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Abstract: In this paper, The problem of steady two-dimensional boundary layer MHD stagnation point flow and heat transfer
of an incompressible micropolar fluid over a stretching sheet with the presence of radiation, heat generation and
dissipations has been investigated. The governing partial differential equations are transformed to ordinary ones
using similarity transformation. The resulting nonlinear ordinary differential equations are solved numerically using
the finite difference method. The results obtained for velocity, temperature and skin friction are tabulated and shown
graphically. Comparing the present results for skin friction with the recent results, it is observed that the results are in
excellent agreements.
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1. Introduction

Micropolar fluids are fluids with microstructure, and they belong to a class of fluids with nonsymmetric stress
tensor that we will call polar fluids. Micropolar fluids may also represent fluids consisting of rigid, randomly oriented
(or spherical) particles suspended in a viscous medium, where the deformation of the particles is ignored. This con-
stitutes a substantial generalization of the Navier-Stokes model and opens a new field of potential applications. The
attractiveness and power of the model of micropolar fluids are come from the fact that it is both a significant and
a simple generalization of the classical Navier-Stokes model. The theory of micropolar fluids developed by Eringen
[1]. Other important applications of micropolar fluids can be seen in Ariman et. al. [2] and [3]. Eringen [4] has also
developed the theory of thermomicropolar fluids by the extending theory of micropolar fluids.

The classical two dimensional stagnation point flow impinging on a flat plate, first considered by Hiemenz [5],
was extended to the axisymmetric case by Homann [6]. The steady two dimensional flow over a semi infinite flat sur-
face with mass and heat transfer characteristics was considered by Chamkha and Camille [7]. Mahapatra and Gupta
[8] presented the numerical solution of the problem of steady two dimensional stagnation point flow of an electrically
conducting power law fluid over a stretched surface. Roslinda et al. [9] investigated numerically the unsteady bound-
ary layer flow of an incompressible viscous fluid in the stagnation point region over a stretching sheet. The steady
two dimensional laminar MHD mixed convection stagnation point flow with mass and heat transfer over a surface
was examined by Abdelkhalek [10] by using perturbation technique. The two dimensional boundary layer stagnation
point flow and heat transfer over a stretching sheet with injection/suction effects was considered by Layek et al. [11].
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Ishak et al. [12] investigated numerically the steady two-dimensional MHD stagnation point flow towards a
stretching sheet with variable surface temperature using Keller-box method. Chakraborty and Mazumdar [13] an-
alyzed the approximate solution to the problem of steady laminar flow of a viscous incompressible electrically con-
ducting fluid over a stretching sheet and used least squares method to minimize the residual of a differential equation.
Ishak et al. [14] studied the steady two-dimensional stagnation point flow of an incompressible viscous and electri-
cally conducting fluid in the presence of a transverse uniform magnetic field over a vertical stretching sheet. Pop et al.
[15] studied the radiation effects on the flow of an incompressible viscous fluid over a flat sheet near the stagnation
point and solved system of ordinary differential equations numerically using Runge-Kutta method with a shooting
technique. The effect of heat generation and radiation parameters on MHD flow along a uniformly heated vertical flat
plate in the presence of a magnetic field has been investigated numerically by Saha et al. [16]. Noor et al. [17] analyzed
the magnetohydrodynamic viscous flow due to a shrinking sheet analytically and found that the result obtained by a
domian decomposition and homotopy analysis methods are well agreed. Raptis et al. [18] discussed numerically the
effect of radiation parameter by solving the problem of steady MHD asymmetric flow of an electrically conducting
fluid over a semi infinite stationary plate. Nadeem et al. [19] solved the problem of stagnation point flow of a viscous
fluid towards a stretching sheet by homotopy analysis method.

Liu [20] presented the analytical solutions for the flow and heat transfer in a steady laminar boundary flow of
an electrically conducting fluid of second grade subject to a uniform transverse magnetic field past a semi-infinite
stretching sheet with power-law surface temperature or power-law heat flux. Prasad et al. [21] discussed the charac-
teristics of heat transfer and momentum in an incompressible electrically conducting non-Newtonian boundary layer
flow of a viscoelastic fluid over a stretching sheet by assuming that the fluid viscosity and thermal conductivity vary as
an inverse and linear function of temperature and came to know about the significant decrease in wall temperature
profile and skin friction of the sheet by increasing magnetic field parameter. Ishak et al. [22] discussed the steady
two dimensional stagnation point flow of a micropolar fluid over a shrinking sheet in its own plane and assumed that
ambient fluid velocity and shrinking velocity vary linearly. They found that the solutions for a shrinking sheet are
non-unique. Attia [23] investigated the steady laminar flow of an incompressible non-Newtonian micropolar fluid
impinging on a permeable flat plate with heat transfer and applied a uniform suction or blowing normal to the plate
at a constant temperature and discussed the characteristics of the non-Newtonian fluid and uniform suction or blow-
ing on both the flow and heat transfer by obtaining the numerical solution. Ishak [24] studied the thermal boundary
layer flow induced by a linearly stretching sheet immersed in an incompressible micropolar fluid with constant sur-
face temperature and found that the heat transfer rate at the surface decreases in the presence of radiation. Lok et
al. [25] generalized the classical modified Hiemenz flow for micropolar fluid near an orthogonal stagnation point
by discussing the problem of steady two-dimensional flow of a micropolar fluid impinging obliquely on a flat plate.
Damesh et al. [26] studied the combined heat and mass transfer by natural convection of a microplar viscous and
heat generating or absorbing fluid flow over a uniformly stretched permeable surface in the presence of a first order
chemical reaction and solved the governing equations numerically using the fourth order Runge-Kutta method. Ishak
and Nazar [27] discussed numerically the steady two-dimensional stagnation point flow of a micropolar fluid over a
stretching permeable sheet using finite difference method.

The purpose of the present paper is to study the effect of magnetohydrodynamic and heat transfer on the steady
laminar flow of an incompressible non-Newtonian micropolar fluid at a two-dimensional stagnation point with ra-
diation, heat generation and dissipations. The wall temperatures is assumed to be constants. A numerical solution
is obtained for the governing (momentum and energy) equations using finite difference approximations, which takes
into account the asymptotic boundary conditions. The numerical solution computes the flow and heat profiles for the
whole range of the non-Newtonian fluid characteristics, the stretching velocity, magnetic parameter, the heat gener-
ation/absorption coefficient, the radiation parameter, the prandtl and brinkman numbers. The algorithm solution is
coded using MATLAB to obtain accurate results.

2. Mathematical formulation

Consider a steady ,two-dimensional flow of an incompressible electrically conducting micropolar fluid in the
presence of thermal radiation near the stagnation on a horizontal heated plate. It is assumed that the velocity of the
flow external to the boundray layer U (x) and the temperature Tω(x) of the plate are proportional to the distance x
from the stagnation point ,i.e. U (x)=cx and T = Tω where c is constant. A uniform magnetic field of strength B0 is
assumed to be applied in the positive y-direction normal to the plate as shown in figure 1. In addition heat generation
and dissipations effects are included.

The governing equations of the flow in two dimensions with heat transfer in the presence of radiation, heat
generation and dissipations can be written as:
Continuity equation:

∂u

∂x
+ ∂v

∂y
= 0 (1)
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Fig. 1. Physical Configuration and Coordinate System.

Linear momentum equation:

u
∂u

∂x
+ v

∂u

∂y
=U

dU

d x
+

(
µ+κ
ρ

)
∂2u

∂y2 + κ

ρ

∂N

∂y
− σB 2

0

ρ
(u −U ) (2)

Angular momentum equation:

ρ j

(
u
∂N

∂x
+ v

∂N

∂y

)
= γ∂

2N

∂y2 −κ
(
2N + ∂u

∂y

)
(3)

Heat equation:

u
∂T

∂x
+ v

∂T

∂y
=α∂

2T

∂y2 − 1

cpρ

∂qr

∂y
+ σBO

2

ρcp
(u −U )2 + ν

cp
(
∂u

∂y
)2 + Q

ρcp
(T −T∞) (4)

subject to the boundary conditions

u = ax, v = 0, N =−n
∂u

∂y
, T = Tw , at y = 0 (5)

u →U (x) = cx, N → 0, T → T∞, as y →∞ (6)

where u and v are the velocity components along the x and y axes, respectively and T is the fluid temperature in

the boundary layer. Furthermore, µ, k, ρ, j , N , γ,σ,Bo , α= K

ρcp
, cp and qr are respectively the dynamics viscosity,

vortex viscosity(or the microinvasion viscosity), fluid density, micro-inertia per unit mass,microrotation vector (or
angular velocity), spin gradient viscosity, thermal diffusivity, the electric conductivity, the strength of magnetic field,

specific heat at constant pressure and the radiative heat flux. we notice that n is a constant such that when n = 1

2
indicates that, the vanishing of anti-symmetric part of the stress tensor and denotes weak concentration [28] of micro-

elements which will be considered here. We follow the usual procedure by assuming that γ =
(
µ+ k

2

)
j = µ

(
1+ K

2

)
j ,

where K =
(

k

µ

)
is the material parameter (or the Eringen micropolar parameter) and j = ν

a
as a reference length.

This assumption is involved to allow the field of equations predicts the correct behavior in the limiting case when the
microstructure effects become negligible and the total spin N reduces to the angular velocity (see Ishak et al. [29]). By
using the Rosseland approximation (Brewster [30]) the radiative heat flux qr is given by:

qr =−4
σ∗

3k∗
∂T 4

∂y
(7)

∂qr

∂y
=−4σ∗

3k∗
∂2T 4

∂y2 (8)
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where σ∗ the Stefan-Boltzmann constant and k∗ is the mean absorption coefficient. It is assumed that the tempera-
ture differences within the flow are such that the term T 4 may be expressed as a linear function of temperature. This
is accomplished by expanding T 4 in a Taylor series about T∞ and neglecting the second and higher order terms lead
to

T 4 ∼= 4T 3
∞(T −3T 4

∞) (9)

∂2T 4

∂y2
∼= 4T 3

∞
∂2T

∂y2 (10)

by substituting from Eqs.(10) and (8) in Eq. (4) we obtain the following equation.

u
∂T

∂x
+ v

∂T

∂y
=α∂

2T

∂y2 + 16σ∗T 3∞
3ρcp k∗

∂2T

∂y2 + σBO
2

ρcp
(u −U )2 + ν

cp

(
∂u

∂y

)2

+ Q

ρcp
(T −T∞) (11)

3. Similarity transformation

The partial differential Eqs. (1−3) and Eq. (11) are transformed into non-dimensional form by using the follow-
ing dimensionless variables:

η= (
a

ν
)

1
2 y , u = ax f ′(η), v =−(aν)

1
2 f (η), N = ax(

a

v
)

1
2 h(η) and T =∆Tθ(η)+T∞ or θ = T −T∞

Tw −T∞
U (x) = cx, from which

we obtain
1.u = ax f ′(η).

∂u

∂x
= a f ′(η) (12)

∂u

∂y
= ax f ′′(η)

( a

ν

) 1
2

(13)

∂2u

∂y2 = ax f ′′′(η)
( a

ν

)
(14)

u
∂u

∂x
= a2x f ′2(η) (15)

v
∂u

∂y
=−a2x f (η) f ′′(η) (16)

2.v =−(aν)
1
2 f (η)

∂v

∂y
=−(aν)

1
2 f ′(η)

( a

ν

) 1
2 =−a f ′(η) (17)

3.U (x) = cx

dU

d x
= c (18)

U
dU

d x
= c2x (19)

4.N = ax
( a

ν

) 1
2

h(η)

∂N

∂x
= a

( a

ν

) 1
2

h(η) (20)
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u
∂N

∂x
= ax f ′(η)a

( a

ν

) 1
2

h(η) = a2x
( a

ν

) 1
2

f ′(η)h(η) (21)

∂N

∂y
= ax

( a

ν

) 1
2

h′(η)
( a

ν

) 1
2 = a2x

ν
h′(η) (22)

v
∂N

∂y
=−(aν)

1
2 f (η)

(
a2x

ν

)
h′(η) (23)

∂2N

∂y2 = a2x

ν
h′′(η)

( a

ν

) 1
2 = a2x

ν

( a

ν

) 1
2

h′′(η) (24)

5.T =4Tθ(η)+T∞
∂T

∂x
= 0 and u

∂T

∂x
= 0 (25)

∂T

∂y
=4Tθ′(η)

( a

ν

) 1
2 =

( a

ν

) 1
2 4Tθ′(η) (26)

v
∂T

∂y
=−a4T f (η)θ′(η) (27)

∂2T

∂2 y
= a

ν
4Tθ′′(η) (28)

Substituting these transformations from Eqs. (12−28) into Eqs. (1−6) gives the following ordinary differential
equations as follows

(1+K ) f ′′′+ f f ′′+C 2 − f ′2 +K h′+H 2
a(C − f ′) = 0, (29)

(
1+ K

2

)
h′′+ f h′− f ′h −K (2h + f ′′) = 0, (30)

Therefore, according to ref. [28], we have h(η) = −1

2
f ′′(η), and hence Eqs.(29) and (30) reduce to the single equation

as (
1+ K

2

)
f ′′′+ f f ′′+C 2 − f ′2 +H 2

a(C − f ′) = 0. (31)

By Substituting these transformation in Eq.(11) give the following equation(
1+ 4

3Rd

)
θ′′+Pr f θ′+H 2

aBr (C − f ′)2 +Br f ′′2 +BPrθ = 0. (32)

with boundary conditions

f (0) = 0, f ′(0) = 1, f ′(∞) =C , (33)

θ(0) = 1,θ(∞) = 0. (34)

where C = c

a
is a stretching parameter where c and a are constant, H 2

a = σB 2
0

aρ
is the magnetic parameter, Pr = cpµ

k

is the Prandtl number, Rd = kk∗

4σ∗T 3∞
is the radiation parameter, Br = µU 2

k∆T
is Brinkman number and B = Q

aρcp
is the

dimensionless heat generation/absorption parameter.
For micropolar boundary layer flow, the wall skin friction τw is given by:

τw =
[

(µ+k)
∂u

∂y
+kN

]
y=0

, (35)

Using U (x) = cx as characteristic velocity, the skin friction coefficient C f can be defined as

C f =
τw

ρu2 , (36)

Substituting by similarity transformations and (36) into (35), we get

C f Re
1
2
x =

(
1+ K

2

)
f ′′(0). (37)

where Rex = xu/ν is local Reynolds number
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4. Numerical method for solution

The governing ordinary differential Eqs. (31) and (32 ) are nonlinear. Most of the physical systems are inher-
ently nonlinear in nature and are of great interest to physicists, engineers and mathematicians. Problems involving
nonlinear ordinary differential equations are difficult to solve and give rise to interesting phenomena such as chaos.
We use a finite difference of second based numerical algorithm to solve the system of differential Eqs. (31) and (32 ).
Following the procedures of Chamkha and Camille [7], Ashraf and Ashraf [31], Ashraf and Sumra [32], Ashraf et al. [33]
and Ashraf et al. [34], we reduce the order of this equations by one with the help of the substitution p = f ′ become as
follows:

(
1+ K

2

)
p ′′+ f p ′+C −p2 +Ha(C −p) = 0 (38)

(
1+ 4

3Rd

)
θ′′+Pr f θ′+H 2

aBr (C − f ′)2 +Br p ′2 +BPrθ = 0 (39)

subject to the boundary conditions (33) and (34 ) which become

f (0) = 0, p(0) = 1, p(∞) =C (40)

θ(0) = 1,θ(∞) = 0 (41)

The system of nonlinear differential Equations (38) and (39) is solved under the boundary conditions (40) and (41) by
applying centeral finite difference method. Hence

p ′
i =

pi+1 −pi−1

2∆
+O(∆)2. (42)

p ′′
i = pi+1 −2pi +pi−1

∆2 +O(∆)2. (43)

θ′i =
θi+1 −θi−1

2∆
+O(∆)2. (44)

θ′′i = θi+1 −2θi +θi−1

∆2 +O(∆)2. (45)

By substituting from Eqs. (42−45) into Eqs. (38) and (39), we obtain(
1+ K

2

)[
pi−1 −2pi +pi+1

∆2

]
+ fi

[ pi+1 −pi−1

2∆

]
+C 2 −p2

i +H 2
a(C −pi ) = 0

(46)

[
(2+K )−∆ fi

]
pi−1 +

[−2(2+K )−2∆2pi −2∆2H 2
a

]
pi

+ [
(2+K )+∆ fi

]
pi+1 =−2∆2C (C +H 2

a)
(47)

(
1+ 4

3Rd

)[
θi−1 −2θi +θi+1

∆2

]
+Pr f

[
θi+1 −θi−1

2∆

]
+H 2

aBr (C −pi )2 +Br

[ pi+1 −pi−1

2∆

]2
+BPrθi = 0

(48)

To compute the velocity f (η) from f ′(η) for this problem by applying Trapezium rule as the following form:

f (η) =
∫ η

0
f ′(η)dη=

∫ η

0
p(η)dη= ∆η

2
[p(0)+2{p(∆η)+p(2∆η)+ .......+p(η−∆η)}+p(η)] (49)



90 The stagnation point MHD flow and heat transfer of micropolar fluid over a stretching sheet ...

5. Results and discussion

Table 1 and Fig. 2−4 present the velocity profiles f , f ′, and the profile of temperature θ respectively, for various
values of C . They show that increasing the parameter C increases both f and f ′ and decreases θ when the others
parameters are constants. They show also that f increases while θ decreases by increasing η for any value of C , and
the value of f ′ decreases or increases and then fixed depend on the value of C .

Table 2 and Fig. 5 and Fig. 6 present the velocity profiles of f and f ′, respectively, for various values of K . The
figures show that increasing the parameter K decreases both f and f ′ when the others parameters are constants. They
show also that f increases by increasing η for any value of K , while the value of f ′ increases and then fixed depend for
all values of K .

Table 3 and Fig. 7 presents the profile of temperature θ for various values of K . It is observed that θ decreases
with increasing the parameters K and η when the others parameters are constants.

Table 4 and Fig. 8 and Fig. 9 present the profile of temperature θ for various values of Rd . It is observed that θ
decreases with increasing the parameters Rd and η when the others parameters are constants.

Table 5 and Fig. 10 and Fig. 11 present the profile of temperature θ for various values of Pr . It is observed that
θ and η decreases with increasing Pr Ec = B = 0 and the others parameters are constants, whileθ increases and then
decreases with increasing Pr after a critical value of η for other values of Ec and B .

Table 6 and Fig. 12 and Fig. 13 present the profile of temperature θ for various values of B . It is observed that θ
increases with increasing the parameter B when others parameters are constants, while η decreases at any balue of B .

Table 7 and Fig. 14 and Fig. 15 present the profile of temperature θ for various values of Ec . It is observed that θ
increases with increasing Ec when the others parameters are constants, while η increases and then decreases at any
value of Ec .

Table 1. The variation of f , f ′ and θ at C = 0.5,1 and 1.5 where others parameters are constant

η C=0.5 C = 1.0 C = 1.5

f f ′ θ f f ′ θ f f ′ θ

0 0 1 1 0 1 1 0 1 1

1 0.737806064 0.616445516 0.652366105 1.002000003 1.000000003 0.582706369 1.306722576 1.431051587 0.525474278

2 1.2704499 0.522246586 0.375563306 1.998000007 1.000000002 0.273063168 2.788607163 1.494924242 0.200372543

3 1.775175955 0.50334772 0.187212204 3.000000008 1.000000001 0.099433619 4.291322993 1.499824737 0.05241771

4 2.276452749 0.500393337 0.077970263 4.002000008 1 0.027393036 5.794320905 1.499997325 0.009165031

5 2.774466777 0.500034877 0.023616594 4.998000008 1 0.00518064 7.288320901 1.499999982 0.001010123

6 3.275467232 0.5 0 6.000000008 1 0 8.791320901 1.5 0

Fig. 2. Effect of C on the profile of f at Ha =1 and K =0.
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Fig. 3. Effect of C on the profile of f ′ at Ha =1 and K =1.

Fig. 4. Effect of C on the profile of θ at Ha =1, K =1, Pr =0.7, Ec =0, Rd = 1 and B=0.

Table 2. The variation of f and f ′ at K = 0,1 and 2 where others parameters are constant

η K=0 K = 1.0 K = 2.0

f f ′ f f ′ f f ′

0 0 1 0 1 0 1

1 2.213594755 1.459426393 2.048342229 1.431051584 1.940156627 1.406886351

2 5.158526905 1.498762741 4.921229728 1.49492424 4.737983757 1.489040291

3 8.163893974 1.499988466 7.920742778 1.499824737 7.72398066 1.49925679

4 11.16989207 1.49999997 10.92659557 1.499997325 10.72886454 1.499972147

5 14.15789207 1.5 13.91459432 1.499999982 13.71683296 1.499999434

6 17.16389207 1.5 16.92059432 1.5 16.72283252 1.5
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Fig. 5. Effect of K on the profile of f at Ha =0.5 and C =3.

Fig. 6. Effect of K on the profile of f ′ at Ha =1 and C =1.5.

Table 3. The variation of θ at K = 0,5 and K = 10 where others parameters are constant

η θ

K = 0 K = 5 K = 10

0 1 1 1

1 0.740342252 0.71040458 0.700040953

2 0.515197029 0.465624402 0.448465896

3 0.331429337 0.278286672 0.260081769

4 0.188306192 0.146058634 0.131918789

5 0.080434407 0.057716189 0.050365647

6 0 0 0
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Fig. 7. Effect of K on the profile of θ at C =0.1, Ha =0, Pr =0.7, Ec =0, Rd = 1 and B=0.

Table 4. The variation of θ at Rd = 1,2 and 3 where others parameters are constant

η θ

K =0.5, Ha=0.5, C =2, Pr =0.7, Ec =2 and B=2. K =1, Ha=1, C =1.5, Pr =0.7, Ec =1 and B=2.

Rd = 1 Rd = 2 Rd = 3 Rd = 1 Rd = 2 Rd = 3

0 1 1 1 1 1 1

1 0.850583559 0.796084507 0.767886137 0.528298825 0.45840664 0.42696949

2 0.396687298 0.273685303 0.223979334 0.203177105 0.133691045 0.10774482

3 0.100991427 0.04035213 0.024599636 0.053686632 0.022810003 0.014562355

4 0.014024739 0.002558613 0.001020825 0.009486074 0.002205045 0.001016917

5 0.001037979 7.05268E-05 1.63416E-05 0.00105623 0.000117528 3.60707E-05

6 0 0 0 0 0 0

Fig. 8. Effect of Rd on the profile of θ at K =0.5, Ha =0.5, C =2, Pr =0.7, Ec =2 and B=2.
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Fig. 9. Effect of Rd on the profile of θ at K =1, Ha =1, C =1.5, Pr =0.7, Ec =1 and B=2.

Table 5. The variation of θ at Pr = 0.5,1 and 1.5 where others parameters are constant

η θ

K =1, Ha=1, C =0.5, Ec =0, Rd =105 and B=0 K =1, Ha=1, C =1.5, Ec =1, Rd =105 and B=2

Pr = 0.5 Pr = 1 Pr = 1.5 Pr = 0.5 Pr = 1 Pr = 1.5

0 1 1 1 0 1 1 1

1 0.557351053 0.394519016 0.290250215 1.147736076 1.00771245 0.847490691

2 0.252196998 0.099658761 0.041871567 0.516097608 0.171154267 0.05371016

3 0.091284804 0.01591444 0.002976408 0.101957068 0.005917289 0.000323479

4 0.025892084 0.001599627 0.000104334 0.009156854 4.36706E-05 1.95421E-07

5 0.005196315 9.86865E-05 1.81585E-06 0.000378814 7.29657E-08 1.2848E-11

6 0 0 0 0 0 0

Fig. 10. Effect of Pr on the profile of θ at K =1, Ha =1, C =0.5, Ec =0, Rd =105 and B=0.
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Fig. 11. Effect of Pr on the profile of θ at K =1, Ha =1, C =1.5, Ec =1, Rd =105 and B=2.

Table 6. The variation of θ at B = 0,0.5 and 1 where others parameters are constant

η θ

K =0.5, Ha=0.5, C =1, Pr =0.5, Rd =105 and Ec =1.5 K =1, Ha=1, C =1.5, Pr =0.7, Rd =105 and Ec =1

B = 0 B = 0.5 B = 1 B = 0 B = 0.5 B = 1

0 1 1 1 0 1 1 1

1 0.478612287 0.586980047 0.777729041 0.343527855 0.415770598 0.5235627

2 0.157697804 0.227659418 0.36824574 0.053159456 0.074051098 0.109000104

3 0.033874066 0.055847737 0.105104072 0.003251253 0.005042827 0.008321505

4 0.004635196 0.008516369 0.018034256 7.5045E-05 0.000126679 0.000228271

5 0.000387055 0.00077283 0.001785617 6.53869E-07 1.18177E-06 2.28404E-06

6 0 0 0 0 0 0

Fig. 12. Effect of B on the profile of θ at K =0.5, Ha =0.5, C =1, Pr =0.5, Rd =105 and Ec =1.5.
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Fig. 13. Effect of B on the profile of θ at K =1, Ha =1, C =1.5, Pr =0.7, Rd =105 and Ec =1.

Table 7. The variation of θ at Ec = 0,0.5 and 1 where others parameters are constant

η θ

K =0.5, Ha=0.5, C =1, Pr =0.5, Rd =105 and Ec =1.5 K =1, Ha=1, C =1.5, Pr =0.7, Rd =105 and Ec =1

Ec = 0 Ec = 5 Ec = 10 Ec = 0 Ec = 5 Ec = 10

1 0.667068247 0.699194224 0.731320194 1.084871129 1.150957243 1.217043344

2 0.112465261 0.117927559 0.123389855 0.331287129 0.351723217 0.372159298

3 0.004627896 0.004852676 0.005077454 0.032627722 0.034640749 0.036653775

4 4.66913E-05 4.89592E-05 5.1227E-05 0.001079839 0.001146462 0.001213084

5 1.20113E-07 1.25947E-07 1.31781E-07 1.25026E-05 1.32739E-05 1.40453E-05

6 0 0 0 0 0 0

Fig. 14. Effect of Ec on the profile of θ at K =0.5, Ha =0.5, C =2, Pr =0.7, Rd =105 and B=2.
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Fig. 15. Effect of Ec on the profile of θ at K =1, Ha =1, C =1.5, Pr =0.7, Rd =105 and B=2.

In order to verify the accuracy of the numerical solution of present work by using finite difference method we

have compared these results for variation of skin friction C f Re
1
2
x with Hayat et al. [35] and Ishak and Nazar [27].

Table 8 showed that this approximate numerical solution is in good agreement with them.

Table 8. Comparison the present results with Hayat et al [35] and Ishak and Nazar [27] for skin friction C f Re
1
2
x when the material

parameter K =0, n = 1

2
and varies values of a stretching parameter C

C f Re
1
2
x

C Hayat et al. [35] Ishak and Nazar [27] present

0.1 -0.96938 -0.969387 -0.969424803244958

0.2 -0.91810 -0.918108 -0.918102413293237

0.5 -0.66732 -0.667265 -0.667255958315867

1 0.00000 0.000000 0.00000000

2 2.01750 2.017531 2.017481708640449

3 4.72928 4.729283 4.729232944214061

6. Conclusion

The problem of the stagnation point mhd flow and heat transfer of micropolar fluid over a stretching sheet in the
presence of radiation, heat generation and Joule dissipation has been investigated. The effects of stretching parameter,
material parameter, magnetic parameter, prandtl number, radiation parameter brinkman number and heat genera-
tion parameter on velocity and temperature profiles. A similarity transformation was used to convert the governing
partial differential equations to ordinary ones. The transformed equations with associated boundary conditions were
then solved numerically by finite difference method. The results for different parameters are summarized as follows:

• f (η) and f ′(η) increase with increasing the stretching parameter C but temperature profile θ decreases with
increasing of C .

• The material parameter K varies inversely with the three profiles of f (η), f ′(η) and θ.

• The temperature profiles θ decrease with an increase in the radiation parameter Rd while it increases and then
decreases with an increase of the Prandtl number Pr depending on the value of η.

• The temperature profiles θ increases with increasing both the heat generation/absorption parameter B and the
Eckert number EC .
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