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1. Introduction

All the graphs considered in this note are undirected graphs without loops or multiple edges. Notation
and terminology not defined here follow those in [1]. Let G be a graph of order n with e edges. The indepen-
dence number, denoted α(G), of G is defined as the size of the largest independent set in G . The eigenvalues
µ1(G) ≥ µ2(G) ≥ ... ≥ µn(G) of the adjacency matrix A(G) of G are called the eigenvalues of G . The energy, denoted

Eng (G), of G is defined as
n∑

i=1
|µi (G)| (see [2]).

Several authors have obtained the upper bounds for the energy of a graph (see [3], [4], [5], [6], and [7]). In this
note, we will present a new upper bound for the energy of a connected graph. The main result is as follows.

Theorem 1.1.
Let G be a connected graph of order n ≥ 2 with e edges. Then

Eng (G) ≤ 2
√

(n −α)e

with equality if and only if G is K1,n−1, where α is the independence number of G.

2. Proofs of the main result

In order to prove Theorem 1.1, we need the following Lemma 2.1 which is Theorem 3.14 on Pages 88 and 89 in
[8].

Lemma 2.1.
Let G be a graph. If the number of eigenvalues of G which are greater than, less than, and equal to zero are p, q, and r ,
respectively, then

α≤ r +min{ p, q },

where α is the independence number of G.
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Next, we will present the proof of Theorem 1.1.

Proof. Let µ1 ≥µ2 ≥ ... ≥µp be the p positive eigenvalues of G and let ρq ≥ ρq−1 ≥ ... ≥ ρ1 be the q negative eigenval-
ues of G . Then G has n −p −q eigenvalues which are equal to zero. From Lemma 1, we have

α≤ (n −p −q)+min{ p, q }.

Thus α≤ (n −p −q)+q and α≤ (n −p −q)+p. Namely, p ≤ n −α and q ≤ n −α. Since
p∑

i=1
µi +

q∑
i=1

ρi = 0, we have that

Eng (G) = 2
p∑

i=1
µi = 2

q∑
i=1

|ρi |.

From Cauchy - Schwarz inequality, we have that

Eng (G) = 2
p∑

i=1
µi ≤ 2

√√√√p
p∑

i=1
µ2

i .

Similarly, we have that

Eng (G) = 2
q∑

i=1
|ρi | ≤ 2

√√√√q
q∑

i=1
ρ2

i .

Therefore

Eng 2(G)

2
= Eng 2(G)

4
+ Eng 2(G)

4
≤ p

p∑
i=1

µ2
i +q

q∑
i=1

ρ2
i

≤ (n −α)
p∑

i=1
µ2

i + (n −α)
q∑

i=1
ρ2

i = (n −α)

(
p∑

i=1
µ2

i +
q∑

i=1
ρ2

i

)
= 2(n −α)e.

Hence

Eng (G) ≤ 2
√

(n −α)e.

If G is K1,n−1, then e = (n − 1), α = (n − 1), and the eigenvalues of G are
p

n −1, 0, 0, ..., 0, and -
p

n −1. Thus

Eng (G) = 2
p

n −1 = 2
√

(n −α)e.

If Eng (G) = 2
√

(n −α)e, then, from the proofs above, we have that p = n −α, q = n −α, Eng (G) = 2
p∑

i=1
µi =

2

√√√√p
p∑

i=1
µ2

i , and Eng (G) = 2
q∑

i=1
|ρi | = 2

√√√√q
q∑

i=1
ρ2

i . Thus, from the conditions for a Cauchy - Schwarz inequality becom-

ing an equality, we have thatµ1 =µ2 = ... =µp andρq = ρq−1 = ... = ρ1. Therefore Eng (G) = 2

√√√√p
p∑

i=1
µ2

i = 2
√

(n −α)2µ2
1

and Eng (G) = 2

√√√√q
q∑

i=1
ρ2

i = 2
√

(n −α)2ρ2
1. So 2

√
(n −α)2µ2

1 = 2
√

(n −α)2ρ2
1, Thereforeµ1 =−ρ1. Since G is connected

and the largest eigenvalue of G is equal to the negation of the smallest eigenvalue of G , G is a bipartite graph. Again,
since G is connected, its adjacency matrix is irreducible. From Perron - Frobenius theorem, we have that p = 1. Thus
α= n −1. Hence G must be K1,n−1.
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