Hyers-Ulam stability of the isometric Cauchy-Jenson mapping in generalized quasi-banach spaces

R. Murali ${ }^{*}$, A. Antony Raj, M. Deboral
Department of Mathematics, Sacred Heart College, Tirupattur, Vellore, India

Received 11 March 2016; accepted (in revised version) 11 April 2016

Abstract

In this article, we investigate the generalized Hyers-Ulam stability of the isometric Cauchy-Jenson mapping in generalized quasi-Banach spaces, and generalized p - Banach spaces.

MSC: 39B72 • 46B04 Keywords: Cauchy-Jenson mapping • Generalized Hyers-Ulam stability • Generalized quasi-Banach space • Isometry • Generalized p - Banach space © 2016 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of group homomorphisms. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces. Hyer's theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by considering an unbounded Cauchy difference. The paper of Rassias has provided a lot of influence in the development of what we call generalized Hyers-Ulam-Rassias stability of functional equations. In 1990, Rassias [5] asked whether such a theorem can also be proved for $p \geq 1$. In 1991, Gajda [6] gave an affirmative solution to this question when $p>1$, but it was proved by Gajda [6] and Rassias and Semrl [7] that one cannot prove an analogous theorem when $\mathrm{p}=1$. In 1994, a generalization was obtained by Gavruta [8], who replaced the bound $\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ by a general control function $\phi(x, y)$. Beginning around 1980, the stability problems of several functional equations and approximate homomorphisms have been extensively investigated by a number of authors, and there are many interesting results concerning this problem.
We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1.

Let X be a real linear space. A quasi-norm is a real-valued function on X satisying the following:

1. $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ iff $x=0$.
2. $\|\lambda x\|=|\lambda|\|x\|$ forall $\lambda \in \mathbb{R}$ and for all $x \in X$.
3. $\|x+y\| \leq k(\|x\|+\|y\|)$ where $k \geq 1$ is constant and for all $x, y \in X$.

The pair ($X,\|\| \mid$.) is called a quasi- normed space if $\|$.$\| is a quasi-norm on X$. A quasi-Banach space is a complete quasi-normed space.

A quasi-norm $\|$.$\| is called a p$-norm $(0<p \leq 1)$ if $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$ for all $x, y \in X$. In this case, a quasibanach space is called a p - Banach space.

[^0]
Definition 1.2.

Let X be a linear space. A generalized quasi-norm is a real valued function on X satisfying the following:

1. $\|x\| \geq 0$ for all $x \in X$ and $\|x\|=0$ iff $x=0$.
2. $\|\lambda x\|=|\lambda|\|x\|$ for all $\lambda \in \mathbb{R}$ and for all $x \in X$.
3. There is a constant $k \geq 1$ such that $\left\|\sum_{j=1}^{\infty} x_{j}\right\|=\sum_{j=1}^{\infty} k\left\|x_{j}\right\|$ for all $x_{1}, x_{2}, \ldots \in X$.

The pair $(X,\|\|$.$) is called a generalized quasi- normed space if \|$.$\| is a quasi-norm on X$. The smallest possible K is called the modulus of concavity of \|.\|. A generalized quasi-Banach space is a complete generalized quasi-normed space.

A generalized quasi-norm $\|$.$\| is called a p$-norm $(0<p \leq 1)$ if $\|x+y\|^{p} \leq\|x\|^{p}+\|y\|^{p}$ for all $x, y \in X$. In this case, a generalized quasi-Banach space is called a generalized p-Banach space.

Definition 1.3.

Let X and Y be metric spaces. A mapping $f: X \rightarrow Y$ is called an isometry if f satisfies

$$
d_{Y}(f(x), f(y))=d_{X}(x, y)
$$

forall $x, y \in X$, where $d_{X}(.,$.$) and d_{Y}(.,$.$) denote the metrics in the spaces X$ and Y respectively. For some fixed number $r>0$, suppose that f preserves distance " r "; i.e., forall $x, y \in X$ with $d_{X}(x, y)=r$, we have $d_{Y}((f(x), f(y))=r$. Then r is called a conservative(or preserved) distance for the mapping " f ". Let ($X,\|\|$.$) and (Y,\|\|$.$) be normed spaces. A$ mapping $L: X \rightarrow Y$ is called an isometry if

$$
\|L(x)-L(y)\|=\|x-y\| \quad \text { for all } \quad x, y \in X
$$

Aleksandrov posed the following problem: Examine whether the existence of a single conservative distance for some mapping T implies that T is an isometry. The isometric problems have been investigated in several papers. see ([9], [10], [11], [12]).

Recently, Chun-Gil Park and Th.M. Rassias [13], investigated the generalized Hyers-Ulam stability of the isometric Cauchy additive mappings in generalized quasi-Banach spaces. In this paper, we prove the generalized HyersUlam stability of the isometric Cauchy-Jenson mapping in generalized quasi-Banach spaces, and prove the generalized Hyers-Ulam stability of the isometric Cauchy-Jenson mapping in generalized p - Banach spaces.

2. Stability of the isometric Cauchy-Jenson mapping in generalized quasi-banach spaces

Throughout this section, assume that A is a generalized quasi-normed vector space with generalized quasinorm $\|$.$\| and that B$ is a generalized quasi-banach space with generalized quasi-norm $\|$.$\| . Let K$ be the modulus of concavity of $\|$.$\| .$

Theorem 2.1.

Let $r>1$ and θ be positive real numbers, and let $f: A \rightarrow B$ be a mapping such that

$$
\begin{equation*}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)-2 f(z)\right\| \leq \theta\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
|\|f(x)\|-\|x\|| \leq 3\|x\|^{r} \tag{2}
\end{equation*}
$$

for all $x, y \in A$. Then there exists a unique isometric Cauchy-Jenson additive mapping $T: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{3 K \theta}{2^{r}-2}\|x\|^{r} \tag{3}
\end{equation*}
$$

for all $x \in A$.

Proof. Letting $y=z=x$ in (1), we get

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{3 \theta}{2^{r}}\|x\|^{r} \tag{4}
\end{equation*}
$$

for all $x \in A$. Therefore

$$
\begin{equation*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\| \leq K \frac{3 \theta}{2^{r}} \sum_{j=l}^{m-1} \frac{2^{j}}{2^{j r}}\|x\|^{r} \tag{5}
\end{equation*}
$$

for all non-negative integers m and l with $m>l$ and for all $x \in A$. It follows from (5) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $T: A \rightarrow B$ by

$$
T(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$. It follows from (1) that

$$
\begin{aligned}
& \left\|2 T\left(\frac{x+y}{2}+z\right)-T(x)-T(y)-2 T(z)\right\| \\
& \leq \lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x+y}{2 \cdot 2^{n}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow \infty} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right) \\
& =0 .
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
2 T\left(\frac{x+y}{2}+z\right)=T(x)+T(y)+T(z)
$$

for all $x, y, z \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (5), we get (3).
Now let $T^{\prime}: A \rightarrow B$ be another Cauchy-Jenson mapping satisfying (3). Then we have

$$
\begin{aligned}
\left\|T(x)-T^{\prime}(x)\right\| & =2^{n}\left\|T\left(\frac{x}{2^{n}}\right)-T^{\prime}\left(\frac{x}{2^{n}}\right)\right\| \\
& \leq K 2^{n}\left(\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|+\left\|T^{\prime}\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|\right) \\
& =\frac{2^{n+1} 3 K^{2} \theta}{\left(2^{r}-2\right) 2^{n r}}\|x\|^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $T(x)=T^{\prime}(x)$ for all $x \in A$. This proves the uniqueness of T.
It follows from (2) that

$$
\begin{aligned}
\left|\left\|2^{n} f\left(\frac{x}{2^{n}}\right)\right\|-\|x\|\right| & \leq 2^{n}\left|\left\|f\left(\frac{x}{2^{n}}\right)\right\|-\left\|\left(\frac{x}{2^{n}}\right)\right\|\right| \\
& \leq 3 \theta \frac{2^{n}}{2^{n r}}\|x\|^{r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So

$$
\begin{aligned}
\|T(x)\| & =\lim _{n \rightarrow \infty}\left\|2^{n} f\left(\frac{x}{2^{n}}\right)\right\| \\
& =\|x\|
\end{aligned}
$$

for all $x \in A$. Since T is additive,

$$
\|T(x)-T(y)\|=\|T(x-y)\|=\|x-y\|
$$

for all $x \in A$, as desired.

Theorem 2.2.

Let $r<1$ and θ be a positive real numbers, and let $f: A \rightarrow B$ be a mapping satisfying (1) and (2). Then there exists a unique isometric Cauchy-Jenson additive mapping $T: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{3 K \theta}{2-2^{r}}\|x\|^{r} \tag{6}
\end{equation*}
$$

for all $x \in A$.

Proof. It follows from (4) that

$$
\begin{equation*}
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{3}{2} \theta\|x\|^{r} \tag{7}
\end{equation*}
$$

for all $x \in A$. So

$$
\begin{equation*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\| \leq \frac{3 K}{2} \sum_{j=l}^{m-1} \frac{2^{j r} \theta}{2^{j}}\|x\|^{r} \tag{8}
\end{equation*}
$$

for all non-negative integers m and l with $m>1$ and all $x \in A$. It follows from (6) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is a Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So, one can define the mapping $T: A \rightarrow B$ by

$$
T(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$.
The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of the isometric Cauchy-Jenson mappings in generalized p-Banach spaces

Throughout this section, assume that A is a generalized quasi-normed vector space with generalized quasinorm $\|$.$\| and that B$ is a generalized p-Banach space with generalized quasi-norm $\|$.$\| .$

Theorem 3.1.

Let $r>1$ and θ be positive real numbers and let $f: A \rightarrow B$ be a mapping (1) and (2). Then there exist a unique isometric Cauchy-Jenson additive mapping $T: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{3 \theta}{\left(2^{p r}-2^{p}\right)^{\frac{1}{p}}}\|x\|^{r} \tag{9}
\end{equation*}
$$

for all $x \in A$.
Proof. It follows from (4)

$$
\begin{equation*}
\left\|f(x)-2 f\left(\frac{x}{2}\right)\right\| \leq \frac{3 \theta}{2^{r}}\|x\|^{r} \tag{10}
\end{equation*}
$$

for all $x \in A$. Since B is a generalized $p-$ Banach space,

$$
\begin{equation*}
\left\|2^{l} f\left(\frac{x}{2^{l}}\right)-2^{m} f\left(\frac{x}{2^{m}}\right)\right\|^{p} \leq \frac{3^{p} \theta^{p}}{2^{p r}} \sum_{j=l}^{m-1} \frac{2^{p j}}{2^{p r j}}\|x\|^{p r} \tag{11}
\end{equation*}
$$

for all non-negative integers m and l with $m>l$ and for all $x \in A$. It follows from (11) that the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ is Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{2^{n} f\left(\frac{x}{2^{n}}\right)\right\}$ converges. So one can define the mapping $T: A \rightarrow B$ by

$$
T(x)=\lim _{n \rightarrow \infty} 2^{n} f\left(\frac{x}{2^{n}}\right)
$$

for all $x \in A$.
By (1),

$$
\begin{aligned}
& \left\|2 T\left(\frac{x+y}{2}+z\right)-T(x)-T(y)-2 T(z)\right\| \\
& =\lim _{n \rightarrow \infty} 2^{n}\left\|2 f\left(\frac{x+y}{2.2^{n}}+\frac{z}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)-f\left(\frac{y}{2^{n}}\right)-2 f\left(\frac{z}{2^{n}}\right)\right\| \\
& \leq \lim _{n \rightarrow} \frac{2^{n} \theta}{2^{n r}}\left(\|x\|^{r}+\|y\|^{r}+\|z\|^{r}\right)=0
\end{aligned}
$$

for all $x, y, z \in A$. So

$$
2 T\left(\frac{x+y}{2}+z\right)=T(x)+T(y)+2 T(z)
$$

for all $x, y, z \in A$. Moreover, letting $l=0$ and passing the limit $m \rightarrow \infty$ in (11), we get (9). Now, let $T^{\prime}: A \rightarrow B$ be another Cauchy-Jenson additive mapping satisfying (9). Then we have

$$
\begin{aligned}
\left\|T(x)-T^{\prime}(x)\right\|^{p} & =2^{p n}\left\|T\left(\frac{x}{2^{n}}\right)-T^{\prime}\left(\frac{x}{2^{n}}\right)\right\|^{p} \\
& \leq 2^{p n}\left(\left\|T\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|^{p}+\left\|T^{\prime}\left(\frac{x}{2^{n}}\right)-f\left(\frac{x}{2^{n}}\right)\right\|^{p}\right) \\
& =2 \cdot \frac{2^{p n}}{2^{p n r}}\left(\frac{3^{p} \cdot \theta^{p}}{2^{p r}-2^{p}}\right)\|x\|^{p r}
\end{aligned}
$$

which tends to zero as $n \rightarrow \infty$ for all $x \in A$. So we can conclude that $T(x)=T^{\prime}(x)$ for all $x \in A$. This proves the uniqueness of T.
The rest of the proof is similar to the proof of Theorem 2.1.

Remark 3.1.

The result for the case $K=1$ in Theorem 2.1 is the same as the result for the case $p=1$ in Theorem 3.1.

Theorem 3.2.

Let $r<1$ and θ be positive real number and let $f: A \rightarrow B$ be a mapping satisfying (1) and (2). Then there exists a unique isometric Cauchy-Jenson additive mapping $T: A \rightarrow B$ such that

$$
\begin{equation*}
\|f(x)-T(x)\| \leq \frac{3 \theta}{\left(2^{p}-2^{p r}\right)^{\frac{1}{p}}}\|x\|^{r} \tag{12}
\end{equation*}
$$

for all $x \in A$.

Proof. It follows (7) that

$$
\left\|f(x)-\frac{1}{2} f(2 x)\right\| \leq \frac{3}{2} \theta\|x\|^{r}
$$

for all $x \in A$. Since B is a generalized $p-$ Banach space.

$$
\begin{equation*}
\left\|\frac{1}{2^{l}} f\left(2^{l} x\right)-\frac{1}{2^{m}} f\left(2^{m} x\right)\right\|^{p} \leq \frac{3^{p} \theta^{p}}{2^{p}} \sum_{j=l}^{m-1} \frac{2^{p r j}}{2^{p j}}\|x\|^{p r} \tag{13}
\end{equation*}
$$

for all non-negative integers m and l with $m>l$ and for all $x \in A$. It follows from (12) that the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ is Cauchy sequence for all $x \in A$. Since B is complete, the sequence $\left\{\frac{1}{2^{n}} f\left(2^{n} x\right)\right\}$ converges. So one can define the mapping $T: A \rightarrow B$ by

$$
T(x)=\lim _{n \rightarrow \infty} \frac{1}{2^{n}} f\left(2^{n} x\right)
$$

for all $x \in A$. The rest of the proof is similar to the proofs of Theorem 2.2 and Theorem 3.1.

Remark 3.2.

The result for the case $K=1$ in Theorem 2.2 is same as the result for the case $p=1$ in Theorem 3.2.

References

[1] S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.
[2] D.H. Hyers, On the stability of the linear functional equation, Proceedings of the National Academy of Sciences of the United States of America 27 (1941) 222-224.
[3] T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Jpn. 2 (1950) 64-66.
[4] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proceedings of the American Mathematical Society 72(2) (1978) 297-300.
[5] Th.M. Rassias, Functional Equations, Inequalities and Applications, Kluwer Academic Publishers, Dordrecht, The Netherlands, 2003.
[6] Z. Gajda, On stability of additive mappings, International Journal of Mathematics and Mathematical Sciences 14(3) (1991)431-434.
[7] Th.M. Rassias, P. Semrl, On the behavior of mappings which do not satisfy Hyers-Ulam stability, Proceedings of the American Mathematical Society 114(40 (1992) 989-993.
[8] P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, Journal of Mathematical Analysis and Applications 184(3) (1994) 431-436.
[9] J. Baker, Isometries in normed spaces, Amer. Math. Monthly 78 (1971) 655-658.
[10] J. Gevirtz, Stability of isometries on Banach spaces, Proc. Amer. Math. Soc. 89 (1983) 633-636.
[11] B. Mielnik, Th. M. Rassias, On the Aleksandrov problem of conservative distances, Proc. Amer. Math. Soc. 116 (1992) 1115-1118.
[12] Th. M. Rassias, Properties of isometric mappings, J. Math. Anal. Appl. 235 (1997) 108-121.
[13] Chun-Gil Park, Th.M. Rassias, Isometric additive mappings in generalized quasi-Banach spaces, Banach J. Math. Anal. 2(1) (2008) 59-69.

Submit your manuscript to IJAAMM and benefit from:

- Regorous peer review
- Immediate publication on acceptance
- Open access: Articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at $>$ editor.ijaamm@gmail.com

[^0]: * Corresponding author.

 E-mail addresses: Shcrmurali@yahoo.co.in (R. Murali), antoyellow92@gmail.com (A. Antony Raj), deboralmani@gmail.com (M. Deboral)

