
∫ t

0
(t − s)q−1S (t − s)[Bu(s)+ f (s, x(s))]d s

+
∫ t

0
(t − s)q−1S (t − s)σ(s, x(s))d w(s)

+
∫ t

0

∫
Z

(t − s)q−1g
(
s, x(s),η

)
Ñ

(
d s,dη

)
,

where T (t ) =
∫ ∞

0
ξq (θ)S(t qθ)dθ; S (t ) = q

∫ ∞

0
θξq (θ)S(t qθ)dθ; S (t ) is a C0-semigroup generated by a linear opera-

tor A on X ; ξq is a probability density function defined on (0,∞),that is ξq (θ) ≥ 0, θ ∈ (0,∞) and
∫ ∞

0
ξq (θ)dθ = 1.

Lemma 3.1 (see [24, 25]).
The operators {T (t )}t≥0 and {S(t )}t≥0 are strongly continuous, i.e., for x ∈ X and 0 ≤ t1 < t2 ≤ b, we have
||T (t2)x −T (t1)x||→ 0 and ||S (t2)x −S(t1)x||→ 0 as t1 → t2.

We impose the following conditions on data of the problem.

(i) For any fixed t ≥ 0,T (t ) and S (t ) are bounded linear operators, i.e., for any x ∈ X ,

||T (t )x|| ≤ M0 ||x|| , ||S (t )x|| ≤ M0

Γ(q)
||x|| .

(ii) The functions f , σ and g are Borel measurable functions and satisfy the Lipschitz continuity condition and the
linear growth condition for some constant k > 0 and arbitrary x, y ∈ X such that∣∣∣∣ f (t , x)− f (t , y)

∣∣∣∣2
X + ∣∣∣∣σ(t , x)−σ(t , y)

∣∣∣∣2
L0

2
+

∫
Z

∣∣∣∣g (t , x,η)− g (t , y,η)
∣∣∣∣2

X λdη≤k
∣∣∣∣x − y

∣∣∣∣2
X ,

∣∣∣∣ f (t , x)
∣∣∣∣2

X +||σ(t , x)||2
L0

2
+

∫
Z

∣∣∣∣g (t , x,η)
∣∣∣∣2

X λ
(
dη

)≤ k(1+||x||2X ).

(iii) There exists a number Ñ0 > 0 and arbitrary x, y ∈ X such that∣∣∣∣h (x)−h
(
y
)∣∣∣∣2

X ≤ Ñ0
∣∣∣∣x − y

∣∣∣∣2
X , ||h (x)||2X ≤ Ñ0

(
1+||x||2X

)
(iv) The linear stochastic system is completely controllable on J .

(v) There exists a number L̃0 > 0 such that for arbitrary x1, x2 ∈ X ,∫
Z

∣∣∣∣g (t , x1,η)− g (t , x2,η)
∣∣∣∣4

X λ
(
dη

)≤ L̃0
(||x1 −x2||4X

)
,

∫
Z

∣∣∣∣g (t , x,η)
∣∣∣∣4

X λ
(
dη

)≤ L̃0
(
1+||x||4X

)
.
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Definition 3.2.
System (1)-(2) is completely controllable on [0,b] if ℜ(b) = L2(Γb , X ), where

ℜ(b) = {x(b) = x(b,u) : u ∈ L2
Γ([0,b],U )},

here L2
Γ([0,b],U ), is the closed subspace of L2

Γ([0,b]×Ω;U ), consisting of all Γt adapted, U -valued stochastic
processes.

The following lemma is required to define the control function.The reader can refer to [7] for the proof.
Using the assumptions, for an arbitrary process x(·), define the control process

u(t , x) = B∗(b − t )q−1S ∗(b − t )E
{
(Πb

0 )−1
(
T (b)(x0 −h (x)−∫ t

0 (b − s)q−1S (b − s) f (s, x(s))d s
− ∫ t

0 (b − s)q−1S (b − s)σ(s, x(s))d w(s)−∫ t
0

∫
Z (b − s)q−1g

(
s, x(s),η

)
Ñ

(
d s,dη

)) | Γt
}

Now, let us state and prove the following lemma, which will be used in the proof of the main results.

Lemma 3.2.
There exists positive real constants L1,L2 such that for all x, y ∈ H2 we have

E
∥∥u (t , x)−u

(
t , y

)∥∥2 ≤ L1E
∥∥x(t )− y(t )

∥∥2 ,

E ‖u (t , x)‖2 ≤ L2

(
1

b
+E ‖x(t )‖2

)
.

Proof. Let x, y ∈ H2. From 2.2 and the conditions on the data, we obtain

E
∥∥u (t , x)−u

(
t , y

)∥∥2 ≤ 4E
∥∥∥{

B∗(b − t )q−1S ∗(b − t )(Πb
0 )−1T (b)(h (x(t ))−h

(
y(t )

) | Γt

}∥∥∥2

+4E

∥∥∥∥{
B∗(b − t )q−1S ∗(b − t )(Πb

0 )−1
∫ t

0
(b − s)q−1S (b − s)

[
f (s, x(s))− f (s, y(s))

]
d s | Γt

}∥∥∥∥2

+4E

∥∥∥∥{
B∗(b − t )q−1S ∗(b − t )(Πb

0 )−1
∫ t

0
(b − s)q−1S (b − s)

[
σ(s, x(s))−σ(s, y(s))

]
d w(s) | Γt

}∥∥∥∥2

+4E

∥∥∥∥{
B∗(b − t )q−1S ∗(b − t )(Πb

0 )−1
∫ t

0

∫
Z

(b − s)q−1S (b − s)q−1

×[
g

(
s, x(s),η

)− g
(
s, y(s),η

)]
Ñ

(
d s,dη

) | Γt
}∥∥2

:= I1 + I2 + I3 + I4

where,

I1 ≤ 4

η2
‖B‖2 (b)2q−2 M 2

0

(
M0

Γ(q)

)2

Ñ0E
∥∥x(t )− y(t )

∥∥2

I2 ≤ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1
k

∫ t

0
E

∥∥x(s)− y(s)
∥∥2 d s

I3 ≤ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1
kLσ

∫ t

0
E

∥∥x(s)− y(s)
∥∥2 d s

I4 ≤ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1

∫ t

0

∫
Z

E
∥∥g

(
s, x(s),η

)− g
(
s, y(s),η

)∥∥2
λ

(
dη

)
d s

+ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1

(∫ t

0

∫
Z

E
∥∥g

(
s, x(s),η

)− g
(
s, y(s),η

)∥∥4
λ

(
dη

)
d s

)1/2

≤ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1
k

∫ t

0
E

∥∥x(s)− y(s)
∥∥2 d s

+ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1

√
L̃0

(∫ t

0
E

∥∥x(s)− y(s)
∥∥4 d s

)1/2

≤ 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1

(
k +

√
L̃0

)∫ t

0
E

∥∥x(s)− y(s)
∥∥2 d s

Finally, we get

E
∥∥u (t , x)−u

(
t , y

)∥∥2 ≤ L1E
∥∥x(t )− y(t )

∥∥2

where L1 = 4

η2
‖B‖2 (b)2q−2

(
M0

Γ(q)

)2 b2q−1

2q −1

(
Ñ0 +2k +kLσ+

√
L̃0

)
. The proof of the second inequality is similar

to the first one. This completes the proof of the lemma.
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Theorem 3.1.
Assume that the conditions (i)–(v) hold. Further, if the inequality

4Ñ0M 2
0 +4

(
M0

Γ(q)

)2 b2q−1

2q −1

[
‖B‖2 L2 +k +kLσ+

(
k +

√
L̃0

)]
< 1

is satisfied, then the stochastic control system (1)-(2) is completely controllable on [0,b].

Proof. We will show that, using the control, the operator F : H2 → H2 defined by

F x(t ) = T (t ) (x0 −h (x))+∫ t
0 (t − s)q−1S (t − s)[Bu(s, x)+ f (s, x(s))]d s

+ ∫ t
0 (t − s)q−1S (t − s)σ(s, x(s))d w(s)+∫ t

0

∫
Z (t − s)q−1g

(
s, x(s),η

)
Ñ

(
d s,dη

)
,

(4)

has a fixed point in H2. As mentioned in [26] , to prove the complete controllability, it is enough to show that the
operator F has a fixed point in H2. The proof is carried through by the Banach fixed point technique. First, we show
that the operator F maps H2 into itself. Let x ∈ H2, from (4) we obtain

E ‖F x(t )‖2
H2

≤ 5

[
sup
t∈J

E ‖T (t ) (x0 −h (x))‖2 + sup
t∈J

4∑
i=1

E
∥∥Πx

i (t )
∥∥2

]
(5)

Using conditions (i)–(v), 2.2, and with the standard computations, we have

sup
t∈J

∑4
i=1 E

∥∥Πx
i (t )

∥∥2 ≤ 4
(

M0
Γ(q)

)2
b2q−1

2q−1 ‖B‖2 L2

(
1
b +‖x‖2

H2

)
+4

(
M0
Γ(q)

)2
b2q−1

2q−1

(
k +kLσ+

(
k +

√
L̃0

))(
1+‖x‖2

H2

)
.

(6)

Hence sup
t∈J

E ‖T (t ) (x0 −h (x))‖2 ≤ M 2
0

[‖x0‖2 + Ñ0
(
1+||x||2)] together with (6) imply that E ‖F x(t )‖2

H2
< ∞.

Thus, F maps H2 into itself. Next, we show that F is a contraction in H2.
For any x, y ∈ H2, then

E
∥∥(F x) (t )− (

F y
)

(t )
∥∥2 ≤4sup

t∈J

4∑
i=1

E
∥∥Πx

i (t )−Πy
i (t )

∥∥2

≤4Ñ0M 2
0 E

∥∥x(t )− y(t )
∥∥2 +4

(
M0

Γ(q)

)2 b2q−1

2q −1
‖B‖2 L2E

∥∥x(t )− y(t )
∥∥2

+4

(
M0

Γ(q)

)2 b2q−1

2q −1
kE

∥∥x(t )− y(t )
∥∥2 +4

(
M0

Γ(q)

)2 b2q−1

2q −1
kLσE

∥∥x(t )− y(t )
∥∥2

+4

(
M0

Γ(q)

)2 b2q−1

2q −1

(
k +

√
L̃0

)
E

∥∥x(t )− y(t )
∥∥2

Hence we obtain a positive real number D = 4Ñ0M 2
0 +4

(
M0

Γ(q)

)2 b2q−1

2q −1

[
‖B‖2 L2 +k +kLσ+

(
k +

√
L̃0

)]
< 1

such that

sup
t∈J

E
∥∥(F x) (t )− (

F y
)

(t )
∥∥2 ≤ Dsup

t∈J
E

∥∥x(t )− y(t )
∥∥2 (7)

for any x, y ∈ H2. So, F is a contraction mapping and hence there exists a unique fixed point x in H2. Thus the
fractional stochastic control system (1)-(2) is completely controllable on J . This completes the proof.

4. Example

Consider the fractional stochastic system with a stochastic process x(t , z) and Poisson jumps in the following
form

c Dq
t x(t , z) = ∂2x(t ,z)

∂z2 + µ̂(t , z)+x(t , z)

+ σ̂(t , x(t , z)) d ŵ(t )
d t +

∫ ∞
−1 x(t ,z)ηÑ(d t ,dη)

d t ,
(8)

x(0, z)+∑m
k=1 ck x (z, tk ) = x0(z), z ∈ [0,π],

x(t ,0) = x(t ,π) = 0, t ∈ J ,
(9)
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where 0 < q < 1, 0 < t1 < · · · < tm = b and ck are positive constants, k = 1, ...,m, ŵ(t ) is a two sided and standard one
dimensional Brownian motion defined on the filtered probability space (Ω,Γ,P ) and Ñ (·, ·), is a compensated Poisson

measure on [1,∞] with parameter λ(dη)d t such that
∫ ∞

1
η(dη) < ∞. . To write the above system into the abstract

form of (1)-(2), let X =U = L2[0,π]. Define the operator A : X → X by Ax = x ′′ with domain

D(A) = {x ∈ X ; x, x ′ are absolutely continuous, x ′′ ∈ X and x(0) = x(π) = 0}.

Ax =
∞∑

n=1
n2(x, xn)xn , x ∈ D(A),

where xn(s) =
√

2

π
sin(ns), n = 1,2, ... is the orthogonal set of eigen vectors in A. It is well known that A generates a

compact, analytic semigroup {S(t ), t ≥ 0} in X and

S(t )x =
∞∑

n=1
e−n2t (x, xn)xn , ||S(t )|| ≤ e−t for all t ≥ 0.

Define x(t )(z) = x(t , z), σ(t , x(t ))(z) = σ̂(t , x(t , z)) and h(x(t ))(z) =
m∑

k=1
ck x (z, tk ). The bounded linear operator B : U →

X by Bu(t )(z) = µ̂(t , z), 0 ≤ z ≤π, u ∈U . Assume that the operator Lb
0 be defined by

(
Lb

0 u
)

(z) =
∫ b

0
(b − s)q−1e−n2(b−s)µ̂(s, z)d s,

On the other hand, it can be easily seen that the deterministic linear fractiona lcontrol system corresponding
to (8)-(9) is completely controllable [27] . Therefore, with the above choices, the system (8)-(9) can bewritten to the
abstract form (1)-(2) and all the conditions of Theorem 3.1 are satisfied. Thus by Theorem 3.1, fractional stochastic
control system (8)-(9) is completely controllable on [0,b]..
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