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Abstract: In this paper, we like to propose and analyze a non-linear HIV/AIDS epidemic model with vaccination and antiretrovi-
ral therapy. For our convenient study we have divided the total populations into five classes such as susceptible class,
unaware HIV infected class, aware HIV infected class, pre AIDS class and AIDS class respectively. For our present
purpose we have taken only the disease spread through horizontal transmission into consideration. In this paper we
have tried to develop a non-linear HIV/AIDS mathematical model to study the transmission dynamics of HIV at four
compartments of the populations with vaccination and antiretroviral therapy and to prove the positivity and bound-
edness of its solutions. In this paper we have added a treatment procedure i.e. antiretroviral therapy and tried to find
out its effect. We have also analyzed the stability behaviour of the system. Finally we have found that vaccination
and antiretroviral therapy is an effective way to control the disease transmission. The mathematical model solved
numerically by using an iterative numerical recipe which supports the theoretical or analytical results.
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1. Introduction

HIV/AIDS is one of the most enormous diseases humankind has already ever faced all over the World. The number
of people living with HIV is around 8 million in 1990 and it increases to 34 million at the end of 2011 (USAID, 2012 [1].
The first AIDS (Acquired Immunodeficiency Syndrome) case was documented by Centers of Disease Control (CDC)
of America in 1981 [2]. AIDS is very dangerous disease that suppresses the normal function of the immune system
of human body and such types of virus is called Human Immunodeficiency Virus or HIV. Such types of diseases now
spread Worldwide [3, 4]. The first known case of HIV in India was diagnosed amongst female sex workers in Chennai in
1986. In the next year 1987 more or less than 135 new cases were reported. The first National AIDS Control Programme
was launched in 1992, and National AIDS Control Organisation (NACO) was constituted to implement the programme
in India through 35 HIV/AIDS Prevention and Control Societies [5].

Mathematical models play a crucial part to study the disease transmission and shows the path to treat the HIV/AIDS
affected patient. Many a Mathematician have already introduced various mathematical model about such disease
[6-10]. From the initial models of May and Anderson [11-13] various refinements have been added into modelling
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frameworks and specific issues have been expected by researchers [14-16]. Their preliminary endeavour is how to
prevent AIDS from spreading [17]. There is so many difficulty to treating HIV infected patient. Numerous health
organization has taken initiative to arrange programme to slow down the spreading of this virus [27]. Mainly, AIDS is
spread by sexual transmission and vertical transmission from mother to child at birth and through breast milk [18].
Vaccination and antiretroviral therapy are also reduces the transmission rate of HIV [19].

Treatment (vaccination and antiretroviral therapy) procedure can not eliminate HIV virus completely from the
body but it can provide some resistance or slow down the processes of disease transmission. Although the treat-
ment procedure is very slow and currently there is no effective vaccine. Antiretroviral therapy is very expensive and
routine access of ART medicine is not available in all countries of the World [20, 21]. If we can avail the treatment
processes properly then the transmission rate HIV/AIDS will be diminished. In this paper we have developed a non-
linear HIV/AIDS Mathematical model to study the transmission dynamics of HIV disease at four compartments of the
populations with vaccination and antiretroviral therapy. The Mathematical model is solved numerically by using an
iterative numerical recipe, which support the theoretical results.

2. The mathematical model

Here we consider a non-linear HIV/AIDS epidemic model with Vaccination and antiretroviral therapy. We divided
the total populations into five subclasses that is; the susceptible class S(z), the HIV infected un-aware class U(?),
the HIV infected aware class W (¢), the pre AIDS class P(f), the AIDS class A(¢). Our assumption is that the disease
spread only by horizontal transmission i.e. sexual contact, blood transfusion. The disease is spread by unprotected
sexual contact at optimum level. Here we may assume that aware HIV infected class does not spread the disease by
unprotected sexual contact due to their proper awareness about the disease. Our mathematical model has been built
up on the basis of this assumptions.

das BSU
Z T 1+C¥1U+(X2U2 —(/J+(T)S,
du BSU
E - 1+L¥1U+(X2U2 —(,LL+Y+T])U,
AW U= ryow > )
dt ’
% =yU+yi1W-(u+¢e)P
A
ar =eP-(u+a)A.

Where S(0) >0, U(0) >0, W(0) >0, P(0)>0and A0) >0,V t=0.
Since the state variable A of the system (1) does not appear in the first four equations. Therefore A class do not
transmit infection and we consider the following subsystem:

as_. gy
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—
dt 1+a,U+ aU \ @

W —
ar =nU—-(p+yDW,
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— =yU+y1W-(u+¢€)P,
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Where, R; is the constant recruitment rate of susceptible class, f is the per capita contact rate between susceptible
class and un-aware HIV infected class, @1, a, are two positive constants, y is the conversion rate of un-aware HIV
infected class to AIDS class, 7y; is the conversion rate of aware HIV infected class to pre AIDS class, o is the successful
vaccination rate of the susceptible individuals, ¢ is the rate by which pre AIDS infective individuals develop AIDS, u
is the natural mortality rate of adult class, «a is the AIDS related death rate. 7 is the antiretroviral therapy rate of an
un-aware HIV infected class. The system (2) has to be analysed with the following initial conditions, S(0) > 0, U(0) > 0,
W(0)>0and P(0) > 0.

3. Basic properties of the model

3.1. Positivity of the Solutions

Since our proposed mathematical model indicates human population we must show that all the state variables
remain non-negative V times.
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Lemma 3.1.

All the solutions S, U, W and P for the system (2) is non-negative V t = 0 with the initials condition S(0) > 0, U(0) > 0
,W(0) >0 and P(0) > 0 in theregionT.

Proof. Taking the first equation of the system (2) in consideration, we get

ds BSU pU

dr S_1+a1U+a2U2_(“+U)S:RS_{1+a1U+a2U2+(”+U)}S'
Sl

dt 1+C¥1U+C¥2U2

BvG g+ ueo) e

S(H)>S0)e {m >0

Considering the second equation of the system (2), we get
au [sN1
dr - 1+a U+ ayU?
U(t) > U(0)e” WMt >,

—(p+y+nU>—-(u+y+nU.

Similarly we can prove that W (t) = W(0) e"**7)? > 0 and P(t) = P(0) e"#+8 >0
Therefore all solutions of the system (2) are non-negative V ¢ = 0. O
3.2. Invariant Region and Boundedness

Lemma 3.2.
All the non-negative solutions of system (2) are contained in the feasible region

R
r:{(s, U W,P)eR:0<sS+U+W+P< — }
(u+0)

is bounded.

Proof. 'We have from the system (2)

§+d—U+d—W+£ =R;—pu(S+U+W+P)-0S—eP < Rs—u(S+U+ W +P).
dt dt dt dt

Hence lim;_osup (S+U+W+P) < W}fjg) .

Therefore all the non-negative solutions of the system (2) ultimately lies in the region

R
r:{(s, U W,P)eR:0<S+U+W+P< — }
(p+0)

Hence the vector field points into the interior of I' V ¢ = 0 is positively invariant. O

4. Equilibrium points and basic reproduction Number

The system (2) possesses the following equilibria namely,

(i) The disease free equilibrium Ey = (%,O, 0,0),

(ii) The endemic equilibrium E* = (§*,U*, W*, P*) with

. Ri(1+a1U* + apU*?)
Tt (l+a Ut +azU )+ U
«_ nu”
St
pr = B +ryni+ny)U”
(L+ey1+p
and U* is the root of the quadratic equation a'U *> +b'U* + ¢’ = 0,

where
a=ay(u+o)(u+y+mn>0,
V=a(u+o)(u+y+n)+pBu+y+n >0,
' =(u+0o)(u+y+n)(1-Ry).
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If Ry > 1, then ¢’ < 0. Therefore the above quadratic equation has a positive root if Ry > 1, where Ry is a basic repro-
duction number given as follows

3 Rsf
Ry=——m"7-—"7-"7——.
(u+o)(u+y+n)
Hence

b +VA

U*
2a’
where,
A=aj(u+o)(u+y+n) +ﬁ(p+y+n)2—4a2(p+a)(,u+y+n)(u+a)(p+y+n)(1 - Rp).
If Ry < 1, then there is no positive equilibrium. The local stability of Ey and E* is governed by the basic reproduction

number Ry which we may find by using the next generation matrix. The non-negative matrix, f’ of the infection terms
and the non singular matrix v’ of the transition terms are

BSU
1+a1U+a> U2
f'= 0
0
and
(u+y+nU
v = -nU+ u+y) )W
—-YU-y1W+(u+¢e)P
ey 00
We get, f = Jacobian of f” at disease free equilibrium = 0 00 |and
0 00
(u+y+mn) 0 0
v = Jacobian of v’ at disease free equilibrium = -1 (u+y1) O
=Y -y1  (ut+e)
Therefore Ry = pfv~".
; - BRs
Spectral of the matrix Ry = (i

5. Stability Analysis

5.1. Local Stability

In this current section we have found the local stability of the disease free and the endemic equilibrium point. We
have presented the local stability of the disease free equilibrium point Ey = {%, 0,0, 0}, in the following theorem.

Theorem 5.1.
The disease free equilibrium Ey = (%, 0, 0, 0), is locally asymptotically stable if, Ry < 1, and unstable while Ry > 1 .

Proof. The variational matrix around the disease free equilibrium point Ej is given by

~(p+o) ‘(fffr) 0 0
Jo= 0 %—(;ﬁyﬂﬂ 0 0
0 n -(u+y) 0

0 Y Y1 —(u+e)

The characteristics equation associated with the Jacobian matrix Jj is given by

BRs
(u+0o)

{—(,u+e)—/1}{—(,u+y1)—/1}{—(u+a)—/l}{ —(p+y+n)—/1}=0
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The eigenvalues associated to Jy are

A =—(u+0)<0,
Ay =—(p+7y1) <0,
A3 =—(u+¢€) <0, and
BRs

= —(u+y+m=@Ro—-D(u+y+n <O0.
wro) (+y+m=R—-Dp+y+n)

n

It is clear the all the eigenvalues of the Jacobian matrix Jj is negative when Ry < 1. So the disease free equilibrium is
locally asymptotically stable. Further when Ry > 1, then there exists one positive and three negative eigenvalues, so
an saddle unstable equilibrium exists. O

5.2. Global stability of disease free equilibrium

Lemma 5.1.
If Ry < 1, then the disease free equilibrium point Ey of the model (2) is globally asymptotically stable in T and unstable
lfRo > 1.

Proof. Define Lyapunov function:

L=nU+u+y+nW
L'=qU +@u+y+nwW’
r BSU

L= 1+a1U+azU2_(u+Y+n)U +ury+minU=(u+ywy,

Ry

(u+0)

Ry
1+a1U+a2U2

Uénw+y+m{ I}U Since S =

IfU=0,L =0butif U#0and Ry <1, L' <0 therefore, the disease free equilibrium is globally asymptotically stable
[23]. O
5.3. Local stability of an endemic equilibrium

Lemma 5.2.

The endemic equilibrium point E* is locally asymptotically stable, when Ry > 1.

Proof. The Jacobian matrix J* associate with the endemic equilibrium point E* is given by,

BU* BS*—BS*U*2ay

T T+a Ut +apU*2 ~(u+o) T (+a U +a,U*2)? 0 0
. pu* [ P
I = T+a U +ay U2 TrarU rapU2g ~ By +1) 0 0
0 n —(u+71) 0
0 Y Y1 —(u+e)
The characteristics equation related to the Jacobian matrix J* ,
—(p+e)=A"p{-A" = (u+ - -(u+o)-2
[t o)~ A"HA" — (o m}[{ o)

{ BS* - BS*U*?a,
(1+a1U* + aaU*2)2

—(,u+Y+n)—/1*)}+ 4 { PS”—pS"U™ az }]=o.
1+ U +aU*? |1+ U* + ap,U*2)?
The two eigenvalues associated to the J* are

Al =—(u+e),
A3 =—=(u+y1)

and the other two eigenvalues of the quadratic equation

po/l*z-i-qgl* + I‘(/) =0
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where
po=1>0,
* * )
qo:1+all€*U+a2U*2+(N++U)+(H+Y+m_(1+a1U€iazU*2)2 (1+£§I*U+LZ§]*2)2
. * * *2
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BU* (u+y+n) . (u+0)BS*U*%ay +(p+y+n)(,u+0)(a1U*+a2U*2)

= >0
1+(Z1U*+O€2U*2 (1+a1U*+a2U*2)2 1+(X1U*+(X2U*2

It follows by Routh-Hurwitz Criteria that the roots of the above quadratic equation all have negative real parts. There-

fore the endemic equilibrium point E* is locally asymptotically stable when Ry > 1.

5.4. Global stability of the endemic equilibrium

Lemma 5.3.
If Ry > 1, then the endemic equilibrium E* of the model (2) is globally asymptotically stable inT.

Proof. We define Lyapunov function V as follows [24, 25].

" " w
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Here we have used the properties i.e. the arithmetic mean is always greater than or equal to the geometric mean,
therefore (% + gWW -2)=0, (1- %) >0 and (%fp —1) = 0. Then ‘2—‘; =0 only when S=S*, U=U* W = W* and

P = P*. Hence the maximum invariant set of the system (2) on the set {(S, Uu,w,P: % = 0} is the singleton and by

using LaSalle invariant principle [22], the endemic equilibrium is globally asymptotically stable if Ry > 1. O

6. Numerical Simulations

In this part of our paper, we have presented some numerical simulations of the system (2) to explain our analyt-
ical results.. The results of numerical simulation are exhibited in Fig. 1 to Fig. 10. Fig. 1 shows that the disease free
equilibrium point is locally asymptotically stable when Ry = 0.9375 < 1 for the set of parameters value which is taken
from Table 1. While Ry = 1.0333 > 1, then Fig. 2 shows that the disease free equilibrium point is unstable for the set of
parameters value R; = 0.52, 7 = 0.05, £ =0.25,y = 0.3, 0 = 0.01, § = 0.31 and the other parameters value are taken from
Table 1. Also we say that when Ry = 4.4183168 > 1, then Fig. 3 shows that the endemic equilibrium is locally asymp-
totically stable for the set of parameters value R; = 1.7, 7 = 0.06, £ =0.05, ¥ =0.9, 0 = 0.03, § =0.21, £ = 0.5, @; = 0.01,
71 = 0.3 and a, = 0.02. Now we choose the set of parameters value n = 0.9, u = 0.001, y = 0.01, o = 0.001, § = 0.09,
€ =0.5, 71 =0.3 and a, = 0.002 and the other parameters value are taken from Table 1 with the initials value S(0) = 4,
U(0) =3, W(0) = 2, its phase portrait is given in Fig. 4, which shows that the system (2) has a stable limit cycle. Now
for the parameters value R; = 1.7, n = 0.06, = 0.05, ¥ = 0.9, 0 = 0.01,0.05,0.09,  =0.21, £ = 0.5, a; = 0.01, y; = 0.01
and a, = 0.02 then Fig. 5, Fig. 6 and Fig. 7 shows that if we increase the vaccination rate then U, W and P classes are
also decreases. We have Fig. 8, Fig. 10 which illustrate that if we increase the antiretroviral therapy then U, and P class
are decrease but W class is increase which is given in Fig. 9 for the set of parameters value Ry = 1.7, n = 0.02,0.10,0.18,
©=0.05y=0.9,0=0.01, =0.21,=0.5 a; =0.01, y; =0.01 and a, = 0.02.

Table 1. A hypothetical set of parameter values.

Parameter Definition Default value
R Is the constant recruitment rate of susceptible class. 0.5
ay A positive constants. 0.001
az A Positive constants. 0.02
U Is the natural mortality rate of adult class. 0.1
o Is the successful vaccination rate of the susceptible individuals. 0.1
Y Is the conversion rate of un-aware HIV infected class to AIDS class. 0.2
Y1 Is the conversion rate of aware HIV infected class to pre AIDS class. 0.01
B Is the per capita contact rate between susceptible class and un-aware HIV infected class. 0.3

i Is the antiretroviral therapy rate of an un-aware HIV infected class. 0.5
€ Is the rate by which pre AIDS infective individuals develop AIDS. 0.02
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Fig. 1. The equilibrium point Ey is asymptotically stable

while Rp < 1. Fig. 2. The equilibrium point Ej is unstable while Ry > 1.
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7. Conclusion

In this paper, we have proposed and analyzed a non-linear HIV/AIDS epidemic model with vaccination and an-
tiretroviral therapy and studied its stability analysis. By analyzing the mathematical model, first we have found a basic
reproduction number Ry because it plays an important role. It is noted that when Rj < 1 then disease dies out and
when Ry > 1 then disease become endemic. The model has two non-negative equilibria namely, Ey = (%, 0,0,0),
the disease free equilibrium and E* = (S*,U*, W*, P*), the endemic equilibrium. It is noted that the equilibrium state
E, corresponding to disappearance of disease is locally as well as globally asymptotically stable if Ry < 1 and unstable
if Ry > 1. The endemic equilibrium E*, which exists only when Ry > 1 is locally asymptotically stable by using Jacobian
matrix and globally asymptotically stable which proof by using LaSalle invariant principle. If there is no vaccination
then Ry reduces to R}, = TGy and if there is no antiretroviral therapy then R} reduces to R = ugﬁjw .
say that Ry < Rj < R which ensure that the disease spread among the population rapidly in a very short time. There-
fore vaccination and antiretroviral therapy must decrease the disease transmission. We also say that if we increase the
vaccination rate then U, W and P class are decreases. How ever if we increase the antiretroviral therapy rate then U, P
class are decrease and W class is also increase. Also if we restrict the migration rate into susceptible community, then
the spread of the disease can be kept under control.

Therefore we
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