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1. Introduction

For a measurable complex valued and locally bounded function defined on [0,∞), Lupas and Müller [1] defined
and studied some approximation properties of Gamma operators {Gn} defined by

Gn( f ; x) =
∫ ∞

0
gn(x,u) f

(n

u

)
du,

where

gn(x,u) = xn+1

n!
e−xuun , x > 0.

In [2], Mazhar gives an important modifications of the Gamma operators using the same gn(x,u)

Fn( f ; x) =
∫ ∞

0

∫ ∞

0
gn(x,u)gn−1(u, t ) f (t )dud t

= (2n)!xn+1

n!(n −1)!

∫ ∞

0

t n−1

(x + t )2n+1 f (t )d t , n > 1, x > 0.

Recently, by using the techniques due to Mazhar, İ zgi and Büyükyazici [3], Karsli [4] independently considered
the following Gamma type linear and positive operators

Ln( f ; x) =
∫ ∞

0

∫ ∞

0
gn+2(x,u)gn(u, t ) f (t )dud t

= (2n +3)!xn+3

n!(n +2)!

∫ ∞

0

t n

(x + t )2n+4 f (t )d t , x > 0,

and obtained some approximation results.
In [5], Karsli and Özarslan obtained some local and global approximation results for the operators Ln( f ; x). Global

∗ Corresponding author.
E-mail address: alokkpma@gmail.com (Alok Kumar), dkvishwa007@gmail.com (D. K. Vishwakarma)

http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:alokkpma@gmail.com
mailto:dkvishwa007@gmail.com


78 Global approximation theorems for general Gamma type Operators

approximation results for different operators were examined in many papers, for example in [6], [7] and [8].
In 2007, Mao [9] define the following generalised Gamma type linear and positive operators

Mn,k ( f ; x) =
∫ ∞

0

∫ ∞

0
gn(x,u)gn−k (u, t ) f (t )dud t

= (2n −k +1)!xn+1

n!(n −k)!

∫ ∞

0

t n−k

(x + t )2n−k+2
f (t )d t , x > 0,

which includes the operators Fn( f ; x) for k = 1 and Ln−2( f ; x) for k = 2.
Some approximation properties of Mn,k were studied in [10], [11] and [12].
We can rewrite the operators Mn,k ( f ; x) as

Mn,k ( f ; x) =
∫ ∞

0
Kn,k (x, t ) f (t )d t , (1)

where

Kn,k (x, t ) = (2n −k +1)!xn+1

n!(n −k)!

t n−k

(x + t )2n−k+2
, x, t ∈ (0,∞).

In this paper, we study some global approximation results of the operators Mn,k . Let p ∈ N0(set of non-negative
integers), f ∈Cp , where Cp is a polynomial weighted space with the weight function wp ,

w0(x) = 1, wp (x) = 1

1+xp , p > 0, (2)

and Cp is the set of all real valued functions f for which wp f is uniformly continuous and bounded on [0,∞).
The norm on Cp is defined by the formula

‖ f ‖p = sup
x∈[0,∞)

wp (x)| f (x)|.

We also consider the following Lipschitz classes:

ω2
p ( f ;δ) = sup

h∈(0,δ]
‖∆2

h f ‖p ,

∆2
h f (x) = f (x +2h)−2 f (x +h)+ f (x),

ω1
p ( f ;δ) = sup

h∈(0,δ]
‖∆h f ‖p ,

∆h f (x) = f (x +h)− f (x),

Li p2
pα= { f ∈Cp [0,∞) :ω2

p ( f ;δ) =O(δα) asδ→ 0+},

where h > 0 and α ∈ (0,2].
From the above it follows that

lim
δ→0+

ω1
p ( f ;δ) = 0, lim

δ→0+
ω2

p ( f ;δ) = 0,

for every f ∈Cp [0,∞).

2. Auxiliary results

In this section we give some preliminary results which will be used in the main part of this paper.
Let us consider

em(t ) = t m , ϕx,m(t ) = (t −x)m , m ∈ N0, x, t ∈ (0,∞).

Lemma 2.1 ([11]).
For any m ∈ N0(set of non-negative integers), m ≤ n −k

Mn,k (t m ; x) = [n −k +m]m

[n]m
xm (3)

where n,k ∈ N and [x]m = x(x −1)...(x −m +1), [x]0 = 1, x ∈ R.
In particular for m = 0, 1, 2... in (3) we get
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(i) Mn,k (1; x) = 1,

(ii) Mn,k (t ; x) = n −k +1

n
x,

(iii) Mn,k (t 2; x) = (n −k +2)(n −k +1)

n(n −1)
x2.

Lemma 2.2 ([11]).
Let m ∈ N0 and fixed x ∈ (0,∞), then

Mn,k (ϕx,m ; x) =
(

m∑
j=0

(−1) j

(
m

j

)
(n −m + j )!(n −k +m − j )!

n!(n −k)!

)
xm .

Lemma 2.3.
For m = 0,1,2,3,4, one has

(i) Mn,k (ϕx,0; x) = 1,

(ii) Mn,k (ϕx,1; x) = 1−k

n
x,

(iii) Mn,k (ϕx,2; x) = k2 −5k +2n +4

n(n −1)
x2,

(iv) Mn,k (ϕx,3; x) = −k3 +12k2 −17k +n(18−12k)+24

n(n −1)(n −2)
x3,

(v) Mn,k (ϕx,4; x) = k4 −22k3 +k2(143+12n)−k(314+108n)+12n2 +268n +192

n(n −1)(n −2)(n −3)
x4,

(vi) Mn,k (ϕx,m ; x) =O
(
n−[(m+1)/2]).

Proof. Using Lemma 2.2, we get Lemma 2.3.

Theorem 2.1.
For the operators Mn,k and for fixed p ∈ N0, there exists a positive constant Np,k depending only on the parameters p
and k such that

wp (x)Mn,k

(
1

wp (t )
; x

)
≤ Np,k . (4)

Moreover for every f ∈Cp [0,∞), we have

‖Mn,k ( f ; .)‖p ≤ Np,k‖ f ‖p , (5)

which shows that Mn,k is a linear positive operator from the space Cp [0,∞) into Cp [0,∞).

Proof. For p = 0, (4) follows immediately. Using Lemma 2.1, we get

wp (x)Mn,k

(
1

wp (t )
; x

)
= wp (x)

(
Mn,k (e0; x)+Mn,k (ep ; x)

)
= wp (x)

(
1+ (n −p)!(n −k +p)!

n!(n −k)!
xp

)
≤ Np,k wp (x)(1+xp ) = Np,k ,

where

Np,k = max

{
sup

n

(n −p)!(n −k +p)!

n!(n −k)!
,1

}
.

Observe that for all f ∈Cp and every x ∈ (0,∞), we get

wp (x)
∣∣Mn,k ( f ; x)

∣∣≤ wp (x)
(2n −k +1)!xn+1

n!(n −k)!

∫ ∞

0

t n−k

(x + t )2n−k+2
| f (t )|wp (t )

wp (t )
d t

≤ ‖ f ‖p wp (x)Mn,k

(
1

wp (t )
; x

)
≤ Np,k‖ f ‖p .

Taking supremum over x ∈ (0,∞), we get (5).
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Lemma 2.4.
For the operators Mn,k and fixed p ∈ N0, there exists a positive constant Np,k depending only on the parameters p and k
such that

wp (x)Mn,k

(
ϕx,2

wp (t )
; x

)
≤ Np,k

x2

n
.

Proof. Using Lemma 2.3, we can write

w0(x)Mn,k

(
ϕx,2

w0(t )
; x

)
= k2 −5k +2n +4

n(n −1)
x2

≤ Nk
x2

n
,

which gives the result for p = 0.
Let p ≥ 1. Then using Lemma 2.1 and Lemma 2.3, we get

Mn,k

(
ϕx,2

wp (t )
; x

)
= Mn,k (ep+2; x)−2xMn,k (ep+1; x)+x2Mn,k (ep ; x)+Mn,k (ϕx,2; x)

= (n −p −2)!(n −k +p +2)!

n!(n −k)!
xp+2 −2

(n −p −1)!(n −k +p +1)!

n!(n −k)!
xp+2

+ (n −p)!(n −k +p)!

n!(n −k)!
xp+2 + k2 −5k +2n +4

n(n −1)
x2

≤ Np,k
x2

n
(1+xp ),

where Np,k =
(
1+ (

k2 −5k +6p +4p2 −4kp
) (n −p −2)!(n −k +p)!

(n −2)!(k2 −5k +2n +4)
xp

)
k2 −5k +2n +4

n −1
is a positive constant. This

completes the proof.

3. Direct results

The proof of direct theorems will follow from Jackson type inequality, the Steklov means and appropriate esti-
mates of the moments of the operators.
Let p ∈ N0. By C 2

p [0,∞), we denote the space of all functions f ∈Cp [0,∞) such that f ′, f ′′ ∈Cp [0,∞).

Theorem 3.1.
Let p ∈ N0 and f ∈C 1

p [0,∞), there exists a positive constant Np,k depending only on the parameters p and k such that

wp (x)|Mn,k ( f ; x)− f (x)| ≤ Np,k‖ f ′‖p
xp
n

for all x ∈ (0,∞) and n ∈ N .

Proof. Let x ∈ (0,∞) be fixed. Then for f ∈C 1
p [0,∞) and t ∈ (0,∞), we have

f (t )− f (x) =
∫ t

x
f ′(v)d v.

By using linearity of Mn,k we get

Mn,k ( f ; x)− f (x) = Mn,k

(∫ t

x
f ′(v)d v ; x

)
. (6)

Remark that∣∣∣∣∫ t

x
f ′(v)d v

∣∣∣∣≤ ‖ f ′‖p

∣∣∣∣∫ t

x

d v

wp (v)

∣∣∣∣≤ ‖ f ′‖p |t −x|
(

1

wp (t )
+ 1

wp (x)

)
.

From (6) we obtain

wp (x)|Mn,k ( f ; x)− f (x)| ≤ ‖ f ′‖p

{
Mn,k (|ϕx,1|; x)+wp (x)Mn,k

( |ϕx,1|
wp (t )

; x

)}
.
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Using Cauchy-Schwarz inequality, we can write

Mn,k (|ϕx,1|; x) ≤ (
Mn,k (ϕx,2; x)

)1/2 × (
Mn,k (ϕx,0; x)

)1/2 ,

Mn,k

( |ϕx,1|
wp (t )

; x

)
≤

(
Mn,k

(
1

wp (t )
; x

))1/2

×
(

Mn,k

(
ϕx,2

wp (t )
; x

))1/2

.

Using Lemma 2.3, Theorem 2.1 and Lemma 2.4, we obtain

wp (x)|Mn,k ( f ; x)− f (x)| ≤ Np,k‖ f ′‖p
xp
n

.

Lemma 3.1.
Let p ∈ N0. If

Tn,k ( f ; x) = Mn,k ( f ; x)− f

(
x + 1−k

n
x

)
+ f (x), (7)

then there exists a positive constant Np,k such that for all x ∈ (0,∞) and n ∈ N , we have

wp (x)|Tn,k (g ; x)− g (x)| ≤ Np,k‖g ′′‖p
x2

n

for any function g ∈C 2
p .

Proof. From Lemma 2.1, we observe that the operators Tn,k are linear and reproduce the linear functions.
Hence

Tn,k (ϕx,1; x) = 0.

Let g ∈C 2
p . By the Taylor formula one can write

g (t )− g (x) = (t −x)g ′(x)+
∫ t

x
(t − v)g ′′(v)d v, t ∈ (0,∞).

Then,

|Tn,k (g ; x)− g (x)| = |Tn,k (g − g (x)); x| =
∣∣∣∣Tn,k

(∫ t

x
(t − v)g ′′(v)d v ; x

)∣∣∣∣
=

∣∣∣∣∣Mn,k

(∫ t

x
(t − v)g ′′(v)d v ; x

)
−

∫ x+ 1−k
n x

x

(
x + 1−k

n
x − v

)
g ′′(v)d v

∣∣∣∣∣ .

Since ∣∣∣∣∫ t

x
(t − v)g ′′(v)d v

∣∣∣∣≤ ∥ g ′′ ∥p (t −x)2

2

(
1

wp (x)
+ 1

wp (t )

)
and ∣∣∣∣∣

∫ x+ 1−k
n x

x

(
x + 1−k

n
x − v

)
g ′′(v)d v

∣∣∣∣∣≤ ‖g ′′‖p

2wp (x)

(
1−k

n
x

)2

,

we get

wp (x)|Tn,k (g ; x)− g (x)| ≤ ‖g ′′‖p

2

(
Mn,k (ϕx,2; x)+wp (x)Mn,k

(
ϕx,2

wp (t )
; x

))
+ ‖g ′′‖p

2

(
1−k

n
x

)2

.

Hence by Lemma 2.4, we obtain

wp (x)|Tn,k (g ; x)− g (x)| ≤ Np,k‖g ′′‖p
x2

n

for any function g ∈C 2
p . The Lemma is proved.
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Theorem 3.2.
Let p ∈ N0, n ∈ N and f ∈Cp [0,∞), there exists a positive constant Np,k depending only on the parameters p and k such
that

wp (x)
∣∣Mn,k ( f ; x)− f (x)

∣∣≤ Np,kω
2
p

(
f ,

xp
n

)
+ω1

p

(
f ,

1−k

n
x

)
.

Furthermore, if f ∈ Li p2
pα for some α ∈ (0,2], then

wp (x)
∣∣Mn,k ( f ; x)− f (x)

∣∣≤ Np,k

(
x2

n

)α/2

+ω1
p

(
f ,

1−k

n
x

)
,

holds.

Proof. Let p ∈ N0, f ∈ Cp [0,∞) and x ∈ (0,∞) be fixed. We consider the Steklov means of f by fh and given by the
formula

fh(x) = 4

h2

∫ h/2

0

∫ h/2

0
{2 f (x + s + t )− f (x +2(s + t ))}d sd t ,

for h, x ∈ (0,∞). We have

f (x)− fh(x) = 4

h2

∫ h/2

0

∫ h/2

0
∆2

s+t f (x)d sd t ,

which gives

‖ f − fh‖p ≤ω2
p ( f ,h). (8)

Furthermore, we have

f
′′

h (x) = 1

h2

(
8∆2

h/2 f (x)−∆2
h f (x)

)
,

and

‖ f
′′

h ‖p ≤ 9

h2ω
2
p ( f ,h). (9)

From (8) and (9) we conclude that fh ∈C 2
p [0,∞) if f ∈Cp [0,∞).

Moreover

|Mn,k ( f ; x)− f (x)| ≤ Tn,k (| f (t )− fh(t ); x|)+| f (x)− fh(x)|+ |Tn,k ( fh ; x)− fh(x)|+
∣∣∣∣ f

(
x + 1−k

n
x

)
− f (x)

∣∣∣∣ ,

where Tn,k is defined in (7).
Since fh ∈C 2

p [0,∞) by the above, it follows from Theorem 2.1 and Lemma 3.1 that

wp (x)
∣∣Mn,k ( f ; x)− f (x)

∣∣≤ (N +1)‖ f − fh‖p +Np,k‖ f
′′

h ‖p
x2

n
wp (x)

∣∣∣∣ f

(
x + 1−k

n
x

)
− f (x)

∣∣∣∣ .

By (8) and (9), the last inequality yields that

wp (x)
∣∣Mn,k ( f ; x)− f (x)

∣∣≤ Np,kω
2
p ( f ;h)

(
1+ 1

h2

x2

n

)
+ω1

p

(
f ,

1−k

n
x

)
.

Thus, choosing h = xp
n

, the first part of the proof is completed.

The proof of second part can be easily obtained from the definition of the space Li p2
pα.
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