Liftable vector fields over Mond's map-germs

Research Article

M. S. J. Al-Bahadeli ${ }^{*}$
Department of Mathematics, College of Science, University of Baghdad, Baghdad, Iraq

Received 31 May 2016; accepted (in revised version) 17 June 2016

```
Abstract: In this paper we describe generators for the module of holomorphic vector fields tangent to the image of corank 1
    holomorphic map-germs from an 2-manifold to an 3-manifold.
MSC: 58K20 • 58K40
Keywords: Liftable and Tangent vector fields - Mond's singularities
© 2016 The Author. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).
```


1. Introduction

A holomorphic vector field ξ on $\left(\mathbb{C}^{p}, 0\right)$ is liftable over a holomorphic map-germ $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ if there is a holomorphic vector field η on $\left(\mathbb{C}^{n}, 0\right)$ such that $d f \circ \eta=\xi \circ f$. That is, the following diagram commutes

where $T\left(\mathbb{C}^{q}, 0\right)$ denotes the tangent bundle germ for $\left(\mathbb{C}^{q}, 0\right)$.
The notion of liftable vector fields over map-germs introduced by Arnol'd [1] as a technical tool to aid with the classification problems of singularities of map-germs since as usual in singularity theory, one can integrate these vector fields to produce a one-parameter family of diffeomorphisms preserving a sub-variety.

For holomorphic map-germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ with $n \geq p$, many authors have studied the modules of liftable vector fields and show that the importance of these vector fields in the study of classification problems for more details see ([2], [3], [4], [5], [6], [7] and [8]). However, a little is known about the modules of liftable vector fields with $n<p$.

Houston and Littlestone in [9] study vector fields liftable over corank 1 stable map-germs from an n-manifold to $n+1$-manifold and they gave three families of vector fields with the Euler vector field that are liftable over the minimal cross cap mapping $\varphi_{d}:\left(\mathbb{C}^{2 d}, 0\right) \rightarrow\left(\mathbb{C}^{2 d-1}, 0\right)$ with $d \geq 2$. Also, in [10], Nishimura and others obtained generators for the module of liftable vector fields over map-germs $f:\left(\mathbb{C}^{n}, S\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ of corank at most one admitting a one-parameter stable unfolding by using a systematic method. However, in this method we need more calculations for concrete liftable vector fields.

Liftable and tangent vector fields on the discriminant are equivalent for holomorphic map-germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow$ $\left(\mathbb{C}^{p}, 0\right)$ (for more details see [11], [5] and [12]).In this paper, we well give generators for the module of holomorphic vector fields tangent to the image of corank 1 holomorphic map-germs from an 2-manifold to an 3-manifold. These tangent vector fields agree with the calculation in [10]. Throughout the paper all map-germs and vector fields which we consider will be holomorphic.

[^0]
2. Mond's singularities

In this section we introduce some basic notation and the main result of Mond's classification. For more details see [14].

Let \mathscr{O}_{n} be the ring of all function-germs $\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}$. This ring has a maximal ideal \mathfrak{m}_{n} consisting of germs of functions $f \in \mathscr{O}_{n}$ with $f(0)=0$. The set of all map-germs $f:\left(\mathbb{C}^{n}, 0\right) \rightarrow \mathbb{C}^{p}$ is an \mathscr{O}_{n}-module and will be denoted \mathscr{O}_{n}^{p}. The set of all tangent vector fields in $\left(\mathbb{C}^{p}, 0\right)$ is a free \mathscr{O}_{p}-module of rank p and will be denoted θ_{p}. The group of all diffeomorphisms $\left(\mathbb{C}^{p}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ is denoted $\operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$.

Definition 2.1.

Let $f, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ be two map-germs. We say that f and g are \mathscr{A}-equivalent if there exist diffeomorphism germs $\varphi \in \operatorname{Diff}\left(\mathbb{C}^{n}, 0\right)$ and $\psi \in \operatorname{Diff}\left(\mathbb{C}^{p}, 0\right)$ for which the following diagram commutes

$$
\begin{array}{ccc}
\left(\mathbb{C}^{n}, 0\right) & \xrightarrow{f} & \left(\mathbb{C}^{p}, 0\right) \\
\varphi \downarrow & & \psi \downarrow \\
\left(\mathbb{C}^{n}, 0\right) & \xrightarrow{g} & \left(\mathbb{C}^{p}, 0\right)
\end{array}
$$

i.e. $\psi \circ f=g \circ \varphi$.

Mond classified \mathscr{A}-simple map-germs $\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$. The models for these germs are the following:

Theorem 2.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a simple map-germ. Then f is \mathscr{A}-equivalent to one of the map-germs in the following:

Label	Normal form (Singularity)
Immersion	$(x, y, 0)$
Cross-cap	$\left(x, y^{2}, x y\right)$
S_{k}	$\left(x, y^{2}, y^{3}+x^{k+1} y\right), k \geq 1$
$\mathrm{~B}_{\mathrm{k}}$	$\left(x, y^{2}, x^{2} y+y^{2 k+1}\right), k \geq 2$
C_{k}	$\left(x, y^{2}, x y^{3}+x^{k} y\right), k \geq 3$
$\mathrm{~F}_{4}$	$\left(x, y^{2}, x^{3}+y^{5}\right)$
H_{k}	$\left(x, y^{3}, x y+y^{3 k-1}\right), k \geq 2$

The map-germs $\mathrm{S}_{\mathrm{k}}, \mathrm{B}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}}, \mathrm{F}_{4}$ and H_{k} are called Mond's map-germs or Mond's singularities.

3. A defining equation for the image of map-germ

In this section we shall compute the defining equation for the image of the minimal cross cap of multiplicity $d \geq 2$. We define the local algebra of f to be

$$
Q(f):=\frac{\mathscr{O}_{n}}{f^{*}\left(\mathfrak{m}_{p}\right)}=\frac{\mathscr{O}_{n}}{\left\langle f_{1}, \ldots, f_{p}\right\rangle} .
$$

Definition 3.1.

A map-germ $F:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ is finite if it is continuous, closed and the fiber $F^{-1}(y)$ is finite for all $y \in\left(\mathbb{C}^{p}, 0\right)$.
Let X be a Cohen-Macaulay space of dimension n and $F:(X, x) \rightarrow\left(\mathbb{C}^{n+1}, 0\right)$ be a finite map-germ. We can use the algorithm of Mond and Pellikaan to determine the corresponding defining equation for the image (see [15], section 2). An algorithm consists basically of the following steps:

1. Choose a projection $\pi:\left(\mathbb{C}^{n+1}, 0\right) \rightarrow\left(\mathbb{C}^{n}, 0\right)$ such that $\widetilde{F}=\pi \circ F$ is finite.
2. After a coordinate change we may suppose that $F(x)=\left(\widetilde{F}(x), F_{n+1}(x)\right)$. Let X_{n+1} denote the last component of the coordinate system on \mathbb{C}^{n+1} so that $F_{n+1}=X_{n+1} \circ F$.
3. Let $1, g_{1}, g_{2}, \ldots, g_{k}$ be generators of $Q(\widetilde{F})$, where $Q(\widetilde{F})$ is the local algebra of \widetilde{F}. Put $g_{0}=1$ and find elements $\alpha_{i, j} \in \mathscr{O}_{n}, 0 \leq i, j \leq k$, such that

$$
g_{j} F_{n+1}=\sum_{i=0}^{k}\left(\alpha_{i, j} \circ \widetilde{F}\right) g_{i}
$$

4. Define a matrix $\lambda=\left(\lambda_{i, j}\right)$ by letting

- $\lambda_{i, j}=\alpha_{i, j} \circ \pi$ for $i \neq j$,
- $\lambda_{i, i}=\alpha_{i, i} \circ \pi-X_{n+1}$.

5. A defining equation for the image of F is given by the determinant of the matrix λ.

Example 3.1.

Consider the mapping $f(x, y)=\left(x, y^{2}, y p\left(x, y^{2}\right)\right)$. We choose a projection $\pi:\left(\mathbb{C}^{3}, 0\right) \rightarrow\left(\mathbb{C}^{2}, 0\right)$ such that $\pi(X, Y, Z)=$ (X, Y). Then we have

$$
\begin{aligned}
\tilde{f}(x, y) & =\pi \circ f(x, y) \\
& =\left(x, y^{2}\right) .
\end{aligned}
$$

We find that $Q(\tilde{f})$ is generated by 1 and y. By solving the following equations

$$
\begin{aligned}
y p\left(x, y^{2}\right) & =\alpha_{0,0}\left(x, y^{2}\right)+\alpha_{1,0}\left(x, y^{2}\right) y \quad \text { and } \\
y^{2} p\left(x, y^{2}\right) & =\alpha_{0,1}\left(x, y^{2}\right)+\alpha_{1,1}\left(x, y^{2}\right) y .
\end{aligned}
$$

We find $\alpha_{0,0}\left(x, y^{2}\right)=0, \alpha_{1,0}\left(x, y^{2}\right)=p\left(x, y^{2}\right), \alpha_{0,1}\left(x, y^{2}\right)=y^{2} p\left(x, y^{2}\right)$ and $\alpha_{1,1}\left(x, y^{2}\right)=0$.
Now,

$$
\begin{aligned}
\lambda_{0,0} & =\alpha_{0,0} \circ \pi(X, Y)-Z \\
& =0-Z \\
& =-Z,
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{1,1} & =\alpha_{1,1} \circ \pi(X, Y)-Z \\
& =0-Z \\
& =-Z
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{1,0} & =\alpha_{1,0} \circ \pi(X, Y) \\
& =p(X, Y), \\
\lambda_{0,1} & =\alpha_{0,1} \circ \pi(X, Y) \\
& =Y p(X, Y) .
\end{aligned}
$$

We obtain the matrix

$$
\lambda=\left(\begin{array}{cc}
-Z & p(X, Y) \\
Y p(X, Y) & -Z
\end{array}\right)
$$

A defining equation for the image of f is given by the determinant of the matrix λ, i.e.,

$$
\begin{aligned}
\varphi(X, Y, Z) & =\operatorname{det}(\lambda) \\
& =Z^{2}-Y p(X, Y)^{2}
\end{aligned}
$$

Example 3.2.

Consider H_{k} singularities, i.e., $f(x, y)=\left(x, y^{3}, x y-y^{3 k-1}\right)$. It can be show in a similar way in Example 3.1 that

$$
\lambda=\left(\begin{array}{ccc}
-Z & X & Y^{k-1} \\
Y^{k} & -Z & X \\
X Y & Y^{k} & -Z
\end{array}\right)
$$

A defining equation for the image of f is given by

$$
\begin{aligned}
\varphi(X, Y, Z) & =\operatorname{det}(\lambda) \\
& =Z^{3}-3 X Y^{k} Z-X^{3} Y-Y^{3 k-1}
\end{aligned}
$$

4. Tangent vector fields

Definition 4.1.

Let $\varphi:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ be a map-germ. We say that h is a quasihomogeneous or weighted homogeneous of type $\left(a_{1}, \ldots, a_{n} ; d_{1}, \ldots, d_{p}\right)$, with $a_{i}, d_{j} \in \mathbb{N}$ if the relation

$$
\varphi_{j}\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right)=t^{d_{j}} \varphi_{j}\left(x_{1}, \ldots, x_{n}\right)
$$

holds for each coordinate function φ_{j} of f for all $t \in(\mathbb{C}, 0)$. The number a_{i} is called the weight of the variable x_{i} and the number d_{j} is the degree of the function φ_{j}.

Example 4.1.

Consider the defining equation of S_{k} map-germ, i.e., $\varphi(X, Y, Z)=Z^{2}-Y\left(Y+X^{k+1}\right)^{2}$. Then we check that

$$
\begin{aligned}
\varphi\left(t^{2} X, t^{2(k+1)} Y, t^{3(k+1)} Z\right) & =\left(t^{3(k+1)} Z\right)^{2}-t^{2(k+1)} Y\left(t^{2(k+1)} Y+\left(t^{2} X\right)^{k+1}\right)^{2} \\
& =t^{6(k+1)} Z^{2}-t^{2(k+1)} \cdot t^{4(k+1)}\left(Y\left(Y+X^{k+1}\right)^{2}\right) \\
& =t^{6(k+1)} Z^{2}-t^{6(k+1)}\left(Y\left(Y+X^{k+1}\right)^{2}\right) \\
& =t^{6(k+1)}\left(Z^{2}-Y\left(Y+X^{k+1}\right)^{2}\right) \\
& =t^{6(k+1)} \varphi(X, Y, Z) .
\end{aligned}
$$

Hence, the defining equation of S_{k} map-germ is a quasihomogeneous of type $(2,2(k+1), 3(k+1) ; 6(k+1))$.

Let $\mathscr{G}=\mathrm{B}_{\mathrm{k}}, \mathrm{C}_{\mathrm{k}}, \mathrm{F}_{4}$ or H_{k}. Then, it can be show in a similar way that the defining equation of \mathscr{G} map-germ is a quasihomogeneous

Definition 4.2.

Suppose that V is a \mathbb{C}-analytic variety of $\left(\mathbb{C}^{p}, 0\right)$. We denote by $I(V)$ the ideal of germs vanishing on V. A vector field $\xi \in \theta_{p}$ is said to be tangent to V if

$$
\xi(I(V)) \subseteq I(V) .
$$

The module of such vector fields is denoted $\operatorname{Der}(-\log \mathrm{V})$.

Remark 4.1

1. When $I(V)=\left\langle\varphi_{1}, \ldots, \varphi_{q}\right\rangle$, we write

$$
\operatorname{Der}(-\log \mathrm{V})=\left\{\xi \in \theta_{p}: \exists g_{i j} \in \mathscr{O}_{p} \text { such that } \xi\left(\varphi_{j}\right)=\sum_{i=1}^{q} g_{i j} \varphi_{i}, \quad j=1, \ldots, q\right\} .
$$

Let $\varphi:\left(\mathbb{C}^{p}, 0\right) \rightarrow(\mathbb{C}, 0)$ be any defining equation for V, i.e, $V=\varphi^{-1}(0)$. Then we define a submodule of $\operatorname{Der}(-\log V)$ by

$$
\operatorname{Der}_{0}(-\log V)=\left\{\xi \in \theta_{p}: \xi(\varphi)=0\right\} .
$$

2. The module $\operatorname{Der}(-\log V)$ depends on the choice of equation for V, and not only on V itself. In [11], Damon shows that this module is a finitely generated \mathscr{O}_{p}-module.
3. Let X_{1}, \ldots, X_{p} denote the standard coordinates on \mathbb{C}^{p}. Then the Euler vector field denoted by ξ_{e} is given by

$$
\xi_{e}=\sum_{i=1}^{p} a_{i} X_{i} \frac{\partial}{\partial X} .
$$

Example 4.2.

From Example 4.1 we have $a_{1}=2, a_{2}=2(k+1)$ and $a_{3}=3(k+1)$. Then we can see that the Euler vector field $\xi_{e}=$ $2 X \frac{\partial}{\partial X}+2(k+1) Y \frac{\partial}{\partial Y}+3(k+1) Z \frac{\partial}{\partial Z}$ is tangent to the image of S_{k} as follows:

$$
\begin{aligned}
\xi_{e}(\varphi) & =2 X \frac{\partial \varphi}{\partial X}+2(k+1) Y \frac{\partial \varphi}{\partial Y}+3(k+1) Z \frac{\partial \varphi}{\partial Z} \\
& =2 X\left(-2(k+1) X^{k} Y^{2}-(2 k+2) X^{2 k+1} Y\right)+2(k+1) Y\left(-3 Y^{2}-4 X^{k+1} Y-X^{2 k+2}\right)+3(k+1) Z(2 Z) \\
& =6(k+1) \varphi .
\end{aligned}
$$

I.e., $\xi_{e} \in \operatorname{Der}(-\log \mathrm{V})$ where V is the image of S_{k}.

Theorem 4.1 ([13]).
Let $\varphi:\left(\mathbb{C}^{p}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a quasihomogeneous map-germ and $V=\varphi^{-1}(0)$. Then
$\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}\right\rangle \oplus \operatorname{Der}_{0}(-\log \mathrm{V})$.

That is, we can conclude that one vector field is Euler and the other annihilate the defining equation.

Remark 4.2.

Let $f, g:\left(\mathbb{C}^{n}, 0\right) \rightarrow\left(\mathbb{C}^{p}, 0\right)$ be two smooth map-germs with their discriminants V and W, respectively. If f and g are \mathscr{A}-equivalent with $f=\psi \circ g \circ \varphi$, then $\psi_{*}(\operatorname{Der}(-\log V))=\operatorname{Der}(-\log \mathrm{W})$ where $\psi_{*}(\xi)=d \psi . \xi \circ \psi^{-1}$ (see [5] and [10]).

From Theorem 2.1 and Remark 4.2 if we need to find the module tangent vector fields on the discriminant of a map-germ $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$, then we need to find the module tangent vector fields on Mond singularities only.

Proposition 4.1.

Let $\varphi:\left(\mathbb{C}^{p}, 0\right) \rightarrow(\mathbb{C}, 0)$ be a map-germ. Consider the mapping

$$
\Phi: \mathscr{O}_{p}^{p} \rightarrow \mathscr{O}_{p}
$$

defined by

$$
\Phi(\lambda)=\Phi\left(\lambda_{1}, \ldots, \lambda_{p}\right)=\sum_{i=1}^{p} \lambda_{i} \frac{\partial \varphi}{\partial x_{i}},
$$

where $\lambda_{1}, \ldots, \lambda_{p}$ are the components of λ. Then $\operatorname{ker}(\Phi)$ is spanned as an \mathscr{O}_{p}-module by the set of mappings

$$
\left\{\gamma_{i j} \in \mathscr{O}_{p}^{p} \left\lvert\, \gamma_{i j}=\frac{\partial \varphi}{\partial x_{i}} \mathrm{e}_{j}-\frac{\partial \varphi}{\partial x_{j}} \mathrm{e}_{i}\right., \quad 1 \leq i<j \leq p\right\},
$$

where $x=\left(x_{1}, \ldots, x_{p}\right)$ and e_{k} is the vector in \mathbb{C}^{n} with 1 in the kth position and zeros elsewhere.

Proof. We the result by induction on p. For $p=1, \operatorname{ker}(\Phi)=\left\langle\frac{\partial \varphi}{\partial x_{1}} \mathrm{e}_{1}\right\rangle$, and the hypothesis is satisfied. For $p=2$, $\operatorname{ker}(\Phi)=\left\langle\left(\lambda_{1}, \lambda_{2}\right) \left\lvert\, \lambda_{1} \frac{\partial \varphi}{\partial x_{1}}+\lambda_{2} \frac{\partial \varphi}{\partial x_{2}}=0\right.\right\rangle$ if and only if $\lambda_{1}=-\frac{\partial \varphi}{\partial x_{2}}$ and $\lambda_{2}=\frac{\partial \varphi}{\partial x_{1}}$ and the hypothesis is satisfied.
Now suppose the result holds for $p=k$, i.e.,

$$
\operatorname{ker}(\Phi)=\left\langle\gamma_{i j} \in \mathscr{O}_{k}^{k} \left\lvert\, \gamma_{i j}=\frac{\partial \varphi}{\partial x_{i}} \mathrm{e}_{j}-\frac{\partial \varphi}{\partial x_{j}} \mathrm{e}_{i}\right., \quad 1 \leq i<j \leq k\right\rangle .
$$

Consider $\lambda=\left(\lambda_{1}, \ldots, \lambda_{k+1}\right)$ with $\lambda \in \operatorname{ker}(\Phi)$. If $\lambda_{k+1}=0$, then λ can be viewed as a linear combination of the set $\left\{\gamma_{i j} \in \mathscr{O}_{k}^{k} \left\lvert\, \gamma_{i j}=\frac{\partial \varphi}{\partial x_{i}} \mathrm{e}_{j}-\frac{\partial \varphi}{\partial x_{j}} \mathrm{e}_{i}\right., \quad 1 \leq i<j \leq k\right\}$ by hypothesis. Otherwise, let $\tilde{\lambda}^{\prime}=\left(\widetilde{\lambda}_{1}, \ldots, \widetilde{\lambda}_{k+1}\right)$. We can find an appropriate $\tilde{\lambda} \in \operatorname{ker}(\Phi)$ in the form of $\frac{\partial \varphi}{\partial x_{i}} \mathrm{e}_{k+1}-\frac{\partial \varphi}{\partial x_{k+1}} \mathrm{e}_{i}$ and then $\lambda=a \widetilde{\lambda}+\left(\lambda_{1}, \ldots, \lambda_{k}, 0\right)$. Therefore,

$$
\lambda \in\left\langle\gamma_{i j} \in \mathscr{O}_{k+1}^{k+1} \left\lvert\, \gamma_{i j}=\frac{\partial \varphi}{\partial x_{i}} \mathrm{e}_{j}-\frac{\partial \varphi}{\partial x_{j}} \mathrm{e}_{i}\right., \quad 1 \leq i<j \leq k+1\right\rangle .
$$

The result follows.

5. Vector fields on S_{k} singularities

Theorem 5.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a S_{k}-map germ, i.e., a map-germ of the form $f(x, y)=\left(x, y^{2}, y^{3}+x^{k+1} y\right)$. Then

$$
\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}\right\rangle
$$

where

$$
\begin{aligned}
& \xi_{e}=2 X \frac{\partial}{\partial X}+2(k+1) Y \frac{\partial}{\partial Y}+3(k+1) Z \frac{\partial}{\partial Z} \\
& \xi_{1}=3 Z \frac{\partial}{\partial X}-2(k+1) X^{k} Y \frac{\partial}{\partial Y}-(k+1)\left(X^{k+1} Y+X^{3 k+2}\right) \frac{\partial}{\partial Z} . \\
& \xi_{2}=2 Z \frac{\partial}{\partial Y}+\left(3 Y^{2}+4 X^{k+1} Y+X^{2 k+2}\right) \frac{\partial}{\partial Z} \\
& \xi_{3}=\left(3 Y+X^{k+1}\right) \frac{\partial}{\partial X}-2(k+1) X^{k} Y \frac{\partial}{\partial Y}
\end{aligned}
$$

Proof. Let V be the image of S_{k}. Then, we have $p\left(x, y^{2}\right)=y^{2}+x^{k+1}$ and the defining equation of V is given by

$$
\varphi(X, Y, Z)=Z^{2}-Y\left(Y+X^{k+1}\right)^{2}
$$

From Example 4.1 we have $\xi_{e}(\varphi)=6(k+1) h$ and

$$
\begin{aligned}
\xi_{1}(\varphi)= & 3 Z \frac{\partial \varphi}{\partial X}-2(k+1) X^{k} Y \frac{\partial \varphi}{\partial Y}-(k+1)\left(X^{k+1} Y+X^{3 k+2}\right) \frac{\partial \varphi}{\partial Z} \\
= & 3 Z\left(-2(k+1) X^{k} Y^{2}-(2 k+2) X^{2 k+1} Y\right)-2(k+1) X^{k} Y\left(-3 Y^{2}-4 X^{k+1} Y-X^{2 k+2}\right) \\
& \quad-(k+1)\left(X^{k+1} Y+X^{3 k+2}\right)(2 Z) \\
= & 0
\end{aligned}
$$

In the same way, we can see that $\xi_{2}(\varphi)=0$ and $\xi_{3}(\varphi)=0$. Therefore, $\xi_{e}, \xi_{1}, \xi_{2}$ and ξ_{3} are certainly tangent to V. If η is a vector field tangent to the image of S_{k}, then $\eta(\varphi)=g h$ for some polynomial g. Therefore,

$$
\left(\eta-\frac{1}{6(k+1)} g \xi_{e}\right)(\varphi)=\eta(\varphi)-\left(\frac{1}{6(k+1)} g \xi_{e}\right)(\varphi)=g \varphi-g \varphi=0 .
$$

We need to check that ξ_{2}, ξ_{3} and ξ_{4} generate all vector fields $\zeta=\zeta_{1} \frac{\partial}{\partial X}+\zeta_{2} \frac{\partial}{\partial Y}+\zeta_{3} \frac{\partial}{\partial Z}$ such that $\zeta \in \operatorname{Der}(-\log \mathrm{V})$, i.e., we solve

$$
\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}=0
$$

Put

$$
\Phi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}
$$

Now Proposition 4.1 implies that $\operatorname{ker}(\Phi)=\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle$ where

$$
\begin{aligned}
\eta_{1} & =\left(3 Y^{2}+4 X^{k+1} Y+X^{2 k+2}\right) \frac{\partial}{\partial X}-\left(2(k+1) X^{k} Y^{2}+(2 k+2) X^{2 k+1} Y\right) \frac{\partial}{\partial Y} \\
& =\left(Y+X^{k+1}\right) \xi_{3} \\
\eta_{2} & =-2 Z \frac{\partial}{\partial X}-\left(2(k+1) X^{k} Y^{2}+(2 k+2) X^{2 k+1} Y\right) \frac{\partial}{\partial Z} \\
& =\frac{1}{3}\left(\xi_{1}+(k+1) X^{k} \xi_{2}\right) \\
\eta_{3} & =-2 Z \frac{\partial}{\partial Y}-\left(3 Y^{2}+4 X^{k+1} Y+X^{2 k+2}\right) \frac{\partial}{\partial Z} \\
& =-\xi_{2}
\end{aligned}
$$

For all $\zeta \in \operatorname{Der}_{0}(-\log V)$, we have $\zeta \in \operatorname{ker}(\Phi)$. We can see that ζ is a linear combination of the form $g_{1} \xi_{1}+g_{2} \xi_{2}+g_{3} \xi_{3}$ with $g_{i} \in \mathscr{O}_{3}$ for $i=1,2,3$.

We can see that the tangent vector fields on S_{k} singularities agree with the calculation in [10], Section 6.8.

6. Vector fields on B_{k} singularities

Theorem 6.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a B_{k}-map germ with $k \geq 2$, i.e., a map-germ of the form $f(x, y)=\left(x, y^{2}, x^{2} y+y^{2 k+1}\right)$. Then

$$
\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}\right\rangle
$$

where

$$
\begin{aligned}
& \xi_{e}=k X \frac{\partial}{\partial X}+2 Y \frac{\partial}{\partial Y}+(2 k+1) Z \frac{\partial}{\partial Z} \\
& \xi_{1}=Z \frac{\partial}{\partial X}+\left(2 X^{3} Y+2 X Y^{k+1}\right) \frac{\partial}{\partial Z} \\
& \xi_{2}=2 Z \frac{\partial}{\partial Y}+\left(X^{4}+(2 k+2) X^{2} Y^{k}+(2 k+1) Y^{2 k}\right) \frac{\partial}{\partial Z} \\
& \xi_{3}=\left(X^{2}+(2 k+1) Y^{k}\right) \frac{\partial}{\partial X}-4 X Y \frac{\partial}{\partial Y}
\end{aligned}
$$

Proof. Let V be the image of B_{k}. Then, we have $p\left(x, y^{2}\right)=x^{2}+y^{2 k}$ and the defining equation of V is given by

$$
\varphi(X, Y, Z)=Z^{2}-Y\left(X^{2}+Y^{k}\right)^{2}
$$

We see that

$$
\begin{align*}
\xi_{e}(\varphi) & =k X \frac{\partial \varphi}{\partial X}+2 Y \frac{\partial \varphi}{\partial Y}+(2 k+1) Z \frac{\partial \varphi}{\partial Z} \\
& =k X\left(-4 X^{3} Y-4 X Y^{k+1}\right)+2 Y\left(-X^{4}-2(k+1) X^{2} Y^{k}-(2 k+1) Y^{2 k}\right)+(2 k+1) Z(2 Z) \\
& =2(2 k+1) h . \\
\xi_{1}(\varphi) & =2 Z \frac{\partial \varphi}{\partial Y}-2 Y \frac{\partial \varphi}{\partial Z} \\
& =2 Z\left(-X^{4}-2(k+1) X^{2} Y^{k}-(2 k+1) Y^{2 k}\right)-\left(-X^{4}-2(k+1) X^{2} Y^{k}-(2 k+1) Y^{2 k}\right)(2 Z)= \tag{0.}
\end{align*}
$$

In the same way, we can see that $\xi_{2}(\varphi)=0$ and $\xi_{3}(\varphi)=0$. Therefore, $\xi_{e}, \xi_{1}, \xi_{2}$ and ξ_{3} are certainly tangent to V. If η is a vector field tangent to the image of B_{k}, then $\eta(h)=g h$ for some polynomial g. Therefore,

$$
\left(\eta-\frac{1}{2(2 k+1)} g \xi_{1}\right)(\varphi)=\eta(\varphi)-\left(\frac{1}{2(2 k+1)} g \xi_{1}\right)(\varphi)=g \varphi-g \varphi=0
$$

We need to check that ξ_{2}, ξ_{3} and ξ_{4} generate all vector fields $\zeta=\left(\zeta_{1}, \zeta_{3}, \zeta_{3}\right)$ such that $\zeta \in \operatorname{Der}_{0}(-\log \mathrm{V})$, i.e., we solve

$$
\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}=0
$$

Put

$$
\Phi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z} .
$$

Now Proposition 4.1 implies that $\operatorname{ker}(\Phi)$ is spanned by

$$
\begin{aligned}
\eta_{1} & =\left(X^{4}+2(k+1) X^{2} Y^{k}+(2 k+1) Y^{2 k}\right) \frac{\partial}{\partial X}-\left(4 X^{3} Y+4 X Y^{k+1}\right) \frac{\partial}{\partial Y} \\
& =\left(X^{2}+Y^{k}\right) \xi_{3} . \\
\eta_{2} & =-2 Z \frac{\partial}{\partial X}-\left(4 X^{3} Y+4 X Y^{k+1}\right) \frac{\partial}{\partial Z} \\
& =-\frac{1}{2} \xi_{1} . \\
\eta_{3} & =-2 Z \frac{\partial}{\partial Y}-\left(X^{4}+2(k+1) X^{2} Y^{k}+(2 k+1) Y^{2 k}\right) \frac{\partial}{\partial Z} \\
& =-\xi_{2} .
\end{aligned}
$$

7. Vector fields on C_{k} singularities

Theorem 7.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a C_{k}-map germ with $k \geq 3$, i.e., a map-germ of the form $f(x, y)=\left(x, y^{2}, x y^{3}+x^{k} y\right)$. Then

$$
\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}\right\rangle
$$

where

$$
\begin{aligned}
& \xi_{e}=2 X \frac{\partial}{\partial X}+2(k-1) Y \frac{\partial}{\partial Y}+(3 k-1) Z \frac{\partial}{\partial Z} \\
& \xi_{1}=Z \frac{\partial}{\partial X}+\left(X Y^{3}+(k+1) X^{k} Y^{2}+k X^{2 k-1} Y\right) \frac{\partial}{\partial Z} \\
& \xi_{2}=2 Z \frac{\partial}{\partial Y}+\left(3 X^{2} Y^{2}+4 X^{k+1} y+X^{2 k}\right) \frac{\partial}{\partial Z} \\
& \xi_{3}=\left(3 X Y+X^{k}\right) \frac{\partial}{\partial X}-\left(2 Y^{2}+2 k X^{k-1} Y\right) \frac{\partial}{\partial Y} .
\end{aligned}
$$

Proof. Let V be the image of C_{k}. Then, we have $p\left(x, y^{2}\right)=x y^{2}+x^{k}$ and the defining equation of V is given by

$$
\varphi(X, Y, Z)=Z^{2}-Y\left(X Y+X^{k}\right)^{2}
$$

We see that

$$
\begin{aligned}
\xi_{1}(\varphi) & =2 X \frac{\partial \varphi}{\partial X}+2(k-1) Y \frac{\partial \varphi}{\partial Y}+(3 k-1) Z \frac{\partial \varphi}{\partial Z} \\
& =2 X\left(-2 X Y^{3}-2(k+1) X^{k} Y^{2}-2 k X^{2 k-1} Y\right)+2(k-1) Y\left(-3 X^{2} Y^{2}-4 X^{k+1} Y-X^{2 k}\right)+(3 k-1) Z(2 Z) \\
& =2(3 k-1) \varphi . \\
\xi_{1}(\varphi) & =2 Z \frac{\partial \varphi}{\partial Y}-2 Y \frac{\partial \varphi}{\partial Z} \\
& =2 Z\left(-3 X^{2} Y^{2}-4 X^{k+1} Y-X^{2 k}\right)+\left(3 X^{2} Y^{2}+4 X^{k+1} Y+X^{2 k}\right)(2 Z) \\
& =0
\end{aligned}
$$

In the same way, we can see that $\xi_{2}(\varphi)=0$ and $\xi_{3}(\varphi)=0$. Therefore, $\xi_{e}, \xi_{1}, \xi_{2}$ and ξ_{3} are certainly tangent to V. If η is a vector field tangent to the image of C_{k}, then $\eta(\varphi)=g \varphi$ for some polynomial g. Therefore,

$$
\left(\eta-\frac{1}{2(3 k-1)} g \xi_{1}\right)(\varphi)=\eta(\varphi)-\left(\frac{1}{2(3 k-1)} g \xi_{1}\right)(\varphi)=g \varphi-g \varphi=0 .
$$

We need to check that ξ_{2}, ξ_{3} and ξ_{4} generate all vector fields $\zeta=\left(\zeta_{1}, \zeta_{3}, \zeta_{3}\right)$ such that $\zeta \in \operatorname{Der}_{0}(-\log \mathrm{V})$, i.e., we solve

$$
\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}=0 .
$$

Put

$$
\Phi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}
$$

Now Proposition 4.1 implies that $\operatorname{ker}(\Phi)=\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle$ where

$$
\begin{aligned}
\eta_{1} & =\left(3 X^{2} Y^{2}+4 X^{k+1} Y+X^{2 k}\right) \frac{\partial}{\partial X}-2\left(X Y^{3}+(k+1) X^{k} Y+k X^{2 k-1} Y\right) \frac{\partial}{\partial Y} \\
& =\left(X Y+X^{k}\right) \xi_{3} \\
\eta_{2} & =-2 Z \frac{\partial}{\partial X}-2\left(X Y^{3}+(k+1) X^{k} Y+k X^{2 k-1} Y\right) \frac{\partial}{\partial Z} \\
& =-\frac{1}{2} \xi_{1} \\
\eta_{3} & =-2 Z \frac{\partial}{\partial Y}-\left(3 X^{2} Y^{2}+4 X^{k+1} Y+X^{2 k}\right) \frac{\partial}{\partial Z} \\
& =-\xi_{2}
\end{aligned}
$$

8. Vector fields on F_{4} singularities

Theorem 8.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a F_{4}-map germ, i.e., a map-germ of the form $f(x, y)=\left(x, y^{2}, x^{3} y+y^{5}\right)$. Then

$$
\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}\right\rangle
$$

where

$$
\begin{aligned}
& \xi_{e}=4 X \frac{\partial}{\partial X}+6(k-1) Y \frac{\partial}{\partial Y}+15 Z \frac{\partial}{\partial Z} \\
& \xi_{1}=Z \frac{\partial}{\partial X}+3\left(X^{2} Y^{3}+X^{5} Y\right) \frac{\partial}{\partial Z} \\
& \xi_{2}=2 Z \frac{\partial}{\partial Y}+\left(5 Y^{4}+6 X^{3} Y^{2}+X^{6}\right) \frac{\partial}{\partial Z} \\
& \xi_{3}=\left(5 Y^{2}+X^{3}\right) \frac{\partial}{\partial X}-6 X^{2} Y \frac{\partial}{\partial Y} .
\end{aligned}
$$

Proof. Let V be the image of F_{4}. Then, we have $p\left(x, y^{2}\right)=x^{3}+y^{4}$ and the defining equation of V is given by

$$
\varphi(X, Y, Z)=Z^{2}-Y\left(X^{3}+Y^{2}\right)^{2}
$$

We see that

$$
\begin{aligned}
\xi_{e}(\varphi) & =4 X \frac{\partial \varphi}{\partial X}+6 Y \frac{\partial \varphi}{\partial Y}+15 Z \frac{\partial \varphi}{\partial Z} \\
& =4 X\left(-6 X^{5} Y-6 X^{2} Y^{3}\right)+6 Y\left(-X^{6}-6 X^{3} Y^{2}-5 Y^{4}\right)+15 Z(2 Z) \\
& =30 \varphi \\
\xi_{1}(\varphi) & =2 Z \frac{\partial \varphi}{\partial Y}+\left(5 Y^{4}+4 X^{3} Y^{2}+X^{6}\right) \frac{\partial \varphi}{\partial Z} \\
& =2 Z\left(-X^{6}-6 X^{3} Y^{2}-5 Y^{4}\right)+\left(5 Y^{4}+4 X^{3} Y^{2}+X^{6}\right)(2 Z) \\
& =0
\end{aligned}
$$

In the same way, we can see that $\xi_{2}(\varphi)=0$ and $\xi_{3}(\varphi)=0$. Therefore, $\xi_{e}, \xi_{1}, \xi_{2}$ and ξ_{3} are certainly tangent to V. If η is a vector field tangent to the image of F_{4}, then $\eta(\varphi)=g \varphi$ for some polynomial g. Therefore,

$$
\left(\eta-\frac{1}{2(3 k-1)} g \xi_{1}\right)(\varphi)=\eta(\varphi)-\left(\frac{1}{2(3 k-1)} g \xi_{1}\right)(\varphi)=g \varphi-g \varphi=0
$$

We need to check that ξ_{2}, ξ_{3} and ξ_{4} generate all vector fields $\zeta=\left(\zeta_{1}, \zeta_{3}, \zeta_{3}\right)$ such that $\zeta \in \operatorname{Der}_{0}(-\log V)$, i.e., we solve

$$
\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}=0
$$

Put

$$
\Phi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z} .
$$

Now Proposition 4.1 implies that $\operatorname{ker}(\Phi)=\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle$ where

$$
\begin{aligned}
\eta_{1} & =\left(X^{6}+6 X^{3} Y^{2}+5 Y^{4}\right) \frac{\partial}{\partial X}-6\left(X^{5} Y+X^{2} Y^{3}\right) \frac{\partial}{\partial Y} \\
& =\left(X^{3}+Y^{2}\right) \xi_{3} . \\
\eta_{2} & =-2 Z \frac{\partial}{\partial X}-6\left(X^{5} Y+X^{2} Y^{3}\right) \frac{\partial}{\partial Z} \\
& =-\frac{1}{2} \xi_{1} . \\
\eta_{3} & =-2 Z \frac{\partial}{\partial Y}-\left(X^{6}+6 X^{3} Y^{2}+5 Y^{4}\right) \frac{\partial}{\partial Z} \\
& =-\xi_{2} .
\end{aligned}
$$

9. Vector fields on H_{k} singularities

Theorem 9.1.

Let $f:\left(\mathbb{C}^{2}, 0\right) \rightarrow\left(\mathbb{C}^{3}, 0\right)$ be a H_{k}-map germ with $k \geq 3$, i.e., a map-germ of the form $f(x, y)=\left(x, y^{3}, x y+y^{3 k-1}\right)$. Then $\operatorname{Der}(-\log \mathrm{V})=\left\langle\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}, \xi_{4}\right\rangle$,
where

$$
\begin{aligned}
& \xi_{e}=(3 k-2) X \frac{\partial}{\partial X}+3 Y \frac{\partial}{\partial Y}+(3 k-1) Z \frac{\partial}{\partial Z} \\
& \xi_{1}=\left(X^{2}+(3 k-1) Y^{k-1} Z\right) \frac{\partial}{\partial X}-3 X Y \frac{\partial}{\partial Y}-(3 k-1) Y^{2 k-1} \frac{\partial}{\partial Z} \\
& \xi_{2}=\left(X Z+(3 k-1) Y^{2 k-1}\right) \frac{\partial}{\partial X}-3 Y Z \frac{\partial}{\partial Y}-(3 k-1) X Y^{k} \frac{\partial}{\partial Z} \\
& \xi_{3}=-\left(X^{2} Y^{k-1}+(3 k-1) y Y 2 k-2 Z\right) \frac{\partial}{\partial X}+3 Z^{2} \frac{\partial}{\partial Y}+\left(X^{3}+3 k X Y^{k-1} Z\right) \frac{\partial}{\partial Z} \\
& \xi_{4}=\left(Z^{2}-X Y^{k}\right) \frac{\partial}{\partial X}+\left(X^{2} Y+Y^{k} Z\right) \frac{\partial}{\partial Z}
\end{aligned}
$$

Proof. Let V be the image of H_{k}. Then from Example 3.2 the defining equation of V is given by

$$
\varphi(X, Y, Z)=Z^{3}-3 X Y^{k} Z-X^{3} Y-Y^{3 k-1}
$$

We can see that

$$
\begin{aligned}
\xi_{e}(\varphi)= & (3 k-2) X \frac{\partial \varphi}{\partial X}+3 Y \frac{\partial \varphi}{\partial Y}+(3 k-1) Z \frac{\partial \varphi}{\partial Z} \\
& =(3 k-2) X\left(13 Y^{k} Z+3 X^{2} Y\right)+3 Y\left(-3 k Y^{k-1} Z-X^{3}-(3 k-1) Y^{3 k-2}\right)+(3 k-1) Z\left(3 Z^{2}-3 X Y^{k}\right) \\
& =3(3 k-1) \varphi . \\
\xi_{1}(\varphi)= & \left(X^{2}+(3 k-1) Y^{k-1} Z\right) \frac{\partial \varphi}{\partial X}-3 Y \frac{\partial \varphi}{\partial Y}-(3 k-1) Z \frac{\partial \varphi}{\partial Z} \\
& =\left(X^{2}+(3 k-1) Y^{k-1} Z\right)\left(13 Y^{k} Z-3 X^{2} Y\right)-3 X Y\left(-3 k Y^{k-1} Z-X^{3}-(3 k-1) Y^{3 k-2}\right) \\
& \quad-\left((3 k-1) Y^{2 k-1}\right)\left(3 Z^{2}-3 X Y^{k}\right) \\
= & 0 .
\end{aligned}
$$

In the same way, we can see that $\xi_{2}(\varphi)=0, \xi_{3}(\varphi)=0$ and $\xi_{4}(\varphi)=0$. Therefore, $\xi_{e}, \xi_{1}, \xi_{2}, \xi_{3}$ and ξ_{4} are certainly tangent to V. If η is a vector field tangent to the image of H_{k}, then $\eta(\varphi)=g \varphi$ for some polynomial g. Therefore,

$$
\left(\eta+\frac{1}{3(3 k-1)} g \xi_{1}\right)(\varphi)=\eta(\varphi)+\left(\frac{1}{3(3 k-1)} g \xi_{1}\right)(\varphi)=g \varphi-g \varphi=0
$$

We need to check that $\xi_{2}, \xi_{3}, \xi_{4}$ and ξ_{5} generate all vector fields $\zeta=\left(\zeta_{1}, \zeta_{3}, \zeta_{3}\right)$ such that $\zeta \in \operatorname{Der}_{0}(-\log \mathrm{V})$, i.e., we solve

$$
\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}=0
$$

Put

$$
\Phi\left(\zeta_{1}, \zeta_{2}, \zeta_{3}\right)=\zeta_{1} \frac{\partial \varphi}{\partial X}+\zeta_{2} \frac{\partial \varphi}{\partial Y}+\zeta_{3} \frac{\partial \varphi}{\partial Z}
$$

Now Proposition 4.1 implies that $\operatorname{ker}(\Phi)=\left\langle\eta_{1}, \eta_{2}, \eta_{3}\right\rangle$ where

$$
\begin{aligned}
\eta_{1} & =\left(3 k Y^{k-1} Z+X^{3}+(3 k-1) Y^{3 k-2}\right) \frac{\partial}{\partial X}-3\left(Y^{k} z+X^{2} Y\right) \frac{\partial}{\partial Y} \\
& =X \xi_{1}+Y^{k-1} \xi_{2} . \\
\eta_{2} & =\left(-3 Z^{2}+3 X Y^{k}\right) \frac{\partial}{\partial X}-3\left(Y^{k} z+X^{2} Y\right) \frac{\partial}{\partial Z} \\
& =-\frac{1}{3} \xi_{4} . \\
\eta_{3} & =\left(-3 Z^{2}+3 X Y^{k}\right) \frac{\partial}{\partial Y}-\left(3 k Y^{k-1} Z+X^{3}+(3 k-1) Y^{3 k-2}\right) \frac{\partial}{\partial Z} \\
& =-\left(\xi_{3}+Y^{k-1} \xi_{1}\right) .
\end{aligned}
$$

Remark 9.1.

1. In [10], they show that the minimal number of generators for $\operatorname{Der}(-\log V)$ where V be the image of B_{k}, C_{k}, F_{4} is less than or equal to 5 and of S_{k} map-germ is always 4 . We can see that from our theorem above the minimal number of generators for $\operatorname{Der}(-\log \mathrm{V})$ is exactly equal to 4 . In this case all map-germs admit one-parameter stable unfolding.
2. We have primary results for map-germs admit two-parameter stable unfolding and we hope to complete these results in a subsequent paper.

References

[1] V.I. Arnol'd, Wave front evolution and equivariant Morse lemma, Comm. Pure Appl. Math. 29 (1976) 557-582.
[2] K. Saito, Theory of logarithmic differential forms and logarithmic vector fields, J. Fac. Sci. Univ. Tokyo. 27 (1980) 265-291.
[3] J.W. Bruce, Functions on Discriminants, J. London Math. Soc. 3 (1984) 551-567.
[4] J.W. Bruce, R.M. Roberts, Critical points of functions on analytic varieties, Topology 27 (1988) 57-90.
[5] J.W. Bruce, A.A. du Plessis, L.C. Wilson, Discriminants and liftable vector fields, J. Algebraic Geometry 3 (1994) 725-753.
[6] J.W. Bruce, N.P. Kirk and A.A. du Plessis, Complete transversals and the classifcation of singularities , Nonlinearity 10 (1997) 253-275.
[7] J.W. Bruce, J.M. West, Functions on cross-caps, Math. Proc. Cambridge Philos. Soc. 123 (1998) 19-39.
[8] M.S.J. Al-Bahadeli, Classification of Real and Complex Analytic Map-Germs on the Generalized Cross Cap, PhD thesis, University of Leeds, 2012.
[9] K. Houston, D. Littlestone, Vector fields liftable over corank 1 stable maps, preprint 2009. arXiv:0905.0556v1 [math.DG]
[10] T. Nishimura, R. Oset Sinha, M.A.S. Ruas, R. Wik Atique, Liftable vector fields over corank one multigerms, Math. Ann. Octoper (2015) 1-39.
[11] J. Damon, Deformations of sections of singularities and Gorenstein surface singularities, Amer. J. Math. 109 (1987) 695-722.
[12] J. Damon, \mathscr{A}-equivalence and the equivalence of sections of images and discriminants, in Singularity Theory and its Applications, SLNM 1462, D. Mond, J. Montaldi (Eds.), Springer Verlag Berlin, (1991) 93-121.
[13] J. Damon, D. Mond, \mathscr{A}-codimension and vanishing topology of discriminants, Invent. Math. 106 (1991), 217-242.
[14] D. Mond, On the classification of germs of maps from \mathbb{R}^{2} to \mathbb{R}^{3}, Proc. London Math. Soc. 50 (1985) 333-369.
[15] D. Mond and R. Pellikaan, Fitting ideals and Multiple points of analytic mappings, Algebraic Geometry and complex analysis (Pátzcuaro, 1987), Lecture Notes in Mathematics, Springer-Berlin vol. 1414 (1990) 107-161.

Submit your manuscript to IJAAMM and benefit from:

- Regorous peer review
- Immediate publication on acceptance
- Open access: Articles freely available online
- High visibility within the field
- Retaining the copyright to your article

Submit your next manuscript at - editor.ijaamm@gmail.com

[^0]: * E-mail address: m.s.jbara@gmail.com

