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Abstract: The response of many living and engineering structural systems to dynamic loads is often translated in differential
equations including some parameters which may change with time. This change may affect in a dramatic way the
qualitative behavior of the dynamic response of these systems. It is then suitable to investigate the asymptotic be-
havior of these systems when some dynamic parameters tend to their critical value. The problem, given a structural
model which depends on a strain hardening exponent, is to verify if a small perturbation in this parameter produces a
small qualitative change in the dynamic response of the system. To this end, asymptotic perturbation and numerical
analyses are performed. The study showed that a small change in the strain hardening exponent does not produce a
significant change in the qualitative behavior of the dynamic response of the structural model. The current research
work has permitted from a theoretical point of view to note the accuracy of the theory of averaging and the stability of
the system. Thus, from a practical point of view, the current model may serve as an alternative to other models for an
easy numerical simulation of the dynamics of some mechanical systems experiencing a weak viscoelastic response in
view of prediction and operation performance.
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1. Introduction

In modern engineering design, the dynamics of many structural systems are often represented in terms of differ-
ential equations containing some parameters. These parameters can be subject of variation under working situation
of structural systems. This variation of parameter values in structural systems may be attributed in general to de-
faults of manufacturing and uncertainties resulting from measures. So, the typical behavior of solutions of the model
equation may substantially change as the relative value of parameters changes. The model equation may then tran-
sit from an operating regime to another. Other phenomena, like instability and bifurcation, may also occur due to
change in dynamic parameters. This situation may affect the safety and the performance of a structural system. In
this regard, it appears reasonable for preventing eventual catastrophes to theoretically investigate the effects due to
change in dynamic parameters. In particular, an interesting physical problem is the study of the effect of a small per-
turbation in the value of parameter which governs the transition from a nonlinear regime to linear regime of a model
equation. Numerous researchers have studied this problem for some living and engineering systems by application of
asymptotic perturbations theory [1, 2]. This theory includes several techniques based on the idea of small parameter
meaning a weak nonlinearity [3], like harmonic balance, Lindstedt-Poincaré, multiple-scale and averaging methods
[1, 4, 5]. These methods are widely used for solving the problem of computing approximate solutions to mathematical
models and also for analyzing the influence of characteristic parameters on the qualitative behavior and evolutions of
dynamic systems in the fields of nonlinear mechanics and theoretical physics, since phenomena in these areas of sci-
ence are in general described by means of nonlinear differential equations [6] for which exact solutions are not always
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available. Particularly, averaging is well suited for studying damped nonlinear oscillations in mechanical systems, af-
ter Nayfeh and Mook [1] and Jordan and Smith [5]. So, the effects of changes in damping coefficient on the dynamic
behavior of mechanical systems have been a subject of intensive mathematical studies, as the damping mechanism
in nonlinear mechanics is not yet well understood and captured with accuracy. As known in nonlinear mechanics,
large deformations may lead to hardening or softening effects which may affect the damping nonlinearity [1, 7, 8].
But, a system parameter that has received less attention in the research field applying the theory of perturbation to
nonlinear mechanical systems seems to be the strain hardening exponent. In such a situation, it is logical to develop
an asymptotic perturbation analysis for nonlinear oscillations in viscoelastic systems with hardening exponent. Let
us now consider the model of a nonlinear viscoelastic oscillator recently developed by Monsia and Kpomahou [8] for
which the equation of motion under free vibrations is

ü + (l −1)
u̇2

u
+λu̇ +ω2

0u = 0 (1)

where u(t ) represents the displacement of the system and the dot over a symbol designates the derivative with
respect to time. In Eq. (1), ω0 is the natural frequency, λ is the linear viscous damping coefficient and l denotes the
strain hardening exponent. The problem is, then, to know how does a small change in the parameter l affect the dy-
namic response of the system. More precisely, the problem that merits to be studied is to understand how does the
solution of Eq. (1) behave as l → 1, that is to say, behave in the limit α→ 0, with α = 1− l , a positive parameter. In
this situation, an interesting question to be elucidated becomes: does a small perturbation in the exponent l produce
a small change in the qualitative behavior of the dynamic response of the system under consideration? The inves-
tigation of this question is motivated by several facts. First of all, in mechanical systems the damping coefficient is
often considered as the varying parameter [9]. Here, the coefficient l governs the nonlinear dissipative properties of
the dynamical system under study. Moreover, l is an experimental coefficient. In other words, it is known from exper-
iments, so it is then subjected to uncertainties. Finally, it is worth to note that the exponent l secures the transition
of the dynamics of the system from nonlinear to linear regime when it reaches its critical value l = 1, that is, when
α attains zero. The preceding situation could lead to changes in the value of exponent l , which may affect in large
fashion the expected dynamic behavior, the safety and the performance of the viscoelastic system under question in
working conditions. Hence, it is reasonable to explore the effects of change in the parameter l on the dynamic re-
sponse of the studied system. It is more again reasonable to investigate the asymptotic behavior of the system, that
is to say, the dynamic behavior of the model as the exponent l tends to its critical value, unity, or as α→ 0. In this
perspective, it is postulated that the dynamic behavior of the solution to equation (1) does not change significantly in
the limit α→ 0. In other words, it is predicted that a small change in l doesn’ t produce a large change in the quali-
tative behavior of the dynamic response of the viscoelastic system under consideration. This will allow the use of the
current structural model for easy numerical simulations for predicting the long time dynamics of some viscoelastic
mechanical systems in engineering design. This will serve also for obtaining useful information in view of appropriate
solutions to performance problems arising from existing viscoelastic mechanical systems. Mathematically, as previ-
ously mentioned, such a prediction may be achieved through the application of the asymptotic perturbation theory
and the limit analysis of the exact analytical solution as α→ 0 (section 2). To check the obtained results, it is needed
to compare graphically the asymptotic perturbation solution with the solution obtained by numerical integration of
the approximate equation on the one hand, and with the exact analytical solution on the other hand (section 3). The
validity of the accuracy of the prediction previously formulated will be discussed (section 4) and general conclusions
and future works based on obtained results will be addressed (section 5).

2. Methods

In this section, the approximate analytical solution to equation (1) will be determined by application of the
averaging method, since this analytical technique has been mathematically proved to be consistent to provide reliable
asymptotic solution for damped nonlinear oscillatory systems [1, 5]. As the exact analytical solution to equation (1) is
available, it is also suitable to develop the limiting model resulting from this exact analytical solution in the limit l → 1,
that is, α→ 0 . This in order to verify if the asymptotic perturbation solution is close to the exact analytical solution as
α→ 0. This analysis should allow us to test analytically the accuracy of the averaging perturbation theory.

2.1. Averaging perturbation analysis

In order to perform an asymptotic perturbation solution by averaging, it is convenient to reduce the equation
(1) to the non-dimensional form.

2.1.1. Reduction of the equation to the dimensionless form

By introducing the following dimensionless variables

ε(t ) = u(t )

L0
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where L0 is the initial length of the system, to say, the initial length of the viscoelastic oscillator, and

τ=ω0t

a dimensionless time, the equation (1) transforms after a few mathematical computation into

ε′′+
[

(l −1)
ε′

ε
+2µ

]
ε′+ 1

l
ε= 0 (2)

where 2µ= λ

ω0
, and the prime denotes differentiation with respect to the dimensionless independent variable τ. The

dimensionless dependent variable ε(τ) is the normalized displacement, a strain, that is a deformation measure expe-
rienced by the viscoelastic system. Following the preceding part, α = 1− l , consists of a relevant physical coefficient
that may play the role of small, positive dimensionless parameter for the asymptotic perturbation analysis of equation
(2). Regarding then the coefficient α = 1− l , as a small parameter,it is possible to develop an approximate analytical
solution to Eq.(2) by application of the averaging theory. In this perspective, it is necessary to formulate in explicit
fashion the mathematical problem resulting from Eq.(2).

2.1.2. Mathematical problem

In this subsection the problem is formulated as an approximate differential equation in replacement of Eq. (2)
in the sense of weak nonlinearity. To do so, consider the quantity [1, 5]

µ=αβ

where α = 1− l , is a small, positive dimensionless parameter, to say, 0 < α¿ 1 . This statement leads to the Cauchy
initial value problem

ε′′+ε=α
[
ε′2

ε
−2βε′−ε

]
(3)

that should satisfy the initial conditions
ε(τ= 0) = ε0 and ε′(τ= 0) = v0

Forα= 0, Eq.(3) becomes the well known equation of the classical linear harmonic oscillator, that is the classical
prototype for any dynamical system exhibiting periodic motion [10]. The solution in this case is

ε(τ) = a cos(τ+θ)

where a and θ are constants. In this situation, Eq.(3) may be regarded as a small nonlinear perturbation of the linear
harmonic oscillator equation for small parameter α. It is easy to see that the equation (3) is written in the standard
form

ε′′+ε=α f (ε,ε′,β)

where

f (ε,ε′,β) = ε′2

ε
−2βε′−ε

So, the classical theory of averaging may be applied in order to carry out an approximate analytical solution. The
mathematical problem is, instead solving of the equation (2), to solve the approximate equation (3). In other words,
the original equation (2) will be replaced by its approximate equation (3) for which an analytical solution is accessible
by application of the asymptotic perturbation analysis. In this moment, the problem consists to observe the original
system as a small perturbation of a system with a well-known dynamic behavior [1, 5]. Hence, some assumptions are
required.

2.1.3. Hypothesis on approximate solution

In averaging theory [1, 5] the desired solution to Eq.(3) is assumed to be, for α 6= 0, of the form

ε(τ) = a(τ)cos[τ+θ(τ)] (4)

where the amplitude a(τ) and the phase θ(τ) are functions of dimensionless time τ. At the present time, it is important
to note that two new time-dependent variables are introduced in the solution (4). Therefore, it is needed to impose
upon them an additional restriction.
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2.1.4. Restriction on approximate asymptotic solution

As supplementary condition it is suitable to assume that a(τ) and θ(τ) are slow functions of τ. So, the differenti-
ation of Eq.(4) with respect to τ gives

ε′(τ) =−a(τ)sin[τ+θ(τ)] (5)

by setting

a′(τ)cos[τ+θ(τ)]−aθ′(τ)cos[τ+θ(τ)] = 0 (6)

Now, it is possible to transform Eq.(3) into a set of two first-order differential equations.

2.1.5. Differential system

The substitution of the equations (4), (5) and (6) into the equation (3) leads to the following equivalent differen-
tial system{

d a
dτ =−α f (a cosψ,−a sinψ)sinψ
dψ
dτ = 1− α

a f (a cosψ,−a sinψ)cosψ
(7)

where f (a cosψ,−a sinψ) = a
sin2ψ

cosψ
+2aβsinψ−a cosψ and ψ= τ+θ(τ)

In Eq.(7) the unknowns are a(τ) and ψ(τ). The system of equations (7) is yet equivalent to the equation (3). But,
the objective is to replace the differential system (7) by it average value.

2.1.6. Approximate differential system

To establish the approximate differential system, it is assumed that, as a(τ) and θ(τ) are being slowly varying
functions of τ, the values of a′(τ) and θ′(τ) should not change significantly during one cycle of motion of period 2π
[11]

In this perspective the equation (7) may be averaged over one period with respect to θ(τ) to give{ d a
dτ =−αβa
dθ
dτ = 0

(8)

The system of equations (8) is very easy to be integrated rather than the original system (7) since the equations in the
differential system (8) are separable equations [11].

2.1.7. Integration of the differential system

The integration of the differential system (8) is immediate since the first equation is linear in a and the second
is null. Hence, a(τ) and ψ(τ) may be expressed as

a(τ) = a0 exp(−αβτ) (9)

and

ψ(τ) = τ+θ0 (10)

where a0 and θ0 are the constants of integration which should be determined from initial conditions

2.1.8. Approximate solution

Noting at τ= 0
ε= ε0

and
ε′ = v0

it is possible to find

a0 =
√
ε2

0 + v2
0

and

θ0 =−arctan

(
v0

ε0

)
to recover the definitive approximate solution

ε(τ,α) =
√
ε2

0 + v2
0 exp(−αβτ)cos

[
τ−arctan

(
v0

ε0

)]
(11)

with ε0 6= 0
The equation (11) represents the desired asymptotic perturbation solution directly obtained by application of

the averaging theory. However, it is required to check the adequacy and accuracy of this procedure. To do so, in a first
time the approximate result obtained should be compared with the exact analytical solution to the equation (2) in the
limit α→ 0, and in the second time, with the solution which results from numerical integration of Eq. (3). It is then,
before to progress in this study, suitable to determine the asymptotic behavior of the exact analytical solution to the
equation (2) as α→ 0 .
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2.2. Limiting solution

It is needed to recall that following Monsia and Kpomahou [8] the equation (2) may exhibit three damped so-
lutions following the value of the parameter µ. So, the damped oscillatory solution to Eq. (2) obtained for µ< 1, that
is to say, the under-damped solution to Eq. (2), is only concerned in this research contribution due to the averaging
procedure [5] used in the preceding section and the fact that numerous mechanical systems are weakly damped. In
this regard the under-damped solution to Eq. (2) may be written in the form [8]

ε(τ, l ) =C
1
l exp

(
−µτ

l

)[
cos

(
ωdτ−ψ0

)] 1
l (12)

where

ωd =
√

1−µ2

C = εl
0

√√√√√1+ 2µl v0
ε0

+
(

l v0
ε0

)2

1−µ2

and

ψ0 = arctan

 µ+ l v0
ε0√

1−µ2


with ε0 6= 0
The objective, here, is to seek the limit of the solution (12) as α→ 0. To this end, each term of solution (12)

should be evaluated as α→ 0.
Knowing l = 1−α and µ=αβ, the quantity C as a function of α becomes

C = ε1−α
0

√√√√√1+ 2αβ(1−α)v0
ε0

+
[

(1−α)v0
ε0

]2

1−α2β2

or

C = ε1−α
0

√√√√√1+ v2
0

ε2
0
+2α

(
β− v0

ε0

)
v0
ε0

+α2
(

v0
ε0

−2β
)

v0
ε0

1−α2β2

Therefore, as α→ 0,

C
1
l =C

1
1−α ∼ ε0

√√√√1+ v2
0

ε2
0

or

C
1

1−α ∼
√
ε2

0 + v2
0

In the same way, exp
(
−µτ

l

)
may be written as

exp
(
−µτ

l

)
= exp

(
− µτ

1−α
)

or

exp
(
−µτ

l

)
= exp

(
− αβτ

1−α
)

to give

exp
(
−µτ

l

)
∼ exp(−αβτ) as α→ 0. On the other hand

arctan

 µ+ l v0
ε0√

1−µ2

= arctan

 v0
ε0

+α
(
β− v0

ε0

)
√

1−α2β2


that is to say,

arctan

 µ+ l v0
ε0√

1−µ2

∼ arctan

(
v0

ε0

)
, as α→ 0,

to lead also tocos

√
1−µ2τ−arctan

 µ+ l v0
ε0√

1−µ2

 1
l

∼ cos

(
τ−arctan

(
v0

ε0

))
in the limit α→ 0
Finally, the exact analytical under-damped solution to equation (2) behaves as

ε(τ,α) =
√
ε2

0 + v2
0 exp(−αβτ)cos

(
τ−arctan

(
v0

ε0

))
(13)

in the limitα→ 0. It is worth noting that the solution (13) is identical to the solution (11) obtained by averaging theory.
Now, it is also interesting to note that nonlinear problems translated in nonlinear ordinary differential equations, may
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also be solved by numerical integration with the help of computer. This allows us to check the obtained analytical
result and to enhance the understanding of the dynamic response of the viscoelastic system under small perturbations
in the strain hardening exponent. Hence, the problem to be investigated is the graphical comparison of the asymptotic
perturbation solution (11) with the result obtained by numerical integration of equation (3) on the one hand and with
the exact analytical under-damped solution (12), by numerical simulations on the other hand.

3. Numerical applications

In this section the aim is to evaluate numerically the reliability and the accuracy of the developed asymptotic
perturbation solution. It is then suitable to compare this approximate analytical result with the solution to the ap-
proximate equation (3) obtained by numerical integration. It is also suitable, given the exact analytical solution (12),
to perform a comparison of this solution with the averaging solution (11). This may lead to gain more understanding
on the agreement between their dynamics.

3.1. Comparison of numerical result with approximate analytical solution

Here, a graphical comparison of result based on numerical integration of Eq.(3) using the Matlab’s routine ode
45 with the averaging solution to Eq.(3) is carried out in order to check the accuracy of the averaging procedure that is
used. Therefore Fig. 1 shows the comparison of result obtained from numerical evaluation of Eq.(3) with the approxi-
mate analytical solution obtained on the basis of averaging theory. The numerical solution is represented in solid line
and the amplitude as given by (11) is plotted in dashed line from τ= 0 to τ= 80 under the arbitrary initial conditions
ε0 = 1 and v0 = 0.1, with the valueβ= 0.39. The agreement is found to be consistent forα= 0.013 with a mean squared
error mse = 3.3376e −005. At the present time, a comparison of the asymptotic perturbation solution with the exact
analytical solution (12) is needed for a complete numerical evaluation of the tested prediction.

3.2. Comparison of exact result with approximate analytical solution

This subsection aims to compare graphically the exact result with the approximate analytical solution obtained
from asymptotic perturbation analysis, on the basis of numerical simulations that are run by using a Matlab’s code.
In this regard Fig. 2 shows the comparison of the approximate evolution equation (11) with the exact solution (12)

from τ = 0 to τ = 20, with the values µ = 0.3571, ε0 = 1.01, and v0 = 0.94. The agreement is satisfactory for l = 1

3
.

The solid line represents the exact analytical solution (12) while the averaging perturbation solution (11) is plotted in
circles. Having presented these numerical and analytical evaluations of the investigated question, it is now possible
to discuss the validity of the accuracy of the formulated prediction.

4. Discussion

The objective of this part is to proceed to the analysis and discussion of the results obtained from analytical and
numerical evaluations in order to confirm the adequacy and exactness of the hypothesis under question. It is, in ef-
fect, assumed that a small perturbation in the strain hardening exponent that governs the effect of nonlinear damping
does not produce a significant change in the qualitative nature of the dynamic behavior of the model of viscoelastic
nonlinear oscillator under study. In this perspective an approximate analytical solution obtained from the averaging
perturbation theory based on the idea of small parameter is performed. For this, it is assumed that the strain hard-
ening exponent may assure the role of small parameter. The obtained asymptotic perturbation result clearly shows
that in this case the viscoelastic nonlinear oscillator model may be considered as a small nonlinear perturbation of
the well- known classical linear harmonic oscillator. It suffices to note that for α = 0, the solution (11) converges
to the periodic solution of a linear harmonic oscillator equation, that is, to the non-perturbed harmonic oscillation.
Therefore, the perturbation here consists of a modification of harmonic oscillations amplitude that is multiplied by
exp(−αβτ), which is a function of the small parameter α. At sufficiently long time, this factor vanishes, that is to say,
exp(−αβτ) → 0 as τ→∞, for β > 0. So, the system asymptotically approaches its equilibrium value, zero, as shown
in Fig. 2. Moreover, Fig. 2 shows a deviation between exact and approximate analytical solutions at short time but, at
sufficiently long time, the approximate asymptotic perturbation solution is close to the exact analytical solution, as
expected, since the basic logic of the averaging technique is to replace the original system with another system which
is more simple than the original model for the large time behavior [12]. Fig. 2 also reveals that the exact solution (12)
converges fast to the asymptotic equilibrium more than the approximate analytical solution obtained from averaging
theory, which requires more time to approach the asymptotic equilibrium value, as expected, since the averaging pro-
cedure corresponds to the slow dynamics of the structural model [1, 4, 12]. It is not difficult to immediately see that
the solution (12) may present some power law singularity, so it may lead in numerical simulations in view of practical
purpose to some problems of stability and convergence. This highlights, in order to avoid these complex difficulties,
the usefulness to design an appropriate approximate model for the long time behavior of the system under study in
replacement of the power law solution (12). Fig. 2 shows again, as a noteworthy result, that a small perturbation in
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the strain hardening exponent doesn’ t alter the stability behavior of the dynamic system, as suggested by analyti-
cal results. Fig. 1 shows a satisfactory agreement between the solution obtained from numerical integration of the
approximate equation (3) and the asymptotic perturbation solution (11) that is close to the exact analytical solution
as α→ 0. As can be seen in Fig. 1, the slowly varying amplitude approximation of averaging theory holds. In other
words, the oscillations amplitude changes with time, but very slowly. Thus, the above demonstrates by analytical and
numerical evaluations the validity of the accuracy of the approximate analytical result obtained by application of the
asymptotic perturbation method. In this regard, the coefficientα effectively assures the role of small parameter in the
determination of approximate model for the replacement of the original model through an averaging perturbation
analysis. In such a situation, it is reasonable to affirm that, a small perturbation in α, that is, in the strain harden-
ing exponent l , doesn’ t produce a large change in the qualitative nature of the dynamic response of the viscoelastic
system under consideration. So, it may be said that the pursued objective is reached.

Fig. 1. Validation of the approximate analytical results against the numerical solution (α= 0.013,β= 0.39,ε0 = 1, v0 = 0.1). Solid
line: numerical solution; dashed line: averaging solution.

Fig. 2. Graphical representation showing the agreement between the long time dynamics of the exact solution and the averaging

perturbation result(l = 1

3
,µ= 0.3571,ε0 = 1.01,v0 = 0.94). Solid line: exact solution; circle line: averaging theory solution.
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5. Conclusions and future research

A model of a single degree of freedom nonlinear viscoelastic oscillator including a strain hardening exponent
as parameter which governs the nonlinear damping property of the system is considered in this research contribu-
tion. In such a situation a necessary question for nonlinear mechanics and engineering applications is to understand
the effect of small change in this parameter on the behavior of the dynamic system response. The investigation of
this question has needed to perform an averaging perturbation analysis. An approximate analytical solution is then
obtained. The accuracy of this solution is verified by its comparison with the solution obtained by numerical integra-
tion of the corresponding equation on the one hand, and with the exact analytical result in the limit that the strain
hardening exponent reaches its critical value, on the other hand. In addition, the asymptotic perturbation solution
is graphically compared with the exact analytical result by numerical simulations. The analysis has shown that the
strain hardening exponent secures the role of small parameter. In other words, a small perturbation in the value of
the strain hardening exponent does not affect in a dramatic fashion the qualitative nature of the dynamic behavior
of the nonlinear viscoelastic oscillator under question. The comparison of the asymptotic perturbation result with
the exact analytical solution by numerical simulations, confirms also the fact that a small change in the strain hard-
ening exponent does not alter the stability behavior of the system, as expected from analytical results. In this regard,
the current work allowed us to test numerically and analytically the accuracy of the averaging theory. It may also be
observed that the proposed structural model is a small nonlinear perturbation, here, a nonlinear damping, of the lin-
ear harmonic oscillator. Thus, the approximate asymptotic model which is developed in this paper may be useful, in
engineering applications, for representing with a simple explicit expression the dynamics of a variety of mechanical
systems undergoing a weak viscoelastic response. It then appears interesting to investigate, as future works, the ef-
fects of variation in initial conditions and other parameters on the long time behavior of the dynamic response of the
current structural model. An interesting question which should be also investigated in a future work is to know what
happens if the equation model is non-homogeneous. These studies seem to be important for nonlinear mechanics
and engineering applications, since it is well known that, under forced vibrations, second-order mechanical systems
may exhibit a rich variety of physical phenomena, such as loss of stability, that is to say, instability and bifurcation,
sub or super-harmonic resonances and chaotic motion.
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