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1. Introduction

A holomorphic vector field ¢ on (C?,0) is liftable over a holomorphic map-germ f: (C",0) — (CP,0) if there is a
holomorphic vector field  on (C”,0) such that d f o = o f. That is, the following diagram commutes

T(C",0) a4 T(CP,0)
n] ]é
€0 —L— @r0

where T(CY,0) denotes the tangent bundle germ for (C7,0).

The notion of liftable vector fields over map-germs introduced by Arnol’d [1] as a technical tool to aid with the
classification problems of singularities of map-germs since as usual in singularity theory, one can integrate these
vector fields to produce a one-parameter family of diffeomorphisms preserving a sub-variety.

For holomorphic map-germs f : (C",0) — (C?,0) with n = p, many authors have studied the modules of liftable
vector fields and show that the importance of these vector fields in the study of classification problems for more details
see ([21, [3], [4], [5], [6], [7] and [8]). However, a little is known about the modules of liftable vector fields with n < p.

Houston and Littlestone in [9] study vector fields liftable over corank 1 stable map-germs from an n-manifold to
n+1-manifold and they gave three families of vector fields with the Euler vector field that are liftable over the minimal
Cross cap mapping ¢ : (€?4,0) — (€??~1,0) with d = 2. Also, in [10], Nishimura and others obtained generators for the
module of liftable vector fields over map-germs f : (C",S) — (C”,0) of corank at most one admitting a one-parameter
stable unfolding by using a systematic method. However, in this method we need more calculations for concrete
liftable vector fields.

Liftable and tangent vector fields on the discriminant are equivalent for holomorphic map-germs f: (C",0) —
(CP,0) (for more details see [11], [5] and [12]).In this paper, we well give generators for the module of holomorphic
vector fields tangent to the image of corank 1 holomorphic map-germs from an 2-manifold to an 3-manifold. These
tangent vector fields agree with the calculation in [10]. Throughout the paper all map-germs and vector fields which
we consider will be holomorphic.
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2. Mond’s singularities

In this section we introduce some basic notation and the main result of Mond’s classification. For more details

see [14].

Let @}, be the ring of all function-germs (C”,0) — C. This ring has a maximal ideal m,, consisting of germs of
functions f € @, with f(0) = 0. The set of all map-germs f : (C",0) — C” is an @,-module and will be denoted &",.
The set of all tangent vector fields in (C?,0) is a free &,,-module of rank p and will be denoted 6,,. The group of all

diffeomorphisms (C”,0) — (C”,0) is denoted Diff(C",0).

Definition 2.1.

Let f,g: (C",0) — (CP,0) be two map-germs. We say that f and g are «/-equivalent if there exist diffeomorphism

germs ¢ € Diff(C",0) and v € Diff(C?, 0) for which the following diagram commutes

€0 L «r0

¢l vl

"0 % (r,0

ie.wof=gogp.

Mond classified <f -simple map-germs (C?%,0) — (C3,0). The models for these germs are the following:

Theorem 2.1.

Let f : (C2,0) — (C3,0) be a simple map-germ. Then f is o -equivalent to one of the map-germs in the following:

Label Normal form (Singularity)
Immersion (x,¥,0)

Cross-cap (x,¥%,xy)

Sk x5+ x5y, k=1
By x5, 22y +y?KtY), k=2
Ck (x,yz,xy3+xky), k=3
F4 (x,yz,x3 + y5)

Hy (x,y3,xy+y3k71), k=2

The map-germs Sy, By, Ck, F4 and Hy are called Mond’s map-germs or Mond’s singularities.

3. Adefining equation for the image of map-germ

In this section we shall compute the defining equation for the image of the minimal cross cap of multiplicity

d = 2. We define the local algebra of f to be

(o _ (S
f*(mp) <fly-~-’fp>‘

Q) :=

Definition 3.1.

A map-germ F : (C",0) — (CP,0) is finite if it is continuous, closed and the fiber F~1(y) is finite for all y € (C?,0).

Let X be a Cohen-Macaulay space of dimension 7 and F : (X, x) — (C"*!,0) be a finite map-germ. We can use the
algorithm of Mond and Pellikaan to determine the corresponding defining equation for the image (see [15], section

2). An algorithm consists basically of the following steps:

1. Choose a projection 7 : (C"*1,0) — (C",0) such that F = 7 o F is finite.

2. After a coordinate change we may suppose that F(x) = (F(x), Fp41(x)). Let X;,4+1 denote the last component of

the coordinate system on C™**! so that F,41 = X110 F.
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3. Let 1,81, 82,..., 8k be generators of Q(ﬁ), where Q(ﬁ) is the local algebra of F. Put go = 1 and find elements
@i j €0y, 0=, j <k, such that
k o~
giFn1=) (aijoF)gi.
i=0
4. Define a matrix A = (1; ;) by letting
* Aijj=ajjonfori#j,

* dii=ajiom—Xpy1.

5. A defining equation for the image of F is given by the determinant of the matrix 1.

Example 3.1.
Consider the mapping f(x,y) = (x, yz,yp(x, yz)). We choose a projection 7 : (C3,0) — (C?,0) such that 7(X,Y, Z) =
(X,Y). Then we have

Fy)y=nof(x,y)
=(x,%).
We find that Q(f) is generated by 1 and y. By solving the following equations
yp(x,y?) =ao0(x,y*) + a1 0(x,y*)y and
V2 p(x,y?) =0, (x,y%) + ai,1(x, ).

We find ag0(x, y*) =0, a1 ,0(x,¥*) = p(x,¥), ao,1 (x,¥*) = y*p(x,¥*) and a1 1 (x, y*) = 0.
Now,

Moo =appom(X,Y)—-Z
=0-Z2
=_Z,

Mi=aj10on(X,Y)-Z
=0-Z
=_Z,

Mo=aipon(X,Y)
=pX,Y),

Ao, =ap10m(X,Y)
~Yp(X,Y).

We obtain the matrix

1o ( -z px, Y))‘
YpX,Y) -Z
A defining equation for the image of f is given by the determinant of the matrix 1, i.e.,
¢ (X,Y,Z)=det(1)
=72 Yp(X,Y)>.

Example 3.2.
Consider Hy singularities, i.e., f(x, y) = (x, y3, xXy-— y3k71). It can be show in a similar way in Example 3.1 that

-Z X yk!
A=Yk -z X
Xy vk -z
A defining equation for the image of f is given by
¢ (X,Y,Z)=det(1)
=78 -3xy*z- X3y - y3k 1,
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4. Tangent vector fields

Definition 4.1.
Let ¢ : (C",0) — (C”,0) be a map-germ. We say that % is a quasihomogeneous or weighted homogeneous of type
(@,...,an; dy, ..., dp), with a;, dj e N if the relation

(pj(l‘alxl,...,ta"xn) = tdj(pj(X1,...,xn)

holds for each coordinate function ¢; of f for all ¢ € (C,0). The number a; is called the weight of the variable x; and
the number d; is the degree of the function ¢;.

Example 4.1.
Consider the defining equation of Sy map-germ, i.e., ¢ (X,Y,2) = Z? - Y(Y + X k12 Then we check that

® (tZX, P2y, t3(k+1)Z) =(Bk+D) 72 _ 20k+1) y (206D g (42 xyk+1)2
— (B(k+1) 72 _ j2(k+1) 4A(k+1) (Y(Y +Xk+1)2)
— {8k+1) 72 _ (B(k+1) (Y(Y+Xk+1)2)
— £B(k+1) (Zz —Y(Y + Xk+1)2)

=5 Dy (X,Y,2).
Hence, the defining equation of Sy map-germ is a quasihomogeneous of type (2,2(k+1),3(k + 1);6(k + 1)).

Let ¢ = By, Cy, F4 or Hy. Then, it can be show in a similar way that the defining equation of ¢ map-germ is a
quasihomogeneous

Definition 4.2.
Suppose that V is a C-analytic variety of (C”,0). We denote by I(V) the ideal of germs vanishing on V. A vector field
¢ €0, is said to be tangent to V' if

cawW)ycIwv).
The module of such vector fields is denoted Der(-log V).

Remark 4.1.

1. When I(V) = (@1, ...,@4), We write
q
Der(-logV) = {¢ €6, :3g;j € Op such thaté (p;) =) gijpi, j=1,...,q}
i=1
Let ¢ : (C”,0) — (C,0) be any defining equation for V, i.e, V = (p_l(O). Then we define a submodule of
Der(-log V) by
Derg(-log V) = {¢ €8, :& (@) =0}.

2. The module Der(—log V) depends on the choice of equation for V, and not only on V itself. In [11], Damon
shows that this module is a finitely generated &,-module.

3. Let Xj,..., X, denote the standard coordinates on C”. Then the Euler vector field denoted by ¢, is given by

P 0
§e= izzldiXia—X-

Example 4.2.
From Example 4.1 we have a; = 2, ay = 2(k+ 1) and a3 = 3(k + 1). Then we can see that the Euler vector field ¢, =

0 0
2)(& +2(k+1) Yﬁ +3(k+ I)Zﬁ is tangent to the image of Sy as follows:

0 0 0p
6X+2(k+1)Y6Y +3(k+1)ZaZ

—2X (—2(k+ 1 x*y? - 2k +2)x2k+1 Y) +2(k+1)Y (—3Y2 —axkly — X2k+2) +3(k+1)Z22)

fe (‘P) =2X

=6(k+1)¢.
Le., ¢, € Der(-log V) where V is the image of Sy.
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Theorem 4.1 ([13]).
Let @ : (CP,0) — (C,0) be a quasihomogeneous map-germ and V = ¢~ (0). Then

Der(—logV) = () ® Derg(—log V).
That is, we can conclude that one vector field is Euler and the other annihilate the defining equation.

Remark 4.2.
Let f,g: (C",0) — (CP,0) be two smooth map-germs with their discriminants V and W, respectively. If f and g are
o/ -equivalent with f = o go ¢, then . (Der(-log V)) = Der(~log W) where .. (§) = dy.& oy~ ! (see [5] and [10]).

From Theorem 2.1 and Remark 4.2 if we need to find the module tangent vector fields on the discriminant of a
map-germ f : (C2,0) — (C3,0), then we need to find the module tangent vector fields on Mond singularities only.

Proposition 4.1.
Let ¢ : (CP,0) — (C,0) be a map-germ. Consider the mapping

:0), —0)
defined by
P9
D) = DAy, Ap) = Y Ao,
i1 0xi

where Ay, ..., A, are the components of A. Then ker(®) is spanned as an O, -module by the set of mappings

) ) .. }
i €0Pyii=——ei——e;, l<i<j<py,
{Ytj plYij ox; j ox; i J=p

where x = (x1,...,xp) and ey is the vector in C"" with al in the kth position and zeros elsewhere.

0
Proof. We the result by induction on p. For p =1, ker(®) = <% e1>, and the hypothesis is satisfied. For p = 2,
1

0 0 0 0
ker(®) = <(/11,/12)|/11 % + )Lg—(p = 0> ifand onlyif A, = - and 1, = % and the hypothesis is satisfied.
0x; 0xy 0x, 0x;

Now suppose the result holds for p = k, i.e.,

0 0
_ k _ 99 @ .
ker(®) = <)/ij €Olyij= a—Xiej—a—xje,-, l<si<js k>.
Consider A = (11,...,Ak41) with A € ker(®). If 1,7 = 0, then A can be viewed as a linear combination of the set
0 0 ~ o~ ~
{yl-j € @,’ﬂ?’ij = a_<.0 €; _6_90 e, l<i<js k} by hypothesis. Otherwise, let A = (11,...,A;+1). We can find an appro-
Xi x]'

~ 0 0 ~
priate A € ker(®) in the form of a—(p €rt1 —a—(p e; and then A = al + (A4,..., Ak, 0). Therefore,

i Xk+1

dp ~ dg
Ae <Yij€@’z’§ﬁ|%j % o,

The result follows. O

e;, lsi<jsk+1>.

5. Vector fields on Sy singularities
Theorem 5.1.
Let f : (C%,0) — (C3,0) be a Si.-map germ, i.e., a map-germ of the form f (x,y) = (x,y*, > + xk“y). Then

Der(-logV) = (£.,¢1,¢2,¢3),
where

Ee=2X 9 +2(k+1)Y 9 +3(k+1)Z 9

¢ ex oY 0z

_ 0 k 0 k+1 3k+2 0
&1=32 5 —2(k+ DXFY (k+1)(X Y+ X )az'
& =029 4 (3Y2 +axktly 4 XZ"*Z) 9

oy 0z
a )

_ k+1 _ k

E3-(3Y+X )_ax 20k+ DX*Y
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Proof. Let V be the image of Sy. Then, we have p(x, y*) = y* + x**1 and the defining equation of V is given by
2 k+1)?
0(X,Y,2)=Z —Y(Y+X ) .
From Example 4.1 we have . (¢) =6(k+ 1)k and

0
EY4
=37 (—Z(k + 1) XFY2 Z 2k +2)X2k+L Y) —2(k+1)xFy (—3 Y2 _axktly _ X2k+2)

2y 0P ky 0p k+1 3k+2
&) =325 —2(k+ DX*Y =2 (k+1)(X Y+X )

—(k+1) (Xk“ Y + X3k+2) 22)
0.

In the same way, we can see that &, (¢) = 0 and {3(¢) = 0. Therefore, ¢,,¢,¢» and &3 are certainly tangent to V. If nisa
vector field tangent to the image of Sy, then 1(¢) = gh for some polynomial g. Therefore,

gfe) (@) =gp—-gp=0.

5)( ) = ()—( !
8Se|lp) =1l 6(k+ 1)

("_ 6(k+1)

0 0
We need to check that {,,¢3 and ¢4 generate all vector fields { = {; % +(5 FYa +{3 Y such that { € Derg(—log V),

i.e., we solve

op
(10 Cz (3

Put

dp . O
D((1,02,(3) = (1 X +(26_Y +(302

Now Proposition 4.1 implies that ker(®) = (1,72,13) where

0 0
_ 2 k+1 2k+2 _ k2 2k+1
n1—(3Y +4X*"T Y+ X )—a (2(k+1)X Y +@2k+2)X Y)_()Y

=(Y+X"+1)53.

— 0 k2 2k+1 0
nz——ZZﬁ—(Z(k+l)X Y2+ (2k+2)X Y)&

=% (61 + Kk +DX*g).

_ 0 2 k+1 2k+2 a
n3_—2zﬁ—(3y raxkly 4 x )—

0z
=-&o.
For all { € Derg(—log V), we have { € ker(®). We can see that ( is a linear combination of the form g;¢; + g2¢2 + g3¢3
with g; e O3 fori=1,2,3. O

We can see that the tangent vector fields on Sy singularities agree with the calculation in [10], Section 6.8.

6. Vector fields on By singularities

Theorem 6.1.
Let f: (C2,0) — (C3,0) be a Bi.-map germ with k = 2, i.e., a map-germ of the form f(x,y) = (x, y>, x*y + y2k+1). Then

Def(—logv) = (Ee»fl, 62r£3> y

where

0 0 0
ée _kXO_X +2Y6_+ 2k + l)Z—

0 3 k+1 0

& Z—+(2X Y +2XY )az

& :ZZi+(X4+(2k+2)X2Yk+(2k+1)Y2k)i
oY P

0 0
2 k _
53_(X +(R2k+1)Y )_6 4XY_6Y
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Proof. Let V be the image of By. Then, we have p(x, y?) = x> + ka and the defining equation of V is given by
2
PX,Y,2) =22 =Y X2+ YH]".
We see that
Oy

)
Eelp) = kxﬁ +2Yﬁ +Q2k+ I)Z—Z

=kX(—4X3Y - 4XYk+1) +2Y (—X4 2+ DX2YF - 2k + 1)Y2k) +2k+1)Z22)
=22k +1)h.

5,00 0
§1(9) =225 27 2%
=27 (—X4 —20k+1)X2Y* - 2k + 1)Y2k) - (—X4 —2k+1)X2Y* - 2k + 1)Y2") 27) = 0.

In the same way, we can see that £, (¢) = 0 and ¢3(¢) = 0. Therefore, ¢,,¢1,¢2 and &3 are certainly tangent to V. If nisa
vector field tangent to the image of By, then n(h) = gh for some polynomial g. Therefore,

gfl) (P)=gp—gp=0.

1
gfl) (p) =n(p) - (m

]
(" T 20k+1)

We need to check that ¢,,¢3 and ¢4 generate all vector fields { = ({1,(3,{3) such that { € Dery(-logV), i.e., we
solve

op
(16 (2 (3
Put
op
qD((l,(z,(s):(la (2 (3

Now Proposition 4.1 implies that ker(®) is spanned by

d d
4 2vk 2k 3 k+1
n = (X +2k+DX2YF+ @k +1)Y )ax (4X Y +4XY )a_y
=(X2+Yk)€3.
0 3 k+1 0
=—27— —(ax3y +axy*) =
2 X (ax°y + )az
1

——551-
n =—2Zi—(X4+2(k+1)X2Yk+(2k+1)Y2k)i

3 oy 0z

=-¢&o.

7. Vector fields on Cy singularities

Theorem 7.1.
Let f : (C%,0) — (C3,0) be a C.-map germ with k = 3, i.e., a map-germ of the form f(x,y) = (x,y*, xy°> + xky). Then

Der(-logV) = (£¢,¢1,¢2,¢3),

where
9 9 9
& —2X6—X+2(k—1)Y6—Y+(3k—1)Za—Z
b b
=7— +(XY3+ (k+ D)X Y2+ kX2 1y)—
1 aX+( +(k+1) + )az
_ 0 2v2 k+1 2k 0
52_zzay+(3x Yo+4X" " y+ X )OZ

0 0
— k _ 2 k-1
E3=3XY+X )_OX Y“+2kX Y)_GY
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Proof. Let V be the image of Cy. Then, we have p(x, y*) = xy* + x* and the defining equation of V is given by
2
0X,Y,2)=2* =Y (XY + X",
We see that
9¢ d¢ 9p
=2X—+2(k-1)Y—+@Bk-1)Z—
¢1(p) ox T2lk=DY oo ( Y
=2 (-2X Y%~ 20k + DX Y2 - 2kX* 71y ) + 20k - DY (-3X2 V2 - 4x** 1y - X7+ 3k -1 2 (22)
=2(3k—1)¢.
9¢ o9

=27—-2Y—
¢1(p) PTG 37

=27 (—3){2 yZoaxkly - XZk) + (3X2 Y2+ axkly 4 XZk) 22)
=0.
In the same way, we can see that £, (¢) = 0 and ¢3(¢) = 0. Therefore, ¢,,¢1,¢2 and &3 are certainly tangent to V. If nisa

vector field tangent to the image of Cy, then 1(¢) = g¢ for some polynomial g. Therefore,

1 1
(n— mgﬁ) (@) =n(p) - (mgﬁ) (p)=8p—8gp=0.

We need to check that ¢»,¢3 and &4 generate all vector fields ¢ = ({1,(3,(3) such that { € Derg(—logV), i.e., we
solve

op
(10 Cz (3

Put

®((1,{2,(3) = (1 +(26Y (3—-

Now Proposition 4.1 implies that ker(®) = (n1,72,13) where

0 0
_[ay2y2 k+1 2k _ 3 k 2k-1
1]1—(3X Y +4X"T Y+ X )0 Z(XY +(k+DX"Y+kX Y)OY

:(XY+Xk)fg.

_ 0 3 k 2k-1 0
ma=-2Z o Z(XY +(k+DXFY + kX Y)a—Z

1
——551-

_ 0 22 k+1 2k a
ng_—zza—y—(sx Y2 +ax*y + X )a_z
=—¢o.

8. Vector fields on F, singularities

Theorem 8.1.

Letf: (C%,0) — (C3,0) be a Fy-map germ, i.e., a map-germ of the form f(x, y) = (x, yz,x3y+ ys). Then
Der(_log V) = <£€’ fl) 62) 63) )

where

& 4X(3 +6(k— l)Ya +1520
) 0z

b
=Z— +3(X%Y® XSY—
¢ aX+( + )az

_ 0 4 3,2 6 0
52_zzay+(5Y +6X°Y +X)OZ
0

b
=56Y*+Xx3 6X2Y —.
&3=(6Y"+ )OX 3y
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Proof. Let V be the image of F4. Then, we have p(x, y*) = x° + y* and the defining equation of V is given by
9(X,Y,2)= 22~ Y (X3 + Y?)°.

We see that
op (610) Op
=4X = +6Y — +15Z—
telg) =4X5% oY 0z
=4X (-6X°Y -6X*Y3) +6Y (-X°-6X°Y*-5Y*) +152(22)
=30¢.
d¢ 4 3y72 6 09
=2Z— +(5Y*+4X°Y*+ X
¢1() 3y +( )GZ
=27 (-X°-6X>Y*-57*)+ (57 +4X°Y* + X°) 22)
=0.

In the same way, we can see that £, (¢) = 0 and ¢3(¢) = 0. Therefore, ¢,,¢1,¢2 and ¢3 are certainly tangent to V. If nisa
vector field tangent to the image of Fy4, then 1(¢) = g¢ for some polynomial g. Therefore,

n- gél)(q)):n((p)—( gfl)(w)=g<p—g<p=0-

_ _
2B3k-1) 2@k-1)

We need to check that ¢»,¢3 and &4 generate all vector fields ¢ = ({1,(3,(3) such that { € Derg(-logV), i.e., we
solve

0

=0.
0Z

(1—+(2—+Cs
Put

®((1,{2,(3) = 51 +(2 53

Now Proposition 4.1 1mp11es that ker(®) = <771 ,72,M3) where

d )
=(x%+6X3V%+57*) — —6(X°Y + X?Y3) —
m=(X*+6 +5 )6X 6( + )ay

=(X3+v?)&s.
— 9 5 2vy3 0
N2 ==2Z5- 6(X°Y+X°Y )az
1
——551-

a 6 3v2 4 a
——27% _(xS+6x3v2+574) -2
3 a7 | ) oz

=-¢&o.

9. Vector fields on Hy singularities

Theorem 9.1.
Letf: (C%,0) — (C3,0) bea Hj.-map germ with k = 3, i.e., a map-germ of the form f(x, y) = (x, ys,xy+ y3k71). Then

Der(_logv) ={¢e,¢1,62,¢3,84),

where

B} ) 9
:3k—2X— 3Y— 3k-1)7—
Ee =( ) +3Y oo +( ) 37

$1 (X2+(3k nY* 1Z) 0 3xyi_(3k_1)yzk71i

oX oY 0z
52=(XZ+(:—;k—1)Y2’“*1)i—syzi—(3k—1)xyki
0X oy 0z
B P F)
_ (y2yk-1 _ _ 2 3 k-1
&y = (X YAl Bk—1)yY2k ZZ)—6X+3Z _ay+(X +3kXY Z)—aZ

&4 =(Z2—XYk) aiX+(X2Y+ YkZ) aiz
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Proof. Let V be the image of Hi. Then from Example 3.2 the defining equation of V is given by
O(X,Y,7) =78 -3XY*k 7z - X3y — y3k-1,

We can see that

Eolg) =Bk - 2)X—+3Y2—+(3k Nz, "’
:(3k—2)X(13YkZ+3X2 )+3Y(—3kYk_1Z—X3—(3k—1)Y3k‘2)+(3k—1)Z(3Z2—3XYk)
=33k-1)g.
O O 0
X2 nyklz y—~£ _ Nz
&) = (X2 + Bk-1) )ax 3y S0 - (3k-1Z5L

— (XZ + Bk 1)Y’HZ) (13YkZ— 3X2Y) _3XY (—3kY’HZ— X3 3k- 1)Y3k’2)
- ((3k— 1 Y2k‘1) (322 —3xyk)
=0.

In the same way, we can see that &2 (@) =0, {3(¢) =0 and ¢4 (¢) = 0. Therefore, ¢,,¢1,¢2,¢3 and &4 are certainly tangent
to V. If nis a vector field tangent to the image of Hy, then n(¢) = g¢ for some polynomial g. Therefore,

n+

851) (@) =gp—gp=0.

f)( ) =n(p) + L
go1|l@)=nlp 363k-1)

1
3(3k-1)
We need to check that £, ¢3,¢4 and &5 generate all vector fields { = ({1,(3,3) such that { € Dery(—logV), i.e., we
solve

0

=0.
0Z

(1—+(2—+Cs
Put

0

D((1,{2,03) = (1—+(z— +(3az.

Now Proposition 4.1 implies that ker(®) = (n1,72,13) where

0

n = (3kyk‘1z+ X3+ @3k- 1)Y3k‘2) S (Ykz + XZY) %

ZXEI + Ykilfg.

—3(Ykz+X2Y)i

N2 = (—322 +3XYk) 9 p

0X

1
== 554-
13 = (—322 +3XYk) aiy - (3kyk‘1z+ X3+ (3k— 1)Y3k‘2) aiz
~(es+v* ).

Remark 9.1.

1. In [10], they show that the minimal number of generators for Der(—log V) where V be the image of By, Cy,F; is
less than or equal to 5 and of Sy map-germ is always 4. We can see that from our theorem above the minimal
number of generators for Der(—log V) is exactly equal to 4. In this case all map-germs admit one-parameter
stable unfolding.

2. We have primary results for map-germs admit two-parameter stable unfolding and we hope to complete these
results in a subsequent paper.
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