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Abstract: The paper presents an analytical solution of velocity for fully developed gaseous slip flow in elliptic microchannels. We
investigate fully developed laminar hydrodynamically steady state and incompressible slip flow with constant fluid
properties. The governing equation are solved analytically for various aspect ratios using elliptic cylindrical coordi-
nate system on applying integral transform technique to analyze gaseous slip flow in micro-channels. Prior to apply
integral transform technique, Arfken transform was used on momentum equations and first-order slip boundary con-
ditions at each channel walls were imposed. Based on the selection of a characteristic length scale, the square root of
cross-sectional area, the effect of duct shape has been minimized. The results of a normalized Poiseuille number (Po)
for elliptic micro-channels show very good improvement with the previous results of rectangular and elliptic micro-
channels. Further, it is also observed that the present values of friction factor and Reynolds number product ( f Re)
shows good agreement for smaller aspect ratios (ε).
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1. Introduction

In the past years, studies on micro-channel flow passages have become necessary due to the rapid development
of micro-fluidic devices used for several engineering applications such as micro electro-mechanical systems (MEMS),
integrated cooling of microelectronic circuits, digital microprocessors, micro-reactors, high-frequency fluidic control
systems, fuel cell technology, medical devices, high heat-flux compact heat exchangers and so on.This has created
intensive interest among the researchers to investigate various aspects of microscale transport phenomena and fun-
damental aspects of micro-fluidic devices to understand the flow characteristics in micro-channels, pressure distri-
bution and heat transfer properties. The major advances of industrial technologies in the past are the MEMS device
which is having a characteristic length of less than 1 mm whereas greater than 1 µm non-continuum behavior is sig-
nificant. Although several experimental and investigations are available for the number of principal problems, the
problems related to micro-fluid hydrodynamics are not well understood. However, there is contradiction related to
drag in micro-channels and transition from laminar to turbulent flow which leads to difficulty in understanding the
phenomenon. The investigations on gas flow in micro-channels has emerged as an important area of research due to
its applications in gas chromatography, micro-chemical gas reactors, gas flow sensors, low-pressure semiconductor
manufacturing machines, microscale heat exchangers and micro gas regulators. In recent years, micro-channels with
different cross-sectional geometries were fabricated for both commercial and scientific purposes.
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2 Analytical solution of fully developed gaseous slip flow in elliptic microchannel

Nomenclature

Ac Area of ellipse (m2)

An , I1, I2, I3 Variables defined for simplicity

a Major semi-axis of ellipses (m)

b Minor semi-axis of ellipses (m)

c Half focal length of ellipses (m)

Dh Hydraulic diameter = 4Ac /Pc

e eccentricity =

√
1−b2

/
a2

E(e) Complete elliptical integral of the second kind

f Fanning friction factor

f Re Friction factor and Reynolds number product

hξ,hη,hz Scale factors for the elliptic cylindrical coordinate (m)

Kn Knudsen number =λ/Lc

Lc Characteristic length scale(m)

N Normalization integral

n Normal direction to the wall

p Pressure (N /m2)

Pc Perimeter of ellipses (m)

P Normalized pressure gradient

Po Poiseuille number = τDh /µum

Re Reynolds number =Dh um
/
υ

u Gaseous velocity component in z direction (m/s)

um Mean velocity (m/s)

us Slip velocity (m/s)

uξ Filtering function in the ξ-direction

x, y Cartesian coordinates (m)

z Coordinate in flow direction (m)

Greek symbols

βυ Nondimensional variable defined by Eq. (3)

β Dimensionless slip parameter
(=βυK n

)
βs Slip coefficient

Γ Inside periphery of microchannel (m)

µ Eigenvalue

ε Aspect ratio = b/a

λ Molecular mean free path (m)

µ Dynamic viscosity (N s/m2)

ξ,η Nondimensional elliptic cylinder coordinates

ξ0 Parameter of elliptic cylinder coordinates

συ Tangential momentum coefficient

τ Wall shear stress (N /m2)

υ Kinematic viscosity (m2
/

s)

Ω Cross-section of microchannel

ψ Eigenfunction

Subscripts

ns No-slip

The Knudsen number (K n) can be defined as the ratio of the molecular mean free path (λ) of gas to the char-
acteristic length scale (Lc ) of the channel or duct which is widely used to classify the continuum flows and for small
values of Knudsen number (K n = λ

/
Lc ≤ 10−3). For large Knudsen number (K n = λ

/
Lc ≥ 10), the fluid flow can be

considered as free molecular flow and in the intermediate range of Knudsen number (10−3 ≤ K n = λ
/

Lc ≤ 0.2), slip
flow regime starts which can be modeled based on Navier-Stokes equations with slip conditions at the walls. Usually
the characteristic length scale of the gas flow in a micro-channel varies from 1 to 100 µm and the mean free path of
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most common gases is approximately 60 nm at atmospheric conditions Karniadakis et al.[1]. In usual applications,
characteristic lengths are in the range of approximately 10 to 200 µm and therefore gas flows in the micro-channels
are often considered in the slip flow regime Gad-el-Hak [2] and Jang et al.[3].

The elliptic cross-section is one such useful channel shape that may be produced by microfabrications for which
vary few literatures is available. In this paper, fully developed gaseous slip flow behavior in elliptic micro-channels in-
vestigated analytically. First-order slip boundary conditions are considered at each channel walls and normalized
Poiseuille number is obtained and compared with the existing analytical and numerical solutions for variety of ge-
ometries. The effects of channel aspect ratio and Knudsen number (K n) is discussed with respect to normalized
Poiseuille number.

2. Literature review

During last two decades flow and heat transfer in micro-channel and nano-channels have received considerable
attention due its significant applications in micro-elctronic devices. The development of microscale fluid systems has
also motivated great interest in this field of study. Arkilic et al. [4], Liu et al. [5], Pfahler et al. [6, 7], Harley et al. [8], Wu
et al. [9] and Araki et al. [10] investigated experimentally micro-fluidic devices for small length scales to understand
rarefaction effects. The slip-flow model for a rectangular channel to analyze the effect of slip condition on velocity
distribution, compressibility and pressure drop using analytical method was developed by Ebert and Sparrow [11].
With respect to continuum flow, the effects of slip reduce velocity distribution whereas the effect of compressibility
increases the pressure drop through an increase in the viscous shear. Usually, slip-flow regimes are modeled based on
Navier-Stokes and energy equations by considering boundary conditions in order to include rarefaction effects on the
velocity and temperature fields. From the monographs of Eckert and Drake [12], the detailed study can be obtained.
Arkilic et al.[4] investigated gaseous flow analytically and experimentally by using two-dimensional Navier-Stokes
equations to demonstrate the effects of compressibility and rarefaction using the long micro-channel and rarefaction
effect. Liu et al. [5] obtained solution of Navier-Stokes equation using slip flow boundary conditions which shows
good agreement with the experimental data for micro-channel flows. For small length scales rarefaction effects are
important which is evident from the experiments conducted by Pfahler et al. [6, 7], Harley et al. [8], Wu et al.[9] and
Araki et al. [10]. This also confirms that continuum analyses are unable to predict the flow properties for transport
of gases in micro-size devices. A detailed review of the research so far and analysis for liquid flow and gas flow can
be found in the investigations of Rostami et al. [13, 14]. Morini et al. [15] investigated the rarefaction effects on the
pressure drop through silicon micro-channels having rectangular, trapezoidal and double-trapezoidal cross sections.
For the lower aspect ratios rarefaction effects on the Poiseuille number found to be much stronger and the effect
of Knudsen number for friction factor reduction is also discussed. Based on experimental work of Araki et al. [10]
on gaseous flow in trapezoidal microchannels show that friction factor is lower than that predicted by conventional
theory, this helps to understand the deviation was caused by the rarefaction effects. Aubert and Colin [16] investi-
gated slip-flow model based on second-order boundary conditions for gaseous flow in rectangular micro-channels
as proposed by Deisler [17]. Colin et al. [18] developed experimental setup for the measurement of gaseous mi-
croflow rates under controlled temperature and pressure conditions. Although, number of researchers has attempted
to develop second-order slip models to account second order slip coefficient that can be used for transition regime,
nevertheless a universally accepted second-order slip coefficient model does not exist Barron et al. [19]. Duan and
Muzychka [20, 21] developed an analytical slip-flow solution for non-circular and elliptic microchannels to predict
friction factor and Reynolds number product f Re and the Poiseuille number. The accuracy of the developed model
was found to be within 10% and for elliptic microchennels the accuracy lies between 3% of the exact value for the
non-circular micro-channels. To predict the friction factor and Reynolds number product f Re for slip flow, Duan and
Yovanovich [22] developed a simple model using normalized Poiseuille number. It was observed that for normalized
Poiseuille number has an accuracy of 4.2% for all common duct shapes where the range of shape that includes circle,
ellipse, rectangle, star-shape, triangle, square and hexagon to predict velocity distribution and pressure drop. Tunc
and Bayazitoglu [23] obtained an analytical slip-flow solution to predict slip coefficient, to represent the velocity slip
a parameter called “slip coefficient” was defined as the ratio of the velocity of the fluid at the wall to the mean ve-
locity. The variation of this parameter with the Knudsen number has been shown for different aspect ratios. For the
same Knudsen number as the aspect ratio becomes smaller, the value of the slip coefficient increases. Tahmouresi
and Das [24] investigated the fully developed gaseous slip-flow behavior in symmetric and non-symmetric parabolic
micro-channels analytically. Normalized Poiseuille number and pressure distribution are compared with the existing
numerical and analytical solutions for different geometries and found good agreement for small aspect ratio with the
previous results for rectangular micro-channels. The effects of velocity slip and Joule heating on peristaltic flow of
MHD Newtonian fluid in a porous channel with elastic wall properties have been studied under the assumptions of
longwavelength and low-Reynolds number by Reddy and Reddy [25]. The analytical solution has been derived for
the stream function, temperature and heat transfer coefficient. The emerging flow parameters on the velocity, tem-
perature and heat transfer coefficient are presented graphically and are discussed in detail. Anjali Devi and Kumari
[26] investigated the slip flow effects on unsteady hydromagnetic flow over a stretching surface with thermal radiation
heat transfer. Resulting non dimensional velocity and temperature profiles are then presented graphically for different
values of the parameters involved. Results for skin friction coefficient and the non dimensional rate of heat transfer
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are also obtained and are discussed in detail. An numerical analysis has been performed to study the problem of fully
developed flow of a fourth grade non- Newtonian fluid between two stationary parallel plates in the presence of an ex-
ternally applied uniform vertical magnetic field by Ghasemi Moakher et al. [27]. Slip conditions is taken into account
at the wall of the channel. The influence of the some physical parameters such as the Slip parameter, non Newtonian
parameter and magnetic field parameter on non-dimensional velocity profiles is considered. Also the results reveal
that the CM can be used for solving nonlinear differential equations with Robin mixed condition easily.

In the present paper, we develop analytical solution of velocity for fully developed gaseous slip flow in elliptic
microchannels. By adopting Arfken transform [28] technique and assuming the flow to be steady, laminar and in-
compressible with constant fluid properties. The first-order slip boundary conditions are considered at each channel
wall to predict normalized Poiseuille number. The paper is organized as follows. We first develop mathematical for-
mulation. Subsequently, analytical solution of slip flow model is developed, followed by results and discussion and
conclusion.

3. Mathematical formulation

We considered fully developed gaseous slip flow in a straight elliptic microchannel having uniform cross section
as shown in Fig. 1(a). where the flow is hydrodynamically steady state, laminar and incompressible with constant fluid

Fig. 1. (a) An elliptic microchannel (b) Non-dimensional transferred microchannel

properties. Assuming the body force terms are neglected, momentum equation with axial velocity in z direction can
be expressed as

∂2u∗

∂x∗2 + ∂2u∗

∂y∗2 = 1

µ

d p

d z
(1)

and the boundary conditions can be written as follows by Barron et al. [19] and Maxwell [29] based on the assumption
that the slip velocity is constant and the same at each boundary

u∗ = u∗
s =−βυλ ∂u∗

∂n∗

∣∣∣∣
Γ∗

(2)

where

βυ = 2−συ
συ

(3)

where n∗ is the normal direction to the wall of dimensional elliptic micro-channels, u∗
s is the slip velocity, λ is the

molecular mean free path, συ is the tangential momentum accommodation coefficient, the value of which typically
lies between 0.87 and 1.0 as reported by Rohsenow and Choi [30]. The most usual conditions for συ are assumed
to have a value of unity. However, the same procedure is valid even if συ 6= 1, defining a general slip parameter as
β= βυK n, which has been given the range of slip parameter as 0 < β< 0.2. A similar definition of the slip coefficient
is also given by Shih et al. [31]. At the end of this section, the slip coefficient can be expressed in terms of the slip
parameter. Γ∗ represents inside periphery of the following dimensional elliptic microchannel

Ω∗ :
x∗2

a∗2 + y∗2

b∗2 = 1 (4)
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3.1. Non-dimensional parameters

The governing equation and the boundary conditions are non-dimensionalized by using the following parame-
ters

x = x∗
p

Ac
(5)

y = y∗
p

Ac
(6)

u = u∗

u∗
m

(7)

a = a∗
p

Ac
(8)

b = b∗
p

Ac
(9)

n = n∗
p

Ac
(10)

where Ac is the area of the cross-section of elliptic microchannels. Eq. (1) takes the following non-dimensional form

∂2u

∂x2 + ∂2u

∂y2 = P (11)

and

u =βs =−βυK n
∂u

∂n

∣∣∣∣
Γ

(12)

where

P =
(p

Ac
)2

µu∗
m

d p

d z
(13)

βs =
u∗

s

u∗
m

(14)

ε= b∗

a∗ = b

a
(15)

where n is the normal direction to the wall of non-dimensional elliptic microchannels, ε is the aspect ratio, βs is the
slip coefficient, which is the measure of the velocity slip at the boundary, P is the normalized pressure gradient, Γ
represents inside periphery of the following non-dimensional elliptic microchannel

Ω :
x2

a2 + y2

b2 = 1 (16)

and K n is Knudsen number which is defined as

K n = λp
Ac

(17)

3.2. Transformation process

It is convenient to use elliptic cylindrical coordinates Arfken [28] to facilitate the solution process. The or-
thogonal system of elliptic coordinates

(
ξ,η

)
is used to transform the rectangular cross-section in the transformed

system
(
ξ,η

)
as shown in Fig. 1(b):

x = ccoshξcosη

y = csi nhξsi nη

z = z

0 ≤ ξ≤ ξ0 0 ≤ η< 2π (18)

The parameter ξ0 is related to the major and minor axes through

ξ0 = Ar c tanh(ε) = ln
1+εp
1−ε2

(19)
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The half focal length of ellipses c is defined such that

c = a

coshξ0
= b

si nhξ0
(20)

The coefficientshξ,hη,hz and Jacobian J of the transformation of the system of coordinates
(
x, y

)
into the system

(
ξ,η

)
are given by

hξ
(
ξ,η

)= hη
(
ξ,η

)= c
√

cosh2ξ− cos2η (21)

hz
(
ξ,η

)= 1 (22)

J
(
ξ,η

)= ∂
(
x, y

)
∂
(
ξ,η

) = c2 (
cosh2ξ− cos2η

)
(23)

In elliptic cylindrical coordinates, the velocity profile becomes

∂2u

∂ξ2 + ∂2u

∂η2 = c2 (
cosh2ξ− cos2η

)
P (24)

The velocity distribution must satisfy the slip boundary condition at the walls. The local slip velocity is proportional
to the local velocity gradient normal to the wall. In elliptic cylinder coordinates, the boundary conditions assuming a
one quarter basic cell are

1

hη
(
ξ,η

) ∂u

∂η
= 0 at η= 0 (25)

1

hη
(
ξ,η

) ∂u

∂η
= 0 at η= π

2
(26)

1

hξ
(
ξ,η

) ∂u

∂ξ
= 0 at ξ= 0 (27)

u =βs =− βυK n

c
√

cosh2ξ− cos2η

∂u

∂ξ
at ξ= ξ0 (28)

3.3. Analytical solution

As seen from the above system of equations, the boundary condition Eq. (28) is non-homogeneous. Therefore,
filtering is applied to eliminate non-homogeneity. We define a one-dimentional problem in the ξ-direction such that
it satisfies the boundary conditions Eqs. (25)-(28). Therefore, the velocity at the left and right walls vanishes for the
original problem.

u
(
ξ,η

)= ũ
(
ξ,η

)+uξ (ξ) (29)

where uξ, filtering function, satisfies the following systems:

d 2uξ
dξ2 = 0 (30)

duξ
dξ

= 0 at ξ= 0 (31)

uξ =βs at ξ= ξ0 (32)

The solution of the above equation can easily be written as

uξ =βs (33)

The governing equation and boundary conditions take the following forms after the substitution of Eq. (29) into Eqs.
(25)-(28)

∂2ũ

∂ξ2 + ∂2ũ

∂η2 = c2 (
cosh2ξ− cos2η

)
P (34)

∂ũ

∂η
= 0 at η= 0 (35)
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∂ũ

∂η
= 0 at η= π

2
(36)

∂ũ

∂ξ
= 0 at ξ= 0 (37)

ũ = 0 at ξ= ξ0 (38)

It can be noted that when the filtering scheme is applied, the boundary conditions are written properly to carry out the
changes along the computation. As we have four homogeneous boundary conditions, the Eigenvalue problem can be
defined along ξ-direction and the other two conditions can be implemented at the end. The appropriate eigenvalue
problem related to the velocity problem is given:

d 2ψ (ξ)

dξ2 +µ2ψ (ξ) = 0 (39)

with the boundary conditions:

dψ (ξ)

dξ
= 0 at ξ= 0 (40)

ψ (ξ) = 0 at ξ= ξ0 (41)

The eigenvalues and eigenfunctions associated to this problem are:

µn = (2n −1)π

2ξ0
(n = 1,2,3, . . .) (42)

ψn (ξ) = cos
(
µnξ

)
(43)

where normalization integrals given by:

Nn =
∫ ξ0

0
ψ2

n (ξ)dξ= ξ0

2
(44)

The transform and inversion formulas are written as
Transform:

¯̃u
(
µn ,η

)= ∫ ξ0

0

ψn
(
µn ,ξ

)
N 1/2

n

ũ
(
ξ,η

)
dξ (45)

Inversion:

ũ
(
ξ,η

)= ∞∑
n=1

ψn
(
µn ,ξ

)
N 1/2

n

¯̃u
(
µn ,η

)
(46)

The transformation process starts by applying
∫ ξ0

0
ψndξ to every term in Eq. (34)∫ ξ0

0

∂2ũ

∂ξ2 ψndξ+
∫ ξ0

0

∂2ũ

∂η2 ψndξ=
∫ ξ0

0
c2 (

cosh2ξ− cos2η
)

Pψndξ (47)

The inversion and transform formulas and the Eigen value problem are obtained using integration by parts
technique are utilized to evaluate the integrals in Eq. (47). Therefore, Eq. (47) is obtained in the following transformed
form

d 2 ¯̃u

dη2 −µ2
n

¯̃u = c2

{
(−1)n−1µncosh (2ξ0)

2N 1/2
n

(
4+µ2

n
) − (−1)n−1 cos

(
2η

)
2N 1/2

n µn

}
P (48)

Transformation of the boundary conditions yields Eq. (45)

d ¯̃u

dη
= 0 at η= 0 (49)

d ¯̃u

dη
= 0 at η= π

2
(50)

The solution to the non-homogeneous ordinary differential equation, Eq. (48) is obtained analytically and after some
rearrangements, the following appropriate forms are obtained.

¯̃u
(
µn ,η

)= c2 An
(
cos

(
2η

)− cosh (2ξ0)
)

P (51)
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where

An = (−1)n−1

2N 1/2
n µn

(
4+µ2

n
) (52)

Then, the inversion formula is applied to obtain ũ

ũ
(
ξ,η

)= ∞∑
n=1

[
c2 An

(
cos

(
2η

)− cosh (2ξ0)
)

P
]

cos
(
µnξ

)
N 1/2

n

(53)

The final form of the velocity profile is obtained by summing Eqs. (29) and (53)

u
(
ξ,η

)= ∞∑
n=1

[
c2 An

(
cos

(
2η

)− cosh (2ξ0)
)

P
]

cos
(
µnξ

)
N 1/2

n

+βs (54)

The value of P is still unknown in Eq. (54), which is obtained by implementing the definition of mean velocity

u∗
m = 1

πa∗b∗

Ï
Γ∗

u∗ (
x∗, y∗)

d x∗d y∗ (55)

Once Eq. (54) is substituted into Eq. (55), P is evaluated as follows:

P = 1−βs

c2 (I1 + I2)
(56)

where

I1 = −2cosh2 (2ξ0)

εcosh2ξ0

∞∑
n=1

µ2
n A2

n (57)

I2 = −1

εcosh2ξ0

∞∑
n=1

(
4+µ2

n

)
A2

n (58)

The only unknown left is the slip coefficient. To achieve βs as a function of the slip parameter β = βυK n, using Eq.
(28) the following expression for slip coefficient in non-dimensional form is obtained. Here that the average value of
βs is calculated by integrating over the length

βs = 1

2π

∫ 2π

0

2βυK nI3
(
cosh2ξ0 − cos2η

)
c
√

cosh2ξ0 − cos2η+2βυK nI3
(
cosh2ξ0 − cos2η

)dη (59)

where

I3 = 1

(I1 + I2)

∞∑
n=1

(−1)n µn An

N 1/2
n

(60)

In order to overcome the difficulty by term

hξ
(
ξ0,η

)= c
√

cosh2ξ0 − cos2η (61)

We use the following binomial series to approximate Eq. (61)

(1+x)a = 1+
∞∑

n=1

a(a −1)(a −2)...(a −n +1)

n!
xn −1 < x < 1 (62)

The Eq. (61) can be written as:

hξ
(
ξ0,η

) = c(cosh2ξ0 − cos2η)1/2 = ccoshξ0

(
1− cos2η

cosh2ξ0

)1/2

(63)

assuming the first N terms appropriate of expansion Eq. (63), we get

βs = 1
2π

∫ 2π
0

{[
2βυK nI3

(
cosh2ξ0 − cos2η

)] /
[ccoshξ0

×
(
1+∑N

n=1
(1)(−1)(−3)...(1−2(n+1))

2n n!

(
− cos2η

cosh2ξ0

)n)
+2βυK nI3

(
cosh2ξ0 − cos2η

)]}
dη

(64)

Because finding analytical solution of Eq. (64) is difficult, we use 6 to 12 points formulas of Gauss-Legendre and Gauss-
Lobatto numerical integration for N > 3. In most cases, we choice 6-points formula of Gauss-Lobatto and N = 3 (Davis
and Rabinowitz [29] and Jain and Chawlas [30]) to approximate Eq. (64).

4. Slip flow models

By obtaining the velocity distribution u
(
ξ,η

)
and mean velocity um , the friction factor and Reynolds num-

ber product may be defined using the simple expression of the Poiseuille number Churchill [34], Muzychka and
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Yovanovich [35, 36] and Duan and Yovanovich [22]

PoLc =
τmLc

µum
=

(
− Ac

Pc

d p
d z

)
Lc

µum
= f ReLc

2
(65)

The above grouping Po is interpreted as the dimensionless average wall shear stress.

4.1. Characteristic length scale

It is clear that all definitions grouping Po (Eq. (65)) depend on the choice of the characteristic length scale (Lc ).
The most frequently recommended length scale is the hydraulic diameter defined as:

Lc = Dh = 4Ac

Pc
(66)

Where Ac and Pc are calculated in the present paper as:

Ac =πab (67)

Pc = 4aE(e) (68)

However, its use in laminar flow has been questioned by White [37]. In an earlier work Yovanovich and Muzychka [38],
the authors addressed this issue using dimensional analysis. It was determined that the widely used concept of the
hydraulic diameter was inappropriate for laminar flow, and the authors proposed using Lc =

√
Ac as a characteristic

length scale by considering other problems in mathematical physics for which the Poisson equation applies (e.g., Eq.
(1)). A more detailed discussion and analysis on the use of Lc =

√
Ac may be found in Muzychka [39] and in Bahrami et

al. [40]. Rrecently, Duan and Muzychka [20, 21] and Muzychka and Edge [41] have shown that the square root of flow
area is also more appropriate for non-dimensionalizing gaseous slip flows and non-Newtonian flows, respectively.

4.2. Elliptic friction factor and Reynolds number product

We define the friction factor Reynolds number as a product of which results after employing different character-
istic lengths for elliptic microchannels for slip flow. The f ReDh is given by the following relationship:

f ReDh =
2
(
− Ac

Pc

d p
d z

)
Dh

µum
(69)

After substitution for the mean velocity, the following relationship is obtained:

f ReDh =− π2ε2

2E 2 (e)

1−βs(
1−ε2

)
(I1 + I2)

(70)

Similarly, the following relationship is obtained for f RepAc

f RepAc
=−π

3/2ε3/2

2E (e)

1−βs(
1−ε2

)
(I1 + I2)

(71)

It can be demonstrated that the limit of Eqs. (70) and (71) for ε = b
/

a → 1 corresponds to circular microchcnnels
Kennard [42] where E(e) is the complete elliptical integral of the second kind Abramowitz [43]. It can also be shown
that Eqs. (70) and (71), reduces to theirs continuum flow limits as β→ 0(

f ReDh

)
ns =

π2ε2

2E 2 (e)

−1(
1−ε2

)
(I1 + I2)

(72)

(
f RepAc

)
ns

= π3/2ε3/2

2E (e)

−1(
1−ε2

)
(I1 + I2)

(73)

Shah and London [44] have shown that for ε= b
/

a → 1{
f ReDh → 16

f RepAc
→ 14.18

(74)

5. Results and discussion

The values of slip coefficient, non-dimensional slip velocity with different aspect ratio ε and slip parameter β
are shown in Table 1 for 0 ≤β≤ 0.12 and 0.1 ≤ ε≤ 1. One can observe that the values of βs increase with an increase of
β for the same aspect ratio ε as shown in Table 1. The variation of slip coefficient for elliptic micro-channels reported
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Table 1. The values of slip coefficient for varying ε and β

ε 0.100 0.300 0.500 0.700 0.900 1.000

β βs

0.000 0.000 0.000 0.000 0.000 0.000 0.000

0.001 0.011 0.010 0.009 0.008 0.008 0.008

0.020 0.188 0.171 0.154 0.143 0.138 0.138

0.040 0.316 0.291 0.266 0.250 0.243 0.242

0.060 0.409 0.380 0.351 0.333 0.325 0.324

0.080 0.480 0.449 0.418 0.399 0.391 0.390

0.100 0.535 0.503 0.472 0.453 0.445 0.444

0.120 0.580 0.548 0.517 0.499 0.491 0.490

Fig. 2. The variation of slip coefficient with slip parameter

Table 2. Comparison of fully developed f ReDh
for elliptic microchannels

β 0.000 0.001 0.010 0.050 0.100

ε Duan Present Duan Present Duan Present Duan Present Duan Present

[21] [21] [21] [21] [21]

0.100 19.314 19.314 19.093 19.093 17.314 17.314 12.250 12.250 8.979 8.979

0.200 18.602 18.602 18.399 18.399 16.758 16.758 12.023 12.023 8.913 8.913

0.300 17.896 17.896 17.712 17.712 16.219 16.219 11.834 11.834 8.886 8.886

0.400 17.294 17.294 17.128 17.128 15.767 15.767 11.693 11.693 8.881 8.881

0.500 16.823 16.823 16.671 16.671 15.418 15.418 11.591 11.591 8.880 8.880

0.600 16.479 16.479 16.337 16.337 15.164 15.164 11.517 11.517 8.879 8.879

0.700 16.244 16.244 16.109 16.109 14.991 14.991 11.470 11.470 8.879 8.879

0.800 16.098 16.098 15.968 15.968 14.884 14.884 11.442 11.442 8.880 8.880

0.900 16.022 16.022 15.894 15.894 14.830 14.830 11.430 11.430 8.885 8.885

1.000 16.000 16.000 15.873 15.873 14.815 14.815 11.429 11.429 8.889 8.889

as βs are plotted versus the slip parameter (β) and is shown in Fig. 2. For the same slip parameter β, as the aspect ratio
becomes smaller the value of slip coefficient increases.

The results of friction factor and Reynolds number product for hydraulic diameter f ReDh with different aspect
ratio ε and slip parameter β are shown in Table 2. One can observe that the values of the f ReDh as shown in Table 2,
decrease with an increase of β for the same aspect ratio ε. Ebert and Sparrow [11] and Sreekanth [45] theoretically
proved that the gas rarefaction leads to a reduction of the Po for increasing β. The f ReDh values decrease with an
increase of ε for the same β for most of the cases.

Similarly, the data for elliptic micro-channels as f RepAc
reported are same as for f ReDh as shown in Table 3.
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Table 3. Comparison of fully developed f RepAc
for elliptic microchannels

β 0.000 0.001 0.010 0.050 0.100

ε Duan Present Duan Present Duan Present Duan Present Duan Present

[21] [21] [21] [21] [21]

0.100 35.009 35.009 34.609 34.609 31.384 31.384 22.205 22.205 16.277 16.277

0.200 24.653 24.653 24.384 24.384 22.209 22.209 15.934 15.934 11.812 11.812

0.300 20.213 20.213 20.006 20.006 18.319 18.319 13.366 13.366 10.037 10.037

0.400 17.752 17.752 17.581 17.581 16.185 16.185 12.002 12.002 9.116 9.116

0.500 16.256 16.256 16.109 16.109 14.898 14.898 11.200 11.200 8.581 8.581

0.600 15.320 15.320 15.188 15.188 14.097 14.097 10.308 10.708 8.255 8.255

0.700 14.739 14.739 14.617 14.617 13.603 13.603 10.407 10.407 8.056 8.056

0.800 14.400 14.400 14.284 14.284 13.314 13.314 10.235 10.235 7.944 7.944

0.900 14.229 14.229 14.116 14.116 13.170 13.170 10.151 10.151 7.891 7.891

1.000 14.180 14.180 14.067 14.067 13.129 13.129 10.129 10.129 7.878 7.878

Fig. 3. Fully developed f ReDh
for elliptic microchannels with aspect ratio for 0.001 ≤β≤ 0.07

When ε= b/a → 1, the friction factor and Reynolds number product results reduce to circular microchannels. Table 2
and Table 3, show that the present values of friction factor and Reynolds number product ( f Re) for elliptic micro-
channels are in good agreement and also improvement with the previous results Duan and Muzychka [20, 21] for
elliptic micro-channels where the maximum difference is smaller than 0.2%. The value for elliptic microchannels
reported as f ReDh are plotted versus the aspect ratio (ε) is shown in Figs. 3 and 4. The data decrease with increasing
values of ε for 0.001 ≤β≤ 0.07 and 0.08 ≤β≤ 0.12 as shown in Figs. 3 and 4.

In the next step, all data is converted from f ReDh to f RepA and re-plotted with respect to aspect ratio (ε). When
this is done as shown in Figs. 5 and 6, the data follow closely a similar trend where the values decrease with increasing
values of ε while 0.001 ≤β≤ 0.07 and 0.08 ≤β≤ 0.12 in as shows in Figs. 5 and 6.

The comparison of Fig. 3 and Fig. 5, Fig. 4 and Fig. 6 demonstrate that the square root of elliptic cross-sectional
area is a more appropriate characteristic length scale than the hydraulic diameter for non-dimensionalizing the fully
developed laminar flow data which β greater than 0.001.

Table 4 presents the values of the normalized Poiseuille number for elliptic microchannels for some values of
the slip parameter between 0.001 and 0.1 for which gas rarefaction reduces the friction between the gas and the mi-
crochannel walls. The reduction of the normalized Poiseuille number is stronger for elliptic microchannels with small
channel aspect ratios. Further, Table 4 show that the present values of normalized Poiseuille number (Po) for el-
liptic microchannels, which are in good agreement with the previous results (Duan and Muzychka [20, 21]) of elliptic
microchannels, which the maximum difference is smaller than 0.2% and (Morini et al. [15]) of rectangular microchan-
nels, which the maximum difference is smaller than 1.7% in most cases for 0 ≤β≤ 0.12.

The effects of slip are illustrated by plotting the normalized Poiseuille number (Po
/

Pons ) as a function of the slip
parameter and aspect ratio, where Pons represents the no-slip flow. Fig. 7 shows the normalized Poiseuille number
results for elliptic microchannels as a function of aspect ratio ε and β. From an inspection of the graphs, it is seen that
Po

/
Pons decreases as the rarefaction becomes greater. The Poiseuille number reduction depends on the geometry of
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Fig. 4. Fully developed f ReDh
for elliptic microchannels with aspect ratio for 0.08 ≤β≤ 0.12

Fig. 5. Fully developed f RepAc
for elliptic microchannels with aspect ratio for 0.001 ≤β≤ 0.07

Fig. 6. Fully developed f RepAc
for elliptic microchannels with aspect ratio for 0.08 ≤β≤ 0.12

cross-section and on the slip parameter.
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Table 4. Comparison of normalized Poiseulle numbers for rectangular/elliptic microchannels

β 0.001 0.010 0.050 0.100

ε Morini Duan Present Morini Duan Present Morini Duan Present Morini Duan Present

[15] [21] [15] [21] [15] [21] [15] [21]

0.1 0.939 0.939 0.939 0.901 0.896 0.896 0.645 0.634 0.634 0.477 0.465 0.465

0.2 0.990 0.939 0.939 0.907 0.901 0.901 0.662 0.646 0.646 0.496 0.479 0.479

0.3 0.990 0.990 0.990 0.912 0.906 0.906 0.677 0.661 0.661 0.514 0.497 0.497

0.4 0.991 0.990 0.990 0.917 0.912 0.912 0.690 0.676 0.676 0.529 0.514 0.514

0.5 0.991 0.991 0.991 0.920 0.916 0.916 0.700 0.689 0.689 0.541 0.523 0.523

0.6 0.992 0.991 0.991 0.923 0.920 0.920 0.707 0.699 0.699 0.551 0.539 0.539

0.7 0.992 0.992 0.992 0.924 0.923 0.923 0.713 0.706 0.706 0.557 0.547 0.547

0.3 0.992 0.992 0.992 0.925 0.925 0.925 0.716 0.711 0.711 0.562 0.552 0.552

0.9 0.992 0.992 0.992 0.925 0.926 0.926 0.716 0.713 0.713 0.564 0.555 0.555

1.0 0.992 0.992 0.992 0.926 0.926 0.926 0.719 0.714 0.714 0.565 0.556 0.556

Fig. 7. Normalized placePo results as a function of ε and β for elliptic microchannels

6. Conclusion

This paper investigates fully developed gaseous slip flow with the first-order velocity slip boundary conditions
at the channel walls using elliptic cylindrical coordinate system on applying the integral transform technique. It was
shown that the present values of friction factor and Reynolds number product ( f Re) and normalized Poiseuille num-
ber (Po) for elliptic micro-channels are in good agreement for smaller aspect ratios with the previous results for el-
liptic and rectangular microchannels. The maximum difference of the predicted results was found to be within 0.2%
and 1.7% for elliptic and rectangular microchannels, respectively. As the prediction of the model very close to the
exact value, this model can be used to calculate mass flow rate and pressure distribution of slip flow in elliptic micro-
channels.
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