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Abstract: We consider the class of problems of the control theory related to effective methods for constructing controls. One
of approaches to solving control problems under lack of information was suggested by Yu.S. Osipov and called the
method of program packages. The initial state of the considered system is unknown, but belongs to a finite set. The
control problem contains a group of terminal quality criterions, which depends on initial states. We use a modification
of the method of non-anticipatory strategies (quasi-strategies) for the solving such control problem and constructing
program packages. We note that in all previous works related to the method of program packages, the guidance prob-
lems with one quality criterion were considered. In the present paper the guaranteed guidance problem with some
terminal quality criterions under incomplete information about the initial state is considered for a linear autonomous
control system. The criterion for the solvability of that problem based on the method of program packages is estab-
lished. An illustrative example is given.
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1. Introduction

Consider a controlled system of the form

ẋ(t ) = A x(t )+B u(t )+ c(t ), (1)

where t ∈ T = [t0,ϑ] is a time variable, t0 < ϑ<+∞; x(t ) ∈ Rn is the system’s state at the time t ; u(t ) ∈ Rm is the value
of control vector at the time t ; A and B are matrices of corresponding dimensions, and the function c(·) : T 7→ Rn is a
piecewise continuous function.

We assume that the controller a priori knows that the initial state x0 of the system belongs to some finite set X0 ⊂Rn

(the set of admissible initial states), but this state itself is not known. Under an open-loop control we understand any
Lesbeque measurable function u(·) : T → U . Here, U ⊂ Rm is a convex compact set describing the instantaneous
resource of control. The set of all open-loop controls is denoted by U . The systems’s motion corresponding to an
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admissible initial state x0 ∈ X0, and an open-loop control u(·) ∈ U is called a Carathéodory solution of system of dif-
ferential equations (1) defined on the interval T and satisfying the initial condition x(t0) = x0; this motion in denoted
by x (·; t0, x0,u(·)). Control problems for dynamical systems are one of the intensively developing sections of optimiza-
tion theory [1–3].

If the initial state x0 is known the standard open-loop control problem is to find a control uopt
x0

(·) minimizing the
quality criterion:

uopt
x0

(·) = argmin
{

f (x (ϑ; t0, x0,u(·))) : u(·) ∈U
}

.

Let us introduce the following notation:

Jx0 = f
(
x

(
ϑ; t0, x0,uopt

x0
(·)

))
, Mx0 =

{
x ∈Rn : f (x)6 Jx0

}
, x0 ∈ X0.

We assume below that f (·) : Rn →R is a proper convex function.

dom f = {
x ∈ X : f (x) <+∞}

.

A function f is called proper if dom f 6= 0 and f (x) >−∞ for all x ∈ X . Let zero belong to the interior of the set dom f .
The latest condition, as known, involves the continuity of function f at zero.

The closed-loop guidance problem on a collection of target sets consist in forming an open-loop control guarantee-
ing that the system’s state reaches the set Mx̄0 , where x̄0 is the real (but unknown) initial state. In the motion process,
the controller forms the open-loop control by the feedback principle observing the current signal y(t ) = Q(t ) x(t ) on
the system’s state x(t ) at this moment. In accordance with the standard formalism of the theory of guaranteed control
[4, 5], the controller corrects the values of an open-loop control u(·) at times t0 = τ0 < τ1 < . . . < τm = ϑ specified in
advance. At any moment τ j ( j ∈ [0,m −1]), the values of the open-loop control are determined for t ∈ [τ j ,τ j+1) de-
pending on the history t 7→ y(t ) of the observation on [t0,τ j ] and the history t → u(t ) of the control on [t0,τ j ). Thus,
the problem of guaranteed closed-loop guidance to a group of target sets consist in choosing (by an arbitrary ε > 0
specified in advance) a control forming method such that a motion x(·) of system (1) reaches a closed ε-neighborhood
of the target set Mx0 for any initial state x0 ∈ X0 at the terminal time ϑ.

As follows from Theorem 2.1 presented below, this problem is solvable if and only if the package guidance problem
is solvable. So, in the present paper we focus on solvability conditions of the latter problem using the method from [6–
8]. It should be noted that the method was used for solving the guaranteed guidance problem for linear systems of
ordinary differential equations [9, 10], linear stochastic differential equations [11], delay differential equations [12],
systems with distributed parameters [13]. In the papers cited above, it was assumed that the target set was the same
for all initial states.

Remark 1.1.
Let

J∗ = max
x0∈X0

Jx0 = max
x0∈X0

min
u(·)∈U

J (x(ϑ; t0, x0,u(·)) . (2)

The symbol x∗
0 stands for a vector maximizing, with respect to x0, the right-hand part of (2). Then, if

x̄0 = x∗
0 ,

the control problem is naturally called the guaranteed maximin guidance problem.

2. Preliminaries.

Let us introduce some results of [13, 14] before we proceed to find solvability conditions of the problem in question.
For the convenience of the readers the results are formulated in the reduced form. Consider controlled system (1). Let
us introduce the fundamental matrix F (·, ·) of the homogeneous system ẋ(t ) = Ax(t ). For any x0 ∈ X0, we define

gx0 (t ) =Q(t )F (t , t0) x0 (t ∈ T );

the function gx0 (·) is called the homogeneous signal corresponding to the admissible initial state x0. The set of all
admissible initial states x0 corresponding to a homogeneous signal g (·) till a time τ ∈ [t0,ϑ] is denoted by X0(τ|g (·));
thus,

X0
(
τ|g (·))= {

x0 ∈ X0 : g (·)|[t0,τ] = gx0 (·)|[t0,τ]
}

;

hereinafter, g (·)|[t0,τ], where τ ∈ [t0,ϑ], is the restriction of the homogeneous signal g (·) onto the interval [τ0,τ].
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A family (wx0 (·))x0∈X0 of open-loop controls is called an open-loop control package if it satisfies the following con-
dition of nonanticipation: for any homogeneous signal g (·), time τ ∈ (t0,ϑ], and admissible initial states x ′

0, x ′′
0 ∈

X0
(
τ|g (·)), the equality wx′

0
(t ) = wx′′

0
(t ) holds for all t ∈ [τ0,τ). An open-loop control package

(
wx0 (·))x0∈X0

is called

guiding if, for any admissible initial state x0 ∈ X0, the inclusion x
(
ϑ; t0, x0, wx0 (·)) ∈ Mx0 takes place. If there exists a

guiding open-loop package, we say that the problem of package guidance is solvable.
Let G be the set of all homogeneous signals. For an arbitrary homogeneous signal g (·), we introduce the set

T
(
g (·)) = {

τ j
(
g (·)) : j = 1, . . . ,kg (·)

}
of all splitting moments; the strong definition of them is given in [8], and so

T =∪g (·)∈G T
(
g (·)). In view of the finiteness of this set, for any homogeneous signal g (·), there exists an index kg (·) > 1

such that τkg (·)
(
g (·)) = ϑ. Then, the set T can be written in the form T = {τ1, . . . ,τK }, where τ j < τ j+1 (i = j , . . . ,K −1).

We suppose τ0 = t0. For any k = 1, . . . ,K , we introduce the set

X0(τk ) = {
X0

(
τk |g (·)) : g (·) ∈G

}
.

Elements X0,k of the set X0(τk ) is called the clusters of initial states at the moment τk . For any k = 0, . . . ,K , the clusters
of initial states at the moment τk form a partition of the set X0 of all admissible initial states, i.e.,

X0 =
⋃

X0,k∈X0(τk )
X0,k , X ′

0,k

⋂
X ′′

0,k =;
(

X ′
0,k , X ′′

0,k ∈X0(τk ), X ′
0,k 6= X ′′

0,k

)
.

Let UX0 be the set of all families of vectors
(
wx0 (·))x0∈X0

in U . Any Lebesque measurable function t 7→(
wx0 (t )

)
x0∈X0

: T 7→ UX0 is called an extended open-loop control. The family of open-loop controls
(
wx0 (·))x0∈X0

is

identified with the extended open-loop control t 7→ (
wx0 (t )

)
x0∈X0

as in [8, 10–14]. For any k = 0, . . . ,K , we denote by

Uk the set of all families
(
wx0 (·))x0∈X0

∈UX0 such that, for any cluster X0,k ⊂X0(τk ) and any initial states x ′
0, x ′′

0 ∈ X0,k ,

the equality wx′
0
= wx′′

0
holds. An extended open-loop control

(
wx0 (·))x0∈X0

is called admissible if, for any k = 0, . . . ,K ,

the inclusion
(
wx0 (t )

)
x0∈X0

∈Uk is valid for all t ∈ (τk−1,τk ] in case k > 1 and for all t ∈ [t0,τ1] in case k = 1.
For j = 1,2, . . ., we define an extended control resource R j as the finite-dimentional Hilbert space of all families

l = (lx0 )x0∈X0 of vectors in R j with the scalar product 〈·, ·〉R j of the form 〈l ′, l ′′〉R j =
∑

x0∈X0 (l ′x0
, l ′′x0

) (l ′ = (l ′x0
)x0∈X0 ∈

R j , l ′′ = (l ′′x0
)x0∈X0 ∈ R j ). Hereinafter, (·, ·) is the scalar product in the finite-dimensional Euclidian space Rn . The

values of extended open-loop controls are further considered as elements of Rn .
Consider the extended system consisting of copies of (1) parameterized by admissible initial states x0 ∈ X0. A copy

parameterized by an admissible initial state x0 has x0 as the initial state and is subject to the action of some open-loop
control wx0 (·). Thus, the extended system has the form

ẋx0 (t ) = A xx0 (t )+B wx0 (t )+ c(t ), xx0 (t0) = x0, (x0 ∈ X0). (3)

We take the space Rn as the phase space of the extended system. The extended system’s control is chosen from the
class of all admissible extended open-loop controls. For any admissible extended open-loop control t → (

wx0 (t )
)

x0∈X0
,

we understand the corresponding motion of the extended system as the function t 7→ (
x

(
t ; t0, x0, wx0 (·)))x0∈X0

: T 7→
Rn . The extended target set is the set M of all families (xx0 )x0∈X0 ∈Rn such that xx0 ∈ Mx0 for all x0 ∈ X0. An admissible
extended open-loop control t → (

wx0 (t )
)

x0∈X0
is said to be guiding for the extended system if the corresponding motion(

x
(·; t0, x0, wx0 (·)))x0∈X0

of this system takes a value in the extended target set at the time ϑ:
(
x

(
ϑ; t0, x0, wx0 (·)))x0∈X0

∈
M . We say that the extended problem of open-loop guidance is solvable if there exists an admissible extended open-
loop control that is guiding for the extended system.

The theorem below is proved by analogy with [6–8].

Theorem 2.1.
1) An extended open-loop control t → (

wx0 (t )
)

x0∈X0
is an open-loop control package if and only if it is admissible.

2) An admissible extended open-loop control is a guiding open-loop control package if and only if it is guiding for the
extended system.

3) The problem of guaranteed closed-loop guidance to a collection of target sets is solvable if and only if the problem
of open-loop control package guidance is solvable.

4) The problem of open-loop control package guidance to a collection of target sets is solvable if and only if the
problem of open-loop control guidance is solvable.

Let S be some subspace of the space Rn orthogonal to all l ∈Rn such that ρ+(l |Mx0 ) =∞ for any x0 ∈ X0. We denote
by L ⊂ S a convex compact set containing an image of the unit sphere. In this case, there exist constants r1, r2 > 0
satisfying the inequality r2 > r1 and such that, for any vector z ∈ S of the unit norm there exists r ∈ [r1,r2] such that the
inclusion r z ∈ L holds. Then, the symbol L means the set of all (lx0 )x0∈X0 ∈Rn such that lx0 ∈ L for all x0 ∈ X0.

By analogy to [8], the solvability criterion of the open-loop guidance control problem is established. In our case,
the criterion takes the form

sup
(lx0 )x0∈X0∈L

γ
(
(lx0 )x0∈X0

)
6 0. (4)
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Here,

γ
(
(lx0 )x0∈X0

)= V (lx0 ;ϑ, t0)− ∑
x0∈X0

p+(lx0 |Mx0 ), D(τ) = B>F>(ϑ,τ),

V (lx0 ;ϑ, t0) = ∑
x0∈X0

(
lx0 ,F (ϑ, t0) x0 +

∫ ϑ

t0

F (ϑ,τ)c(τ)dτ

)

+
K∑

k=1

∫ τk

τk−1

∑
X0,k∈X (τk )

%−
(

D(τ)
∑

x0∈X0,k

lx0

∣∣∣U)
dτ,

%−(l |U ) = inf{(l , x) : x ∈U } and %+(l |Mx0 ) = sup
{
(l , x) : x ∈ Mx0

}
are the lower and upper support functions, respec-

tively; | · |Rn denotes the norm in the same space Rn , and > means transposition.

3. Solvability of guaranteed open-loop guidance problem

Assume that, for any x0 there exists a solution of the problem

min
u(·)∈U

f (x (ϑ; t0, x0,u(·))) = Jx0 .

For any a > 0, we introduce the set

M a
x0

= {
x ∈Rn : f (x)6 Jx0 −a

}
.

Lemma 3.1.
Let a > 0. Then, there exists a number µ ∈ (0, a) such that, whatever the initial state x0 ∈ X0 may be, the inclusion

Oµ(M a
x0

) ⊂ Mx0 (5)

is valid. Here, Oµ(M) means a µ-neighborhood of the set M.

Proof. By the finiteness of the set X0, it is sufficient to establish that inclusion (5) is valid for one x0. Let us assume the
contrary; i.e, relation (5) does not hold for some x0 ∈ X0. We take an arbitrary sequence of numbers µi → 0 as i →∞.
Then, for any natural number i , we find a vector xi ∈Oµi (M a

x0
) such that xi 6∈ Mx0 and f (xi ) > Jx0 . Therefore,

liminf
i→∞

f (xi )> Jx0 . (6)

Note that each vector xi can be represented as the sum of two vectors xi = yi +zi , where yi ∈ M a
x0

; i.e., the inequalities
f (yi )6 Jx0 −a and ‖zi‖6µi are valid. Then, by the convexity of the function f , we obtain

f (xi )6 f (yi )+ f (zi )6 Jx0 −a + f (zi ).

Because of the continuity of the function f at zero, we have f (zi ) → f (0) = 0 as i →∞. Consequently,

limsup
i→∞

f (xi )6 Jx0 −a.

Thus, we have a contradiction with (6), which proves the lemma.

Further, we need
Condition 1. For any γ∗ > 0, one can specify µ ∈ (0,γ∗) such that, for any x0 ∈ X0, the inclusion Mx0 ∈ Oµ(Mγ∗

x0
)

holds.

Remark 3.1.
It is clear that Condition 1 does not always hold. For example, for the quality criterion f (x) = c|x|Rn it is valid for c > 1,
but it is not for c < 1. Condition 1 is, in some sense, “inverse” to the statement of Lemma 1.

Theorem 3.1.
Let the function f satisfy Condition 1. Then, the equality

max
(lx0 )x0∈X0∈L

γ
(
(lx0 )x0∈X0

)= 0 (7)

represents necessary and sufficient conditions for the solvability of the guaranteed open-loop control problem on a col-
lection of target sets.
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Proof. We start from the necessity. Let us assume the contrary: the problem is solvable and

γ≡ sup
(lx0 )x0∈X0∈L

γ(lx0 ) =−γ∗ < 0,

where γ∗ > 0. Then, for any x0 ∈ X0, we have γ(lx0 )6−γ∗; i.e.,

sup
(lx0 )x0∈X0∈L

(
V (lx0 ;ϑ, t0)− ∑

x0∈X0

ρ+(lx0 |Mx0 )

)
6−γ∗. (8)

By the definition of the set L , one can derive the existence of the number µ∗ > 0 from the equality

sup
(lx0 )x0∈X0∈L

|lx0 |Rn =µ∗.

Then, following Condition 1, we find number µ ∈
(
0, γ∗

µ∗K

)
such that

ρ+
(
lx0 |Oµ(Mγ∗

x0
)
)
= ρ+

(
lx0 |Mγ∗

x0

)
+µ |lx0 |Rn > ρ+(lx0 |Mx0 ), (9)

where K is the number of elements of the set X0. In its turn, inequality (8) implies the inequality

sup
(lx0 )x0∈X0∈L

(
V (lx0 ;ϑ, t0)− ∑

x0∈X0

ρ+
(
lx0 |Oµ(Mγ∗

x0
)
))

6−γ∗. (10)

Note that∑
x0∈X0

sup
(lx0 )x0∈X0∈L

µ |lx0 |Rn 6µµ∗K < γ∗.

Taking into account this inequality and (9) we obtain from (10)

sup
(lx0 )x0∈X0∈L

(
V (lx0 ;ϑ, t0)− ∑

x0∈X0

ρ+
(
lx0 |Mγ∗

x0

))
− ∑

x0∈X0

sup
(lx0 )x0∈X0∈L

µ |lx0 |Rn 6

6 sup
(lx0 )x0∈X0∈L

(
V (lx0 ;ϑ, t0)− ∑

x0∈X0

ρ+
(
lx0 |Mγ∗

x0

))
6−γ∗+µµ∗K < 0.

However, the latter inequality contradicts the solvability condition of open-loop package guidance problem (4) and
the definition of the set Mx0 . The necessity is proved. The sufficiency follows from condition (4). The theorem is
proved.

Theorem 3.2.
Let (l∗x0

)x0∈X0 ∈ L be a vector maximazing expression (7) and let the vector D(τ)
∑

x0∈X0,k
l∗x0

be non-zero for all τ ∈ T .
Let the zero extended open-loop control is not guiding for the extended system and, for any k = 1, . . . ,K and any cluster
X0,k ∈X (τk ), the following equality holds:(

D(τ)
∑

x0∈X0,k

l∗x0
, wX0,k (τ)

)
= %−

(
D(τ)

∑
x0∈X0,k

l∗x0
|U

)
(τ ∈ [τk−1,τk )) . (11)

Then, the extended open-loop control t → (
wx0 (t )

)
x0∈X0

is guiding for system (3).

Proof. The correctness of Theorem 3.2 is established by analogy to [14].

Corollary 3.1.
The open-loop control package corresponding to the extended open-loop control and defined according to Theorem 3.2
is guiding.
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4. Example.

Consider the linear controlled system of ordinary differential equations

ẋ1 =−2 x1 −x2 + t ,

ẋ2 = x2 +u.
(12)

Here, x1(t ) and x2(t ) are the coordinates of the phase vector x(t ) = (x1(t ), x2(t ))>. The values of the control u(t ) are
bounded by the interval [−p, p], where p = 0.1151. Thus, we have the following parameters of system (1): n = 2, m = 1,
and U = [−p, p]. The matrices A, B , and the vector c(t ) are of the form

A =
(−2 −1

0 1

)
, B =

(
0
1

)
, c(t ) =

(
t
0

)
.

Let [t0,ϑ] = [0,2] and let the set of admissible initial states consist of two various elements, X0 = {x ′, x ′′}, where

x ′ = (x ′
1, x ′

2)> = (−1,0.5)>, x ′′ = (x ′′
1 , x ′′

2 )> = (−2,1)>.

We assume that, in the process of the motion, the information on the position of the system on the interval [0,1] is
unavailable, whereas the system’s state is completely observed on the half-open interval (1,2]; i.e., we have the signal

y(t ) =
(

y1(t )
y2(t )

)
=

{
(0,0)>, t ∈ [0,1],

(t −1) (x1(t ), x2(t ))> , t ∈ (1,2],

which corresponds to the continuous observation matrix

Q(t ) =
{

0, t ∈ [0,1],

(t −1) I2, t ∈ (1,2],

where I2 ∈ R2×2 is the unit matrix. Let the quality criterion be f (x) = 2|x1|. The control aim consists in forming,
by available values of the signal, an open-loop control of the system and such that it provides at the time t = 2 the
fulfillment of conditions

Jx′ = 0.5, Jx ′′ = 3.

Then, the target sets are cylindrical sets

Mx′ = {
(x1, x2)> ∈R2 : |x1|6m1, x2 ∈R

}
,

Mx′′ = {
(x1, x2)> ∈R2 : |x1|6m2, x2 ∈R

}
,

where m1 = 0.25 and m2 = 1.5. Let us check the validness of solvability criterion (4) of the guaranteed closed-loop
control guidance. The eigenvalues of the matrix A are λ1 = −2 and λ2 = 1. Since system (12) is autonomous, the
fundamental matrix F (·, ·) depends only on the difference between arguments and defined by the formula

F (t , s) = F (t − s) =
(
e−2(t−s) − 1

3 e t−s

0 e t−s

)
.

The Cauchy formula for an autonomous control system is written in the form

x(t ) = F (t ) x(0)+
∫ t

0
F (t − s)c(s)d s +

∫ t

0
F (t − s)B u(s)d s.

The homogeneous signals corresponding to the admissible initial states x ′ and x ′′ are of the form

gx′ (t ) =Q(t )F (t ) x ′ =


(0,0)>, t ∈ [0,1],

(t −1)

(
e−2 t x ′

1 − 1
3 e t x ′

2
e t x ′

2

)
, t ∈ (1,2],

gx′′ (t ) =Q(t )F (t ) x ′′ =


(0,0)>, t ∈ [0,1],

(t −1)

(
e−2 t x ′′

1 − 1
3 e t x ′′

2
e t x ′′

2

)
, t ∈ (1,2],

Since the initial states are different x ′ 6= x ′′, we have τ1 = 1 as the first splitting moment of each homogeneous signal;
the second splitting moment τ2 is the terminal timeϑ= 2; the number K of the splitting moments of the homogeneous
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signals is 2; the cluster position X0(1) at the time t = 1 contains the single set X0; and the cluster position X0(2) at the
time t = 2 contains two sets, {x ′} and {x ′′}.

To form a guiding open-loop control package using Theorem 3.2, we need

D(s) = B>F>(ϑ− s) =
(
−1

3
eϑ−s ,eϑ−s

)
, s ∈ [0,2].

Let L be the set of all families
(
l̄ ′1, l̄ ′′1

) ∈ R2 (l̄ ′1 = (l ′1,0)>, l̄ ′′1 = (l ′1,0)>) such that one of these two pairs of relations
holds:

|l ′1| = 1, |l ′′1 |6 1 or |l ′1|6 1, |l ′′1 | = 1.

Taking into account the expressions

ρ+ (
(l ,0)>|Mx ′

)= m1 |l |, ρ+ (
(l ,0)>|Mx′′

)= m2 |l |, ρ−(l |U ) =−p |l |,
for the values of the function γ(·), for arbitrary real l ′ and l ′′ we obtain from formula (4) the equality

γ
(
(l ′,0)>, (l ′′,0)>

)= l ′z ′+ l ′′z ′′− 1

3
p

∫ 1

0
e2−s |l ′+ l ′′|d s − 1

3
p

∫ 2

1
e2−s (|l ′|+ |l ′′|) d s −m1 |l ′|−m2 |l ′′| =

= l ′z ′+ l ′′z ′′− 1

3
p (e2 −e) |l ′+ l ′′|− 1

3
p (e −1)

(|l ′|+ |l ′′|)−m1|l ′|−m2|l ′′|,
where z ′ = e−4x ′

1 − 1
3 e2x ′

2 + 1
4 (3+e−4) and z ′′ = e−4x ′′

1 − 1
3 e2x ′′

2 + 1
4 (3+e−4).

We find

γ= max
l̄ ′,l̄ ′′∈L

γ
(
(l ′,0)′, (l ′′,0)′

)= 0,

which is reached for l ′ =−1 and l ′′ = 0. Consequently, solvability criterion (4) is valid. To form an open-loop control
package using Theorem 3.2, we compute∑

x0∈X0,0

l∗x0
=

(−1
0

)
+

(
0
0

)
=

(−1
0

)
and

D(s)
∑

x0∈X0,0

l∗x0
=−1

3
eϑ−s , s ∈ [0,2].

Then, using formula (11), we set u∗
X0,0

(s) = −p on the interval [0,1]. Similarly, we find ux′ (s) = −p on the half-open

interval (1,2], but for ux′′ (s) the conditions of Theorem 3.2 do not hold because of
∑

x0∈X0,1 l∗x0
= 0. In this case, we take

ux′′ (s) =−p. As a result, we obtain the open-loop control package

ux′ (t ) =−0.1151, ux′′ (t ) =−0.1151, t ∈ [0,2],

which guides the system to the positions

x1
(
2|x ′,ux′ (·))= z ′− 1

3

∫ 1

0
e t−s ux′,x′′ (s)d s − 1

3

∫ 2

1
e t−s ux′ (s)d s =−0.25,

x1
(
2|x ′′,ux′′ (·))= z ′′− 1

3

∫ 1

0
e t−s ux′,x′′ (s)d s − 1

3

∫ 2

1
e t−s ux′′ (s)d s =−1.5.

The figures show the dependence of the first coordinate on time if the initial state is x ′ (Fig. 1) and x ′′ (Fig. 2). The
part of the trajectory (t ∈ [0,1]) when we have no signal on the state of the system is given by the dashed line, and the
plot when the system is observable (t ∈ [1,2]) is given by the solid line. The targets sets Mx′ and Mx′′ are represented
by shaded rectangles in Fig. 1 and Fig. 2, respectively.

Fig. 1. The trajectory x1 of the system from x′. Fig. 2. The trajectory x1 of the system from x′′.
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