

Journal homepage: www.ijaamm.com

International Journal of Advances in Applied Mathematics and Mechanics

A note on the upper bound of the energy of a connected graph

Research Note

Rao Li *

Department of Mathematical Sciences, University of South Carolina Aiken, Aiken, SC 29801, USA

Received 08 October 2015; accepted (in revised version) 18 December 2015

Abstract: A new upper bound for the energy of a connected graph is presented in this note.

MSC: 05C50

Keywords: Upper bound • Energy • Eigenvalue

© 2016 The Author. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation and terminology not defined here follow those in [1]. Let *G* be a graph of order *n* with *e* edges. The independence number, denoted $\alpha(G)$, of *G* is defined as the size of the largest independent set in *G*. The eigenvalues $\mu_1(G) \ge \mu_2(G) \ge \dots \ge \mu_n(G)$ of the adjacency matrix A(G) of *G* are called the eigenvalues of *G*. The energy, denoted Eng(G), of *G* is defined as $\sum_{i=1}^{n} |\mu_i(G)|$ (see [2]).

Several authors have obtained the upper bounds for the energy of a graph (see [3], [4], [5], [6], and [7]). In this note, we will present a new upper bound for the energy of a connected graph. The main result is as follows.

Theorem 1.1.

Let G be a connected graph of order $n \ge 2$ with e edges. Then

 $Eng(G) \le 2\sqrt{(n-\alpha)e}$

with equality if and only if G is $K_{1,n-1}$, where α is the independence number of G.

2. Proofs of the main result

In order to prove Theorem 1.1, we need the following Lemma 2.1 which is Theorem 3.14 on Pages 88 and 89 in [8].

Lemma 2.1.

Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and equal to zero are p, q, and r, respectively, then

 $\alpha \leq r + \min\{p, q\},\$

where α is the independence number of *G*.

^{*} E-mail address: raol@usca.edu

Next, we will present the proof of Theorem 1.1.

Proof. Let $\mu_1 \ge \mu_2 \ge ... \ge \mu_p$ be the *p* positive eigenvalues of *G* and let $\rho_q \ge \rho_{q-1} \ge ... \ge \rho_1$ be the *q* negative eigenvalues of *G*. Then *G* has n - p - q eigenvalues which are equal to zero. From Lemma 1, we have

$$\alpha \le (n-p-q) + \min\{p, q\}.$$

Thus $\alpha \le (n - p - q) + q$ and $\alpha \le (n - p - q) + p$. Namely, $p \le n - \alpha$ and $q \le n - \alpha$. Since $\sum_{i=1}^{p} \mu_i + \sum_{i=1}^{q} \rho_i = 0$, we have that

$$Eng(G) = 2\sum_{i=1}^{p} \mu_i = 2\sum_{i=1}^{q} |\rho_i|.$$

From Cauchy - Schwarz inequality, we have that

$$Eng(G) = 2\sum_{i=1}^{p} \mu_i \le 2\sqrt{p\sum_{i=1}^{p} \mu_i^2}.$$

Similarly, we have that

$$Eng(G) = 2\sum_{i=1}^{q} |\rho_i| \le 2\sqrt{q\sum_{i=1}^{q} \rho_i^2}.$$

Therefore

$$\frac{Eng^{2}(G)}{2} = \frac{Eng^{2}(G)}{4} + \frac{Eng^{2}(G)}{4} \le p\sum_{i=1}^{p}\mu_{i}^{2} + q\sum_{i=1}^{q}\rho_{i}^{2}$$
$$\le (n-\alpha)\sum_{i=1}^{p}\mu_{i}^{2} + (n-\alpha)\sum_{i=1}^{q}\rho_{i}^{2} = (n-\alpha)\left(\sum_{i=1}^{p}\mu_{i}^{2} + \sum_{i=1}^{q}\rho_{i}^{2}\right) = 2(n-\alpha)e.$$

Hence

$$Eng(G) \leq 2\sqrt{(n-\alpha)e}.$$

If *G* is $K_{1,n-1}$, then e = (n-1), $\alpha = (n-1)$, and the eigenvalues of *G* are $\sqrt{n-1}$, 0, 0, ..., 0, and $\sqrt{n-1}$. Thus $Eng(G) = 2\sqrt{n-1} = 2\sqrt{(n-\alpha)e}$.

If
$$Eng(G) = 2\sqrt{(n-\alpha)e}$$
, then, from the proofs above, we have that $p = n - \alpha$, $q = n - \alpha$, $Eng(G) = 2\sum_{i=1}^{p} \mu_i =$

$$2\sqrt{p\sum_{i=1}^{p}\mu_{i}^{2}}$$
, and $Eng(G) = 2\sum_{i=1}^{q}|\rho_{i}| = 2\sqrt{q\sum_{i=1}^{q}\rho_{i}^{2}}$. Thus, from the conditions for a Cauchy - Schwarz inequality becom-

ing an equality, we have that $\mu_1 = \mu_2 = \dots = \mu_p$ and $\rho_q = \rho_{q-1} = \dots = \rho_1$. Therefore $Eng(G) = 2\sqrt{p\sum_{i=1}^p \mu_i^2} = 2\sqrt{(n-\alpha)^2 \mu_1^2}$

and
$$Eng(G) = 2\sqrt{q\sum_{i=1}^{q}\rho_i^2} = 2\sqrt{(n-\alpha)^2\rho_1^2}$$
. So $2\sqrt{(n-\alpha)^2\mu_1^2} = 2\sqrt{(n-\alpha)^2\rho_1^2}$, Therefore $\mu_1 = -\rho_1$. Since *G* is connected

and the largest eigenvalue of *G* is equal to the negation of the smallest eigenvalue of *G*, *G* is a bipartite graph. Again, since *G* is connected, its adjacency matrix is irreducible. From Perron - Frobenius theorem, we have that p = 1. Thus $\alpha = n - 1$. Hence *G* must be $K_{1,n-1}$.

References

- [1] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York, 1976.
- [2] I. Gutman, The energy of a graph, Berichte der Mathematisch Statistischen Sektion im Forschungszentrum Graz 103 (1978) 1-12.
- [3] B. McClelland, Properties of the latent roots of a matrix: The estimation of π electron energies, J. Chem. Phys. 54 (1971) 640-643.
- [4] J. Koolen and V. Moulton, Maximal energy graphs, Adv. Appl. Math. 26 (2001) 47-52.
- [5] B. Zhou, Energy of graphs, MATCH Commun. Math. Comput. Chem. 51 (2004) 111-118.
- [6] K. Das and S. Mojallal, Upper bounds for the energy of graphs, MATCH Commun. Math. Comput. Chem. 70 (2013) 657-662.
- [7] R. Li, New upper bounds for the energy and signless Laplacian energy of a graph, Int. J. Adv. Appl. Math. and Mech. 3 (2015) 24-27.
- [8] D. Cvetković, M. Doob, and H. Sachs, Spectra of Graphs-Theory and Application, 3rd Edition, Johann Ambrosius Barth, 1995.

Submit your manuscript to IJAAMM and benefit from:

- Regorous peer review
- Immediate publication on acceptance
- ► Open access: Articles freely available online
- ► High visibility within the field
- ▶ Retaining the copyright to your article

Submit your next manuscript at ► editor.ijaamm@gmail.com