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Abstract: In this paper we discuss the efficiency of the sub-equation method to construct the exact analytical solutions of the
nonlinear time-fractional equations. The fractional sub-equation method is considered for application to the space-
time fractional Telegraph and Burgers-Huxley equations. These solutions include the generalized trigonometric func-
tion solutions, generalized hyperbolic function solutions, and rational function solutions, which they are benefit to
further understand the concepts of the complicated nonlinear physical phenomena and fractional differential equa-
tions. In this work we use of Mathematica for computations and programming.
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1. Introduction

The ordinary and partial fractional differential equations(FDEs) have been applied in many fields such as signal
processing, engineering, chemistry, control theory, biology, etc in recent years [1–3]. Many physical phenomena can
be modeled using fractional differential equations. Investigation and Searching of the exact travelling wave solutions
for nonlinear FDEs plays an important role in the study of nonlinear physical phenomena. Finding exact solutions of
most of the fractional PDEs is not easy, but constructing and searching exact solutions for nonlinear fractional partial
differential equations is a continuing investigation. Many powerful methods for obtaining exact solutions of nonlin-
ear FDEs have been presented such as, Hirotas bilinear method [4], Fourier transform, Laplace transform[5], Adomian
decomposition method [6], homotopy perturbation method [7], variational iteration method [8], Bäcklund transfor-
mation [9],Fractional Lie group method [10] , application of eigenfunctions method [11] and so on. In this paper
the fractional sub-equation method will be employed to find the exact solutions for nonlinear FDEs. The fractional
sub-equation method is a very powerful mathematical technique for finding exact solutions of nonlinear ordinary
differential equations. In this method the exact solutions of the nonlinear FDEs can be expressed as a polynomial and
the degree of the this polynomial can be determined by considering the homogeneous balance between the highest
order derivatives and nonlinear terms in the considered equation. The aim of this paper is to find exact solutions of
the space-time fractional Telegraph and Burgers-Huxley equations using the fractional sub-equation method. In this
letter we use this method to solve the following two FDEs :
(I) The form of space-time fractional Telegraph equation [12]

D2α
t u −D2α

x u +Dα
t u +mu +nu3 = 0. (1)
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(II) The form of space-time fractional of Burgers-Huxley equation[13]

Dα
t u +D2α

x u +3uDα
x u + r u +u2 +u3 = 0. (2)

The present Letter is motivated by the desire to propose a fractional sub-equation method to construct exact analyt-
ical solutions of nonlinear fractional differential equations with the Caputo fractional derivative of order α is defined
by the expression [1]

f (α)
− (x) = 1

Γ(1−α)

∫ x

−∞
f ′(ξ)

(x −ξ)α
dξ, (3)

for f : R −→ R. The rest of this Letter is organized as follows. In Section 2, we describe the fractional sub-equation
method for solving fractional differential equations. In Section 3, we give two applications of the proposed method to
nonlinear equations. In Section 4, some conclusions are given.

2. Fractional sub-equation method for finding the exact solutions of nonlinear FDEs

In this section, we outline the main steps of this method for solving fractional differential equations. For a given
fractional differential equation in two variables x and t we have

p
(
u,ux ,ut ,Dα

t u,Dα
x u, . . .

)= 0, 0 <α< 1, (4)

where Dα
t u and Dα

x u are Caputo fractional derivatives of u, u = u(x, t ) is an unknown function, P is a polynomial
in u and its various partial derivatives, in which the highest order derivatives and nonlinear terms are involved.
To determine u explicitly, we take the following four steps [14]:
Step1. By using the traveling wave transformation:

u(x, t ) = u(ξ), ξ= kx + ct , (5)

where c and k are constants to be determined later, the FDE (4) is reduced to the following nonlinear fractional ordi-
nary differential equation (ODE) for u = u(ξ):

p
(
u,ku′,cu′,kαDα

ξ u,cαDα
ξ u, . . .

)
= 0, 0 <α< 1, (6)

because

[v(ax +b)](α) = u(α)(x) = 1

Γ(1−α)

∫ x

−∞
u′(ξ)

(x −ξ)α
dξ

= 1

Γ(1−α)

∫ x

−∞
v ′(aξ+b)

(x −ξ)α
adξ

= aα
1

Γ(1−α)

∫ ax+b

−∞
v ′(z)

(ax +b − z)α
d z = aαv (α)

− (ax +b). (7)

Where a > 0, b ∈R.
Step2. Suppose the reduced equation obtained in Step 1 has a solution in the form

u(ξ) =
n∑

i=0
aiϕ

i , (8)

where ai (i = 0,1,2, · · · ,n) are constants to be determined later, n is a positive integer determined by balancing the
highest order derivatives and nonlinear terms in Eq. (4) or Eq. (6) (see Ref. [15] for details), and ϕ=ϕ(ξ) satisfies the
following fractional Riccati equation:

Dα
ξϕ=σ+ϕ2, 0 <α≤ 1. (9)

The solution of this equation is [16]:

ϕ(ξ) =



−p−σ t anhα(
p−σξ), σ< 0,

−p−σ cothα(
p−σξ), σ< 0,p

σ t anα(
p
σξ), σ> 0,

−pσ cotα(
p
σξ), σ> 0,

−Γ(1+α)
ξα+ω , ω= const ., σ= 0.

(10)

The generalized hyperbolic and trigonometric functions are defined by the Mittag-Leffler function

Eα(z) =
∞∑

k=0

zk

Γ(1+kα)
. (11)

Step3. Substituting (8) along with Eq. (9) into Eq. (6), we can get a polynomial in ϕ(ξ). Setting all the coefficients of ϕk

(k = 0,1,2, . . .) to zero, yields a set of overdetermined nonlinear algebraic equations for c,k, ai (i = 0,1,2, . . . ,n).
Step4. Assuming that the constants c,k, ai (i = 0,1,2, . . . ,n) can be obtained by solving the algebraic equations in Step
3, substituting these constants and the solutions of Eq. (9) into (8), we can obtain the explicit solutions of Eq. (4)
immediately.
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3. Applications

In this section, we apply the fractional sub-equation method for solving the FDEs (1) and (2).

Example 3.1.
We consider the space-time fractional Telegraph equation in the form

D2α
t u −D2α

x u +Dα
t u +mu +nu3 = 0. (12)

This equation is a differential equation which describes the voltage and current on an electrical transmission line
with distance and time. The equations come from Oliver Heaviside who in the 1880s developed the transmission line
model. The model demonstrates that the electromagnetic waves can be reflected on the wire, and that wave patterns
can appear along the line. We take the traveling wave transformation

u = u(ξ), ξ= ct +kx, (13)

then Eq. (12) is reduced into a nonlinear fractional ODE easy to solve

c2αD2α
ξ u −k2αD2α

ξ u + cαDα
ξ u +mu +nu3 = 0. (14)

We next suppose Eq. (14) has a solution in the form

u =
n∑

i=0
aiϕ

i , (15)

whereϕ satisfies the subequation (9). By balancing the highest order derivative terms and nonlinear terms in Eq. (14),
We then substitute Eq. (15) given the value of n = 1, along with Eq. (9), into Eq. (14) and collect the coefficients of ϕ j

and set them to be zero, a set of algebraic equations are obtained as follows

σa1cα+a3
0 +ma0 = 0,

2σa1c2α+3a2
0 a1 +ma1 −2k2ασa1 = 0,

a1cα+3a0a2
1 = 0,

2a1c2α+a3
1 −2k2αa1 = 0.

Solving the set of algebraic equations yields

a0 =± i
p

m

2
, a1 =±2i

p
m

3m
cα, cα =−3

p
c2αm −k2αmp

2
, kα 6= 0, σ 6= 0. (16)

We, therefore, obtain from Eqs. (10), (13)-(16) exact solutions of Eq. (12), namely, generalized hyperbolic function
solutions and generalized trigonometric function solutions as follows

u1(x, t ) =± i
p

m

2
± 2i

p
m

3m
cα(−p−σ t anhα(

p−σξ)), σ< 0, (17)

u2(x, t ) =± i
p

m

2
± 2i

p
m

3m
cα(−p−σ cothα(

p−σξ)), σ< 0, (18)

u3(x, t ) =± i
p

m

2
± 2i

p
m

3m
cα(

p
σ t anα(

p
σξ)), σ> 0, (19)

u4(x, t ) =± i
p

m

2
± 2i

p
m

3m
cα(−pσ cotα(

p
σξ)), σ> 0. (20)

Example 3.2.
We consider the Burgers-Huxley equation in the form

Dα
t u +D2α

x u +3uDα
x u + r u +u2 +u3 = 0. (21)
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This equation shows a prototype model for describing the interaction between reaction mechanisms, convection ef-
fects and diffusion transports. The equation was investigated by Satsuma in 1986. Solutions of this equation are of
importance in physical problems. To solve Eq.(21), we take the following traveling wave transformation

u = u(ξ), ξ= kx + ct , (22)

then Eq. (21) is reduced into a nonlinear fractional ODE easy to solve

cαDα
t u +k2αD2α

x u +3kαuDα
x u + r u +u2 +u3 = 0. (23)

We suppose Eq. (23) has a solution in the form

u =
n∑

i=0
aiϕ

i , (24)

where ϕ satisfies the subequation (9).
By balancing the highest order derivative terms and nonlinear terms in Eq. (23), We then substitute Eq. (24) given

the value of n = 1, along with Eq. (9), into Eq. (23) and collect the coefficients of ϕ j and set them to be zero, a set of
algebraic equations are obtained as follows

σa1cα+a3
0 +a2

0 + r a0 +3kασa0a1 = 0,

3σa2
1kα+2σa1k2α+3a2

0 a1 + r a1 +2a0a1 = 0,

a1cα+3a0a2
1 +a2

1 +3kαa0a1 = 0,

3a2
1kα+2a1k2α+a3

1.

Solving the set of algebraic equations yields
Case1.1: when σ= 0,r = 0.

{
a0 = 0, a1 =−kα, cα = kα,

a0 = 0, a1 =−2kα, cα = 2kα.
(25)

Therefore, from (10), (25) we obtain the following rational solutions of Eq. (21)

u1 = kα
Γ(1+α)

(kx + ct )α+ω ; σ= 0, r = 0, cα = kα,

u2 = 2kα
Γ(1+α)

(kx + ct )α+ω ; σ= 0, r = 0, cα = 2kα.

Case1.2: when σ= 0,r = 1
4 .

{
a0 =− 1

2 , a1 =−kα, kα = cα,

a0 =− 1
2 , a1 =−2kα, kα = 2cα.

(26)

We obtain the following rational solutions of Eq. (21) using (26)

u3 =−1

2
+kα

Γ(1+α)

(kx + ct )α+ω ; σ= 0, r = 0, cα = kα,

u4 =−1

2
+2kα

Γ(1+α)

(kx + ct )α+ω ; σ= 0, r = 0, cα = 2kα.

Case 2.1: when σ=− 1
144k2α ,r = 2

9 .

{
a0 =− 1

2 , a1 =−2kα, kα = 2cα,

a0 =− 1
6 , a1 =−2kα, kα = 2

3 cα.
(27)
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Now from (10), (27) we obtain the following generalized hyperbolic function solutions of Eq. (21)

u5 =−1

2
+2kα(

p−σt anhα(
p−σ(kx + ct ))); σ< 0, kα = 2cα,

u6 =−1

2
+2kα(

p−σcothα(
p−σ(kx + ct ))); σ< 0, kα = 2cα,

u7 =−1

6
+2kα(

p−σt anhα(
p−σ(kx + ct ))); σ< 0, kα = 2

3
cα,

u8 =−1

6
+2kα(

p−σcothα(
p−σ(kx + ct ))); σ< 0, kα = 2

3
cα.

Case 2.2: when σ=− 1
36k2α ,r = 2

9 .

{
a0 =− 1

2 , a1 =−kα, kα = cα,

a0 =− 1
3 , a1 =−2kα, kα = cα.

(28)

Using (10), (28) we obtain the following generalized hyperbolic function solutions of Eq. (21)

u9 =−1

2
+kα(

p−σt anhα(
p−σ(kx + ct ))); σ< 0, kα = cα,

u10 =−1

2
+kα(

p−σcothα(
p−σ(kx + ct ))); σ< 0, kα = cα,

u11 =−1

3
+2kα(

p−σt anhα(
p−σ(kx + ct ))); σ< 0, kα = cα,

u12 =−1

3
+2kα(

p−σcothα(
p−σ(kx + ct ))); σ< 0, kα = cα.

Case 3: when σ=− 1
9k2α ,r = 2

9 .

a0 =−1

3
, a1 =−kα, kα = cα. (29)

Finally, from Eqs. (10), (29) we obtain the following generalized hyperbolic function solutions of Eq. (21)

u13 =−1

3
+kα(

p−σt anhα(
p−σ(kx + ct ))); σ< 0, kα = cα,

u14 =−1

3
+kα(

p−σcothα(
p−σ(kx + ct ))); σ< 0, kα = cα.

As α→ 1 obtained solutions above become the ones of Eq.(21).

4. Conclusion

We have proposed a fractional sub-equation method to solve fractional differential equations. As applications of
the proposed method, some exact analytical solutions of the space-time fractional Telegraph and Burgers-Huxley
equations are successfully obtained. These solutions include generalized hyperbolic function solutions, generalized
trigonometric function solutions and rational function solutions. Moreover, the proposed method is shown to be a
simple, yet powerful algorithm for handling for systems of FDEs. Mathematica has been used for computations and
programming in this paper.
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