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1. Introduction

The stability problem of functional equations originated from a question of Ulam [1] concerning the stability of
group homomorphisms. Hyers [2] gave a first affirmative partial answer to the question of Ulam for Banach spaces.
Hyer’s theorem was generalized by Aoki [3] for additive mappings and by Rassias [4] for linear mappings by consider-
ing an unbounded Cauchy difference. The paper of Rassias has provided a lot of influence in the development of what
we call generalized Hyers-Ulam-Rassias stability of functional equations. In 1990, Rassias [5] asked whether such a
theorem can also be proved for p ≥ 1. In 1991, Gajda [6] gave an affirmative solution to this question when p > 1, but
it was proved by Gajda [6] and Rassias and Semrl [7] that one cannot prove an analogous theorem when p=1. In 1994,
a generalization was obtained by Gavruta [8], who replaced the bound ε

(‖x‖p +∥∥y
∥∥p)

by a general control function
φ(x, y). Beginning around 1980, the stability problems of several functional equations and approximate homomor-
phisms have been extensively investigated by a number of authors, and there are many interesting results concerning
this problem.
We recall some basic facts concerning quasi-Banach spaces and some preliminary results.

Definition 1.1.
Let X be a real linear space. A quasi-norm is a real-valued function on X satisying the following:

1. ||x|| ≥ 0 for all x ∈ X and ||x|| = 0 iff x = 0.

2. ||λx|| = |λ|||x|| forall λ ∈R and for all x ∈ X .

3.
∥∥x + y

∥∥≤ k(||x||+ ||y ||) where k ≥ 1 is constant and for all x, y ∈ X .

The pair (X , ||.||) is called a quasi- normed space if ||.|| is a quasi-norm on X . A quasi-Banach space is a complete
quasi-normed space.

A quasi-norm ‖.‖ is called a p-norm
(
0 < p ≤ 1

)
if

∥∥x + y
∥∥p ≤ ‖x‖p +∥∥y

∥∥p for all x, y ∈ X . In this case, a quasi-
banach space is called a p− Banach space.
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Definition 1.2.
Let X be a linear space. A generalized quasi-norm is a real valued function on X satisfying the following:

1. ‖x‖ ≥ 0 for all x ∈ X and ||x|| = 0 iff x = 0.

2. ‖λx‖ = |λ|‖x‖ for all λ ∈R and for all x ∈ X .

3. There is a constant k ≥ 1 such that ||
∞∑

j=1
x j || =

∞∑
j=1

k||x j || for all x1, x2, ... ∈ X .

The pair (X , ||.||) is called a generalized quasi- normed space if ||.|| is a quasi-norm on X . The smallest possible K is
called the modulus of concavity of ||.||. A generalized quasi-Banach space is a complete generalized quasi-normed
space.

A generalized quasi-norm ‖.‖ is called a p-norm (0 < p ≤ 1) if
∥∥x + y

∥∥p ≤ ‖x‖p +∥∥y
∥∥p for all x, y ∈ X . In this case,

a generalized quasi-Banach space is called a generalized p-Banach space.

Definition 1.3.
Let X and Y be metric spaces. A mapping f : X → Y is called an isometry if f satisfies

dY ( f (x), f (y)) = dX (x, y)

forall x, y ∈ X , where dX (., .) and dY (., .) denote the metrics in the spaces X and Y respectively. For some fixed number
r > 0, suppose that f preserves distance “r "; i.e., forall x, y ∈ X with dX (x, y) = r , we have dY (( f (x), f (y)) = r . Then
r is called a conservative(or preserved) distance for the mapping “ f ". Let (X , ||.||) and (Y , ||.||) be normed spaces. A
mapping L : X → Y is called an isometry if

||L(x)−L(y)|| = ||x − y || for all x, y ∈ X .

Aleksandrov posed the following problem: Examine whether the existence of a single conservative distance for some
mapping T implies that T is an isometry. The isometric problems have been investigated in several papers. see ([9],
[10], [11], [12]).

Recently, Chun-Gil Park and Th.M. Rassias [13], investigated the generalized Hyers-Ulam stability of the iso-
metric Cauchy additive mappings in generalized quasi-Banach spaces. In this paper, we prove the generalized Hyers-
Ulam stability of the isometric Cauchy-Jenson mapping in generalized quasi-Banach spaces, and prove the general-
ized Hyers-Ulam stability of the isometric Cauchy-Jenson mapping in generalized p− Banach spaces.

2. Stability of the isometric Cauchy-Jenson mapping in generalized quasi-banach spaces

Throughout this section, assume that A is a generalized quasi-normed vector space with generalized quasi-
norm ‖.‖ and that B is a generalized quasi-banach space with generalized quasi-norm ‖.‖ . Let K be the modulus of
concavity of ‖.‖ .

Theorem 2.1.
Let r > 1 and θ be positive real numbers, and let f : A → B be a mapping such that∥∥∥2 f

( x + y

2

)
− f (x)− f (y)−2 f (z)

∥∥∥≤ θ
(‖x‖r +∥∥y

∥∥r +‖z‖r )
(1)

∣∣∥∥ f (x)
∥∥−‖x‖∣∣≤ 3‖x‖r (2)

for all x, y ∈ A. Then there exists a unique isometric Cauchy-Jenson additive mapping T : A → B such that

∥∥ f (x)−T (x)
∥∥≤ 3Kθ

2r −2
‖x‖r (3)

for all x ∈ A.
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Proof. Letting y = z = x in (1), we get∥∥∥ f (x)−2 f
( x

2

)∥∥∥≤ 3θ

2r
‖x‖r (4)

for all x ∈ A. Therefore∥∥∥∥2l f

(
x

2l

)
−2m f

( x

2m

)∥∥∥∥≤ K
3θ

2r

m−1∑
j=l

2 j

2 j r
‖x‖r (5)

for all non-negative integers m and l with m > l and for all x ∈ A. It follows from (5) that the sequence
{

2n f (
x

2n )
}

is a Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{

2n f (
x

2n )
}

converges. So one can define the

mapping T : A → B by

T (x) = lim
n→∞2n f

( x

2n

)
for all x ∈ A. It follows from (1) that∥∥∥2T

( x + y

2
+ z

)
−T (x)−T (y)−2T (z)

∥∥∥
≤ lim

n→∞2n
∥∥∥2 f

( x + y

2.2n + z

2n

)
− f

( x

2n

)
− f

( y

2n

)
−2 f

( z

2n

)∥∥∥
≤ lim

n→∞
2nθ

2nr

(‖x‖r +∥∥y
∥∥r +‖z‖r )

= 0.

for all x, y, z ∈ A. So

2T
( x + y

2
+ z

)
= T (x)+T (y)+T (z).

for all x, y, z ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (5), we get (3).
Now let T ′ : A → B be another Cauchy-Jenson mapping satisfying (3). Then we have∥∥T (x)−T ′(x)

∥∥= 2n
∥∥∥T

( x

2n

)
−T ′

( x

2n

)∥∥∥
≤ K 2n

(∥∥∥T (
x

2n )− f
( x

2n

)∥∥∥+∥∥∥T ′
( x

2n

)
− f

( x

2n

)∥∥∥)
= 2n+13K 2θ

(2r −2)2nr
‖x‖r

which tends to zero as n →∞ for all x ∈ A. So we can conclude that T (x) = T ′(x) for all x ∈ A. This proves the unique-
ness of T.
It follows from (2) that∣∣∣∥∥∥2n f (

x

2n )
∥∥∥−‖x‖

∣∣∣≤ 2n
∣∣∣∥∥∥ f (

x

2n )
∥∥∥−∥∥∥(

x

2n )
∥∥∥∣∣∣

≤ 3θ
2n

2nr
‖x‖r

which tends to zero as n →∞ for all x ∈ A. So

‖T (x)‖ = lim
n→∞

∥∥∥2n f (
x

2n )
∥∥∥

= ‖x‖
for all x ∈ A. Since T is additive,∥∥T (x)−T (y)

∥∥= ∥∥T (x − y)
∥∥= ∥∥x − y

∥∥
for all x ∈ A, as desired.

Theorem 2.2.
Let r < 1 and θ be a positive real numbers, and let f : A → B be a mapping satisfying (1) and (2). Then there exists a
unique isometric Cauchy-Jenson additive mapping T : A → B such that∥∥ f (x)−T (x)

∥∥≤ 3Kθ

2−2r
‖x‖r (6)

for all x ∈ A.
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Proof. It follows from (4) that∥∥∥∥ f (x)− 1

2
f (2x)

∥∥∥∥≤ 3

2
θ‖x‖r (7)

for all x ∈ A. So∥∥∥∥ 1

2l
f (2l x)− 1

2m f (2m x)

∥∥∥∥≤ 3K

2

m−1∑
j=l

2 j rθ

2 j
‖x‖r (8)

for all non-negative integers m and l with m > 1 and all x ∈ A. It follows from (6) that the sequence

{
1

2n f (2n x)

}
is

a Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{
1

2n f (2n x)

}
converges. So, one can define the

mapping T : A → B by

T (x) = lim
n→∞

1

2n f (2n x)

for all x ∈ A.
The rest of the proof is similar to the proof of Theorem 2.1.

3. Stability of the isometric Cauchy-Jenson mappings in generalized p−Banach spaces

Throughout this section, assume that A is a generalized quasi-normed vector space with generalized quasi-
norm ‖.‖ and that B is a generalized p−Banach space with generalized quasi-norm ‖.‖ .

Theorem 3.1.
Let r > 1 and θ be positive real numbers and let f : A → B be a mapping (1) and (2). Then there exist a unique isometric
Cauchy-Jenson additive mapping T : A → B such that

∥∥ f (x)−T (x)
∥∥≤ 3θ

(2pr −2p )
1
p

‖x‖r (9)

for all x ∈ A.

Proof. It follows from (4)∥∥∥ f (x)−2 f (
x

2
)
∥∥∥≤ 3θ

2r
‖x‖r (10)

for all x ∈ A. Since B is a generalized p−Banach space,∥∥∥∥2l f (
x

2l
)−2m f (

x

2m )

∥∥∥∥p

≤ 3pθp

2pr

m−1∑
j=l

2p j

2pr j
‖x‖pr (11)

for all non-negative integers m and l with m > l and for all x ∈ A. It follows from (11) that the sequence
{

2n f (
x

2n )
}

is Cauchy sequence for all x ∈ A. Since B is complete, the sequence
{

2n f (
x

2n )
}

converges. So one can define the

mapping T : A → B by

T (x) = lim
n→∞2n f (

x

2n )

for all x ∈ A.
By (1),∥∥∥2T

( x + y

2
+ z

)
−T (x)−T (y)−2T (z)

∥∥∥
= lim

n→∞2n
∥∥∥2 f

( x + y

2.2n + z

2n

)
− f (

x

2n )− f (
y

2n )−2 f (
z

2n )
∥∥∥

≤ lim
n→

2nθ

2nr

(‖x‖r +∥∥y
∥∥r +‖z‖r )= 0
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for all x, y, z ∈ A. So

2T
( x + y

2
+ z

)
= T (x)+T (y)+2T (z).

for all x, y, z ∈ A. Moreover, letting l = 0 and passing the limit m →∞ in (11), we get (9). Now, let T ′ : A → B be another
Cauchy-Jenson additive mapping satisfying (9). Then we have

∥∥T (x)−T ′(x)
∥∥p = 2pn

∥∥∥T (
x

2n )−T ′(
x

2n )
∥∥∥p

≤ 2pn
(∥∥∥T (

x

2n )− f (
x

2n )
∥∥∥p

+
∥∥∥T ′(

x

2n )− f (
x

2n )
∥∥∥p)

= 2.
2pn

2pnr

(
3p .θp

2pr −2p

)
‖x‖pr

which tends to zero as n →∞ for all x ∈ A. So we can conclude that T (x) = T ′(x) for all x ∈ A. This proves the unique-
ness of T.
The rest of the proof is similar to the proof of Theorem 2.1.

Remark 3.1.
The result for the case K = 1 in Theorem 2.1 is the same as the result for the case p = 1 in Theorem 3.1.

Theorem 3.2.
Let r < 1 and θ be positive real number and let f : A → B be a mapping satisfying (1) and (2). Then there exists a unique
isometric Cauchy-Jenson additive mapping T : A → B such that

∥∥ f (x)−T (x)
∥∥≤ 3θ

(2p −2pr )
1
p

‖x‖r (12)

for all x ∈ A.

Proof. It follows (7) that∥∥∥∥ f (x)− 1

2
f (2x)

∥∥∥∥≤ 3

2
θ‖x‖r

for all x ∈ A. Since B is a generalized p−Banach space.∥∥∥∥ 1

2l
f (2l x)− 1

2m f (2m x)

∥∥∥∥p

≤ 3pθp

2p

m−1∑
j=l

2pr j

2p j
‖x‖pr (13)

for all non-negative integers m and l with m > l and for all x ∈ A. It follows from (12) that the sequence

{
1

2n f (2n x)

}
is Cauchy sequence for all x ∈ A. Since B is complete, the sequence

{
1

2n f (2n x)

}
converges. So one can define the

mapping T : A → B by

T (x) = lim
n→∞

1

2n f (2n x)

for all x ∈ A. The rest of the proof is similar to the proofs of Theorem 2.2 and Theorem 3.1.

Remark 3.2.
The result for the case K = 1 in Theorem 2.2 is same as the result for the case p = 1 in Theorem 3.2.
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