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1. Introduction

The fractional Brownian motion (fBM) B H = {B H
t , t ≥ 0} is a zero mean Gaussian process with covariance

E(B H
s B H

t ) = 1

2
(s2H + t 2H −|t − s|2H )

H ∈ (0,1) is called the Hurst parameter. If H = 1
2 is a Brownian motion. For H 6= 1

2 , the fractional Brownian motion has
correlated increments the autocorrelation function r(n)is

r n = EB H
1 (B H

n+1 −B n
H ) = 2αH

∫ 1

0

∫ n+1

n
(u − v)2α−1dud v ∼ 2αHn2α−1

with α= H − 1
2 as n−→∞

If H > 1
2 , then r n

H > 0 and
∑

rH (n) =∞ we have a long memory. If H < 1
2 , then rH (n) < 0 and

∑ |rH (n)| <∞.
The self-similarity and long memory properties make the fractional Brownian motion a surtable imput noise in a

variety of models. Recently, f.B.m has been appliedin connection with financial time series, hydrology and telecom-
munications.

The stochastic calculus of fBm originated with the pioncering work of B. B Mandelhot worked with factional pro-
cesses during a long period and his later results concerned and scaling were summarized in the book [12] .

Note also that it was proved that the moving average representation of fbm is unique in the class of the right -
continuous, non decreasing concave functions in R+. The first result where fbm appeared as the limit in the skrohod
topology of stationary sums of random variablewas obtained by M. Taqqu [14] another scheme of convergence to fBm
in the uniform topology was considered in [11].

∗ E-mail address: dbba@univ-thies.sn

http://www.ijaamm.com/
https://creativecommons.org/licenses/by-nc-nd/3.0/
mailto:dbba@univ-thies.sn


54 On the fractional Brownian motion: Hansdorff dimension and Fourier expansion of fractional Brownian motion

It can be explained by various applications of fbm and other long-memory processes in telegraphic, finances,
climate and weather derivatives. The paper [10] was one of the first paper devoted to stochastic analysis for fbm.
However,it is closely connected with fractional calculus and can be represented as a "fractional integral". Such a rep-
resentation, together with the gaussian property of fbm and Holder property of its trajectories permits to create an
interesting and specific stochastic calculus of fbm.
In order to develop there applications there is a need for stochastic calculus with respect to the fBm. Nevertheless,
fbm is neither a semimartingale nor a markov process, and new tools are required in order to handle the differentials
of the fbm and to formulate and solve stochastic differential equation driven by a fbm.

They are essentialy two different methods to defined stochastic integrals with to the fbm.

i) A parth - wise approach that was the holder continuity properties of the sample paths, developed from the work
by Ciesielskiand hu and Zahle.

ii) The stochastic calculus of variations (Malliavin calculus) for the fbm introced by Decreusefond and Uutünel in
[8].

2. Preliminaries

Theorem 2.1.
Let (X t , t ∈ [A,B ]d ) be a random field. If there exist tree positive constants, α,β,C such that, for every

t , s ∈ [A,B ]d E |X t −Xs |α ≤C‖t − s‖α+β,

then, there exists a locally δ−höl der continuous modification X̃ of X for every δ< β
α . It mean that there exist a random

variable h(ω), and a constant δ> 0 such that

P [ω, sup
‖t−s‖≤h(ω)

|X̃ t (ω)− X̃s (ω)|
‖t − s‖δ ≤ δ] = 1

The definition of continuity is not a quantitative one, because it does not say how rapidly the values of u(y) of a
function approach its value u(x) as y 7→ x. The modulus of continuity ω : [0;∞] 7−→ [0;∞] of a general continuous u,
satisfying |u(x)−u(y)| ≤ω|x − y | may decrease arbitrarity slowly. As a result despite their simple and natural appear-
ance, space of continuous functions are often not suitable for the analysis of PDES which is almost always based on
quantitative estimates.

A straight forward and useful way to strenghten the definition of continuity is proportional to a power |x − y |α for
some exponent 0 < α ≤ 1, such functions are said to be höl der continuous function with exponent α as functions
with bounded fractional derivatives of the order α.
Suppose thatΩ is a open set in Rn and 0 <α≤ 1.
A function u : Ω 7→ R is uniformly Höl der continuous with exponent α in Ω if the quantity A function u : Ω 7→ R is
uniformly Höl der continuous with exponent α inΩ if the quantity

[[u]α,Ω = sup
x,y∈Ωx 6=y

|u(x)−u(y)|
|x − y |α is finite.

Hansdorff measure and dimension:
Hansdorff dimension has been introduced to avoid the drawbacks of box-counting dimension. As opposed to

box-counting dimension, we first define the hansdorff measure and then the associated dimension.
if {ut } is a countable (or finite) collection of sets of diameter at most δ that cover F, i.e F ⊂ ∪αui with 0 < ui ≤ δ for
each i, we say that {ui } is a δ-cover of F. Suppose F is a subset of Rd and s is a non-negative number.
For any δ> 0 we define

Hδ
s (F ) = i n f {

∞∑
i
|ui |s , {ui } i s a δ− cover o f F }

As δ decreases, the class of permissible covers of F is reduced, therefore H s
δ

(F ) increase as δ 7→ 0. The following limit
exists

H s (F ) = lim
δ→0

H s
δ(F )

and is called the s-dimensional Hansdorff measure of F. It can be shown that H s is an outer measure on Borel sets .
Hansdorff measures generalize lebesgue measures : for integer i, H i is, up to a constant, the usual lebesgue measures.
Actually the limit in 3 is for all s, except eventually one value, null or infinite. First s 7→ H s

δ
(F ) is clearly a non increasing



Demba Bocar Ba / Int. J. Adv. Appl. Math. and Mech. 5(2) (2017) 53 – 59 55

function, s0 is s 7→ H s (F )
Morever if t > s and {ui } is a δ-cover of F we have

∞∑
i
|ui |t ≤ δt−s

∞∑
i
|ui |s

so

H t
δ(F ) ≤ δt−s H s

δ(F ).

Letting δ 7→ 0, we see that if H s
δ

(F ) <∞ then H t
δ

(F ) = 0.
The Hansdorff dimension of F is the only possible s where s 7→ H s (F ) jumps from +∞ to 0 more precisely

di mH F = inf{s s.t H s (F ) = 0} = sup
s

{s s.t H s (F ) =∞}

3. Hansdorff dimension and fourier expansion of fractional Brownian motion

3.1. Mandelbrot-Van Ness Representation of fbm

Let W = {Wt , t ∈ R} be the two-sided Wiener process, i.e the Gaussian process with independent increments
satisfying EWt = 0 and EWt Ws = s ∧ t s, t ∈ R
Denote kH (t ,u) = (t −u)α+−(−u)α+, where α= H − 1

2

Theorem 3.1.
The process B

H = {B t , t ∈ R} defined by

B
H
t =C (2)

H

∫
R

kH (t ,u)dWu , H ∈ (0,
1

2
)∪ (

1

2
,1)

where C (2)
H = (

∫
R ((1+ s)α− sα)2d s + 1

2H )
−1
2

= (2H si nπHΓ(2H))
1
2

Γ(H + 1
2 )

has a continuous modification which is a normalized two-sided fractional Brownian motion

To demonstrate the Theorem 3.1, we use the folliwing lemma.

Lemma 3.1.
Note that (Iα− f )(x) = 1

Γ(α)

∫ +∞
x f (t )(t −x)α−1d t

1(a,b)(t ) =


1, si a ≤ t < b

-1, si b ≤ t < a

O, si other wi se

Let H ∈ (0, 1
2 )∪ ( 1

2 ,1) and α= H − 1
2 then for all t ∈ R, we have the equality

(Iα−1(0,t ))(x) = 1

Γ(1+α)
((t −x)α+− (−x)α+)

Proof. Let H ∈ ( 1
2 ,1) and for example x < 0 < t the other cases can be considered similarly, then

(
Iα−1(0,t )

)
(x) = 1

Γ(α)

∫ +∞

x
1(0,t )(u)(u −x)α−1du = 1

Γ(α)

∫ t

0
(u −x)α−1du = 1

Γ(α+1)
((t −x)α− (−x)α)

Let H ∈ (0, 1
2 ). According to the definition of the fractional derivative and the properties Iα+−I−α+− f = f we must prove

that ∫ +∞

x
((t −u)α+− (−u)α+)(u −x)−α−1du = Γ(−α)Γ(α+1)1(0,1)(x)
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Let, for example, 0 < x < t then the left-hand side of (1) equals∫ t

x
((t −u)α− (u −x)−α−1du1(0,t )(x) = B(α+1,−α)1(0,t )(x) = Γ(−α)Γ(α+1)1(0,t )(x)

Lemma 3.2.
C (2)

H is chosen to normalize the f.B.m and

C (2)
H = (2H si nπHΓ(2H))

1
2

Γ(H + 1
2 )

Proof.

B
H
t =C (2)

H

∫
R

kH (t ,u)dWu =C (2)
H Γ(1+α)

∫
R

(Iα−1(0,t ))(x)dWu

In using Lemma 3.1. Therefore, the first equality is evident , since∫
R

(kH (t ,u))2du =
∫ 0

∞
((t −x)α− (−x)α)2d x +

∫ t

0
(t −x)2αd x

= t 2H (
∫ ∞

0
((1+ s)α− sα)2d s + 1

2H
)

When obtain the second equality if we note that∫
R

(
(
Iα−1(0,t )

)2(x)d x = 1

2π

∫
R

(
1(0,t ) (λ) |λ|−α exp

{
απi

2
si g nλ

})2

dλ

therefore∫
R

(Iα−1(0,t ))
2(x)d x = 1

2π

∫
R
|e iλt −1|2|λ|−2α−2dλ

= 1

2π

∫
R

(1−cosλt )2|λ|−2α−2dλ+ 1

2π

∫
R

si n2tλ|λ|−2α−2dλ

= 1

π

∫ ∞

0

(1−cosλt )2

λ2α+2 dλ+ 1

π

∫ ∞

0

sin2tλ

|t |2α+2

= t 2H
(

1

π

∫ ∞

0

(1−cosλ)2

λ2α+2 dλ+ 1

π

∫ ∞

0

sin2tλ

λ2α+2 dλ

)
= t 2H

2H sinπHΓ(2H)

Proof. (Proof of Theorem 3.1)

Evidently,B
H

is a Gaussian process with B
H
0 and EB

H
t = 0.

Furthermore, it holds that for t > 0

E
(
B̄ H

t

)2 =
(
C (2)

H

)2
(∫ 0

−∞
k2

H (t ,u)du +
∫ t

0
(t −u)2αdu

)
== t 2H

For t < 0, we have that

E
(
B̄ H

t

)2 =
(
C (2)

H

)2
(∫ t

−∞
k2

H (t ,u)du +
∫ 0

t
(−u)2αdu

)
== (−t )2H

Furthermore, for h > 0, it holds that

B̄ H
s+h − B̄s =C (2)

H

∫ s

−∞
(kH (s +h,u)−k(s,u))dWu +

∫ s+h

s
kH (s +h,u)dWu = I1 + I2
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Note that the terms I1 and I2 on the right hand side of 2 are independent, and the Wiener process W has stationary
increments. Therefore

I1 =d
∫ 0

−∞
(kH (s,u)−k(0,u))dWu

I2 =
∫ h

0
kH (h,u)dWu

and

E(B
H
s+h −B

H
s )2 = E(B

H
h ) = h2H

By combining these results, we obtain that

EB̄ H
s B̄ H

t = 1

2

(
E

(
B̄ H

s

)+E
(
B̄ H

s

)−E
(
B̄ H

t − B̄ H
s

)2
)
= 1

2

(|t |2H +|s|2H −|t − s|2H )
The proof follows immediately from definition

Theorem 3.2.
Let F = {

∑+∞
n=1

xn
3n such xn ∈ {0,2} } be the middle third Cantor Set. Let X be a fractional Brownian motion of parameter

H. The Hansdorff dimension of {(x, X x, x ∈ F )} =as 1+ log32−H.

Proof.

1) Upper bound We split the interval [0,1] into sub-intervals [k3−n , (k +1)3−n] k = 0, 3n −1

We need 2n sub-intervals of cover F. On such a sub-interval, the oscillation of is overestimated by C 3−nH
′

for

every H
′ < H . We need C 2n3n(1−H

′
) squares of sizes 3−n to cover {x X (x), x ∈ F }

The Hansdorff dimension of {(x, X (x)), x ∈ F } is overestimated by 1+ l og32−H

2) Lower bound

E((X (t )−X (s))2 + (t − s)2)−
s
2 ) ≤C |t − s|1−s−H

Let µ be a probability measure supported by F and

Is (µ) =
∫ ∫

F×F
((X (t )−X (s))2 + (t − s)2)

−s
2 dµ(t )dµ(s)

then

E Is (µ) = E
∫ ∫

F×F
((X (t )−X (s))2 + (t − s)2)

−s
2 dµ(t )dµ(s)

≤C
∫ ∫

F×F
|t − s|1−s−H dµ(t )dµ(s)

We now apply Frostman’s lemma.

Since di mH (F ) = log32, for s such that H + s −1 > log32 H(F)=0 then for every s
′ < s there exists a probability

measure µ such that∫ ∫
F×F ′ |t − t

′ |1−s
′−H dµ(t )dµ(s) <∞

For this measure µ E I
′
s (µ) <∞ and almost surely I

′
s (µ) <∞. This implies di m{x, X (x)x ∈ F } ≥ 1+ l og32−H , it

follow that di m{(x, X (x))x ∈ F } = 1+ log32−H .

Theorem 3.3.
Let 0 < H ≤ 1

2 . We denote Cn = ∫ 1
0 x2H cos(nπx)d x ∀n ≥ 1

(1) Cn ≤ 0 and
∑+∞

n=1 Cncos(nπx) is convergent and there exists Co such that |x|2H = C0 +∑+∞
n=0 Cncos(nπx) ∀x ∈

[−1,1]



58 On the fractional Brownian motion: Hansdorff dimension and Fourier expansion of fractional Brownian motion

(2) Let (ξn ,ηn) a sequence of i.i.d centered Gaussian random vectors in R2with covariance matrix equal to identity ,

then the series
∑+∞

n=1(ξn + iηn)
√

−Cn
2 (e i nπt −1) is convergent in L2.

(3) Let us denote by X (t ) its sum, then ℜ(X (t )) is a 2π periodic Gaussian process with stationary increments such that
E(ℜ(X (t )).ℜ(X (s)))2 = |t − s|2H for all t, s such that −1 < t − s < 1
We usually refer to ℜ(X (t )) as a fractional Brownian motion indexed by the circle S1

Proof.

1)
∫ 1

0 x2H cos(2πx)d x = ∫ 1
4

0 (x2H − ( 1
2 −x)2H + (1−x)2H − ( 1

2 +x)2H )cos2πxd x

since x 7→ x2H is concave for 0 < H ≤ 1
2 , we get (x2H − ( 1

2 − x)2H + (1 − x)2H − ( 1
2 + x)2H ) ≤ 0 for 0 ≤ x ≤ 1

4
and C2.
One can use similar arguments to show that C2n ≤ 0 for any integer n . The integral in the definition of C2n+1

shall be split into two parts and we use the fact that x 7→ x2H is increasing to show that C2n+1 ≤ 0

In [15] fractional fields parameterized by Euclidean spheres Sd are studied, and series ewpansion of θ 7→ |θ|2H

when θ ∈ Sd are used for this study . In this proof X(t) can be considered as a fractional field parametrized by the
circle S1. Because of the 2π periodicity of X, so the results on Cn are a special case of the levy Kinchine formula
for θ x 7→ θ2H when θ ∈ Sd as seen in .

2.) Since x 7→ x2H is a continuous function C 1 except for x = 0, we can apply Dirichlet theorem Fourier series that
fields the convergence of the Fourier series to |x|2H .

When x = 0, we use the Dirichlet criterion, which is in this particular cas
∫ 1

O
x2H

x d x < ∞, to have the con-
vergence of

∑+∞
n=1 Cn and we denotes its sum-C0 which is non positive because of 1.

3.) Let us consider the

S(t ) =
+∞∑
n=1

(ξn(cos(nπt )−1)−ηn sin(nπt ))

√−Cn

2

∀t ∈ [−1,1] E
(
(S(t ))2)= +∞∑

n=1
(cos(nπt )−1)Cn = |t |2H −C0 +C0

Hence the series defining S(t) converge in L2 and obviously S(t ) =ℜ(X (t )) with the same type of argument one
can show the convergence in L2.
Morever ∀t , s ∈ R

X (t )−X (s) =
+∞∑
n=1

([ξn + iηn]e i nπs )(e i nπ(t−s) −1)

But

(ξn + iηn)e i nπs =d (ξn + iηn)n ,

and X has stationary increments. In particular

E(ℜ(X (t ))−ℜ(X (s))2) = |t − s|2H

for all t, s such that −1 < t − s < 1.
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