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Abstract: The occurrence of homoclinic bifurcation in nonlinearly damped Duffing-vander Pol (DVP) oscillator with parametric
and external excitations is studied both analytically and numerically. Using Melnikov method, an analytical threshold
condition for the prediction of onset of horseshoe chaos is obtained. Melinkov threshold curves are drawn in different
external parameters space. The threshold curves separating the chaotic and non-chaotic regions are obtained. The
effect of parametric and external excitations with ω = Ω and ω 6= Ω are analysed on the horseshoe dynamics. For
small amplitude of the external excitations,when the damping exponent (p) increased from small value, the onset of
horseshoe chaos is decreased. But the result is opposite for the case of large amplitude of the external excitation.
Analytical predictions are demonstrated through numerical simulation.
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1. Introduction

For the past 20 years, there was a significant interest in studying parametrically driven systems [1–8]. The interest is
due to the fact that parametrically excited dynamical systems describe various problems in engineering and physics.
By external periodic and parametric excitations of a nonlinear dynamical systems give rise to complicated and unex-
pected behaviours of the solutions. The introduction of horseshoe into the dynamics, ie., transverse intersections of
stable and unstable manifolds coming from hyperbolic fixed point of the associated Poincaré map are the source of
such complicated behaviours.

In recent years, many research workers have paid attention to study the solutions of nonlinear differential equa-
tions by using various perturbation methods. Among these are the homotopy perturbation method [9–11], Melnikov
perturbation method [12–15] and the variational iteration method [15–17]. Melnikov’s analysis is a powerful analytical
tool to provide an approximate criterion for the occurrence of hetero/homoclinic chaos in a wide class of dynamical
systems. Its also an effective approach to detect chaotic dynamics and to analyse near homoclinic motion with de-
terministic or random pertubation. The method was applied by Jing et al. [18] to study the complex dynamics in
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pendulum equation with parametric and external excitations and by Siewe Siewe et al. [19, 20] to examine the oc-
currence of chaos in a parametrically driven extended Rayleigh oscillator andΦ6-vander Pol oscillator with three-well
potential. Wu et al. [21] and Schwalger et al. [22] attempted to suppress or generate chaos in LÜ and Duffing systems
using parametric perturbation. The effect of symmetry-breaking on the parametrically excited pendulum including
bias term is investigated by Zhou et al. [23]]. Recently, Zhou et al. [24] investigated both analytically and numerically
the chaotic motions of the DVP oscillator with external and parametric excitations and Miwadinou et al. [26] studied
the effect of nonlinear dissipation on the basin boundaries of a driven two-well or catastropic single-well modified
Rayleigh-Duffing oscillator.

In this paper, we investigate analytically and numerically the effect of parametric perturbation in nonlinearly
damped DVP oscillator equation

ẍ +γẋ(1−x2) | ẋ |p−1 −α2x +βx3(1+ηcos Ωt ) = f cosωt , (1)

where γ is a damping parameter, p is a damping exponent, α > 0,β > 0 are real parameters, η is the amplitude and
Ω is the frequency of the parametric perturbation and f is the amplitude of the external periodic forcing and ω is the
corresponding frequency. The nonlinear damping term is taken to be proportional to the power of the velocity, in the
form γẋ | ẋ |p−1. A similar nonlinear damping term was used previously by many researchers [27–31]. The motivation
for our interest in this system is that it has wide range of applications in physics and biology. When p = 1 and η= 0, Eq.
(1) serves as a basic model for self-excited oscillations in various disciplines [23–26]. Our objective here is to explore
the occurrence of horseshoe chaos using both analytical and numerical techniques. In our present analysis we use
the Melnikov method to study the influence of parametric perturbation on horseshoe dynamics.

In Eq.(1), the nonlinear damping is defined by the exponent p

d pt (ẋ) = γẋ | ẋ |p−1 . (2)

In Fig. 1(a) we have plotted the above function (Eq. (2)) versus velocity (v = ẋ) for few values of p. From this figure,
we note that p < 0 (p = 0.1) representing an important case which can be associated with a dry friction phenomenon
[32, 33].

When γ= 0,η= 0 and f = 0, Eq. (1) corresponds to the following undamped and unexcited system

ẍ −α2x +βx3 = 0. (3)

The potential function of the unexcited system (Eq. (3)) is as follows

V (x) =−1

2
α2x2 + 1

4
βx4, (4)

and then the Hamiltonian function associated to Eq. (4) is

H(x, y) = 1

2
y2 − 1

2
α2x2 + 1

4
βx4. (5)

By analyzing the unperturbed system, we can observe that there are three different equilibria, one saddle fixed point
(x∗, y∗) = (0,0) and two center type fixed points (x∗, y∗) = (±α/

√
β,0). There exist homoclinic orbits which connects

the saddle to itself are given by

W ±(xh(τ), yh(τ)) =
(
±α

√
2

β
sechτ,∓α2

√
2

β
sechατ tanhατ

)
, τ= t − t0. (6)

Stable manifolds (W ±
s ) and unstable manifolds (W ±

u ) of homoclinic orbits are indicated in Fig. 1(b). Periodic orbits
are nested within and outside the homoclinic orbits.

The paper is organized as follows. In section II, we obtained the conditions of existence of the horseshoe chaos
under parametric perturbation using Melinkov technique. Then the effect of parametric perturbation on horseshoe
dynamics is analyzed in section III. The analytical prediction is demonstrated through numerical simulations. We end
in section IV with conclusions.

2. Melnikov Analysis For the Parametric Perturbation

We now suppose that the unperturbed system discussed in the previous section is perturbed by a combination
of parametric force ηcosΩt , periodic force f cosωt and dissipative term (1− x2)ẋ | ẋ |p−1. In this section, we will
investigate analytically the condition for the onset of horseshoe chaos by applying Melnikov method to Eq. (1).

We consider the DVP equation with periodic parametric perturbation with the nonlinearly damped term,

ẋ = y (7a)

ẏ =α2x −βx3 +ε[−βx3ηcosΩt −γ (1−x2)y |y |p−1 + f cosωt
]

(7b)
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Fig. 1. (a) The function d pt (ẋ) versus ẋ for few values of p. (b) Phase portrait of unperturbed system (Eq. (3)). The stable (W ±
s )

and (W ±
u ) parts of homoclinic orbits connecting saddle to itself are indicated. The analytical expression for the homoclinic orbits

is given by Eq. (6)

where ε is a small parameter. Because the Melnikov method is based on the perturbation theory, we have introduced
a small parameter ε in the equation of motion. Recently, Sethu Meenakshi et al. [34, 35] studied the effect of narrow-
band frequency and amplitude modulated signals in nonlinearly damped DVP oscillator.

Now we compute the Melnikov function of the system (Eq.(7)) along the homoclinic orbit ((6)) as follows. For Eq.(7),
Melnikov function is worked out to be

M(t0) =−γ
∫ ∞

−∞
(1−x2

h)|yh |p+1 dτ+ f
∫ ∞

−∞
yh cosω(τ+ t0)dτ

−βη
∫ ∞

−∞
yh x3

h cosΩ(τ+ t0)dτ (8a)

= I1 + I2 + I3

where,

I1 =−γ
∫ ∞

−∞
(1−x2

h)|yh |p+1 dτ (8b)

I2 = f
∫ ∞

−∞
yh cosω(τ+ t0)dτ (8c)

I3 =−βη
∫ ∞

−∞
yh x3

h cosΩ(τ+ t0)dτ (8d)

2.1. Calculation of I1 :

From Eq. (8b), we have

I1 =−γ
∫ ∞

−∞
|yh |p+1dτ+γ

∫ ∞

−∞
|yh |p+1 x2

hdτ (9)

= I11 + I12

Using the explicit form of (xh , yh) given by Eq.(6) and by the application of some algebraic techniques, the integrals
I11 and I12 are worked out to be

I11 =−γ(α2)p+ 1
2

[
2

β

](p+1)/2

B

[
p +2

2
,

p +1

2

]
(10a)

and

I12 = γ(α2)p+3/2
[

2

β

](p+3)/2

B

[
p +2

2
,

p +3

2

]
(10b)

Therefore

I1 =−γ(α2)p+ 1
2

[
2

β

](p+1)/2

B

[
p +2

2
,

p +1

2

]
+γ(α2)p+3/2

[
2

β

](p+3)/2

B

[
p +2

2
,

p +3

2

]
(10c)

where B(m,n) is the Euler Beta function defined as B(m,n) = Γ(m)Γ(n)

Γ(m +n)
, where Γ(m) denotes the Euler gamma func-

tion, which is defined as Γ(x) = ∫ ∞
0 t x−1e−t d t , x > 0.
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2.2. Calculation of I2

From Eq. (8c) we have

I2 = f
∫ ∞

−∞
yh[cosωτcosωt0 − sinωτ sinω t0]dτ

= f cosωt0

∫ ∞

−∞
yh cosωτdτ− f sinωt0

∫ ∞

−∞
yh sinωτdτ (11)

= I21 + I22

After the evaluation of the integral I21, the integral value of I21 = 0 and the value of integral I22 is worked out to be

I22 =± f α2

√
2

β
sinωt0

∫ ∞

−∞
sechατ tanhατ sinωτ dτ

=±
√

2

β
f πω sech

[πω
2α

]
sinωt0

therefore, the integral value of I2 is

I2 =±
√

2

β
f πω sech

[πω
2α

]
sinωt0 (12)

2.3. Calculation of I3 :

From Eq. (8d), we have,

I3 =−βη
∫ ∞

−∞
yh x3

h [cosΩτ cosΩt0 − sinΩτ sinΩt0]dτ

=−βηcosΩt0

∫ ∞

−∞
yh x3

h cosΩτdτ+βηsinΩt0

∫ ∞

−∞
yh x3

h sinΩτdτ (13)

= I31 + I32

The integral value of I31 is zero. The value of integral I32 is worked out to be,

I32 =βηsinΩ1t0

∫ ∞

−∞
yh x3

h sinΩτ dτ (14)

=∓η π

6β
Ω2 (4α2 +Ω2) cosech

[
πΩ

2α

]
sinΩt0 (15)

Therefore,

I3 =∓η π

6β
Ω2 (4α2 +Ω2) cosech

[
πΩ

2α

]
sinΩt0. (16)

Therefore the Eq. (8) becomes,

M(t0) = A+B ± f C sinωt0 ∓DηsinΩt0 (17a)

where,

A =−γ(α2)p+ 1
2

[
2

β

](p+1)/2

B

[
p +2

2
,

p +1

2

]
(17b)

B = γ(α2)p+3/2
[

2

β

](p+3)/2

B

[
p +2

2
,

p +3

2

]
(17c)

C =
√

2

β
πω sech

[πω
2α

]
(17d)

D = π

6β
Ω2 (4α2 +Ω2) cosech

[
πΩ

2α

]
. (17e)

M(t0) is proportional to the distance between the stable manifolds (Ws ) and unstable manifold (Wu) of a saddle.
When the stable and unstable manifolds are separated then the sign of M(t0) always remain same. M(t0) oscillates
when Ws and Wu intersects transversely (horseshoe dynamics). A zero of M(t0) corresponds to tangential intersection.
The occurrence of transverse intersections implies that the Poincaré map of the system has the so-called horseshoe
chaos.
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3. Effect of Parametric Perturbation on Homoclinic Bifurcation

In this section we study the effect of parametric perturbation on homoclinic bifurcation. For η 6= 0 and ω=Ω, the
necessary condition for M(t0) to change sign is

η± ≤ ηM = 6β(−(A+B)±C f )

πΩ2(4α2 +Ω2)
sinh

(
πΩ

2α

)
(18a)

or

η± ≥ ηM = 6β((A+B)±C f )

πΩ2(4α2 +Ω2)
sinh

(
πΩ

2α

)
(18b)

where the superscripts sign ’+’ and ’-’ correspond to the homoclinic orbits W + and W − respectively. In the present
work we analyse the parametric perturbation with small amplitude ( f = 0.2) and large amplitude ( f = 1.0) of the
external periodic force. Figs. 2 and 3 show the threshold value of η(Ω) for Ω = ω. First taking f = 0.2, letting Ω = ω,
for different values of p, we get the threshold curves separating the chaotic and non-chaotic regions as in Fig. 2. Next,
letting f = 1.0, the threshold curves for different values of p are shown in Fig. 3. The values of the other parameters
are α= 1.0,β= 5.0 and γ= 0.4.

Fig. 2. Melnikov threshold curves for horseshoe chaos in the (η,Ω(=ω)) plane for the parametrically driven system (Eq. (7)) for
four p values. The values of the other parameters in Eq.(7) are α= 1.0,β= 5.0,γ= 0.4 and f = 0.2.

From Figs. 2 and 3, we can obtain the following conclusions

1. In the region (i), both M+(t0) and M−(t0) change sign. This implies that in this region transverse intersections
of the orbits W +

s and W +
u and W −

s and W −
u occur.

2. In the region (ii), M+(t0) alone changes sign and the sign of M−(t0) remains same. This indicates that in the
region the transverse intersection of the orbits W +

s and W +
u alone occur.

3. In the region (iii), M+(t0) and M−(t0) do not change sign. Consequently, in this region, no transverse intersec-
tion of stable and unstable orbits of saddle.

4. In the region (iv), transverse intersections of W −
s and W −

u alone take place since in this region only M−(t0)
changes sign.

5. In the region (v), both M+(t0) and M−(t0) change sign. This means that transverse intersections of stable and
unstable parts of both W + and W − occur.

6. . For f = 0.2 and p = 2.0, area of the periodic region is more than the other p valus such as p = 0.1,0.5 and p = 1.0,
which is clearly evident in Fig. 2. In Fig. 3, for f = 1.0, periodic motion (region III) increases as p increases.
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Fig. 3. Melnikov threshold curves for horseshoe chaos in the (η,Ω(=ω)) plane for the parametrically driven system (Eq. (7)) for
four p values. The values of the other parameters in Eq. (7)) are α= 1.0,β= 5.0,γ= 0.4 and f = 1.0.

7. The regions (i) and (v) (chaotic motions) almost the same in Figs.2 and 3 for all values of p. In Fig. 3, regions (ii)
and (iv) decreases as p increases.

We have verified the above analytical predictions by numerically computing the stable and unstable manifolds of
the saddle for p = 0.5. The other parameters values are fixed as α = 1.0,β = 5.0,γ = 0.4 and ω = Ω = 1.0. Unstable
manifolds are obtained by numerically integrating Eq. (1) by the fourth-order Runge-Kutta method in the forward
time for a set of 900 initial conditions chosen around the perturbed saddle point. The stable manifolds are obtained
by integrating the equation of motion in reverse time. As an example, Fig. 4 shows the part of stable and unstable
orbits of saddle in the Poincare map for p = 0.5,ω=Ω= 1.0, f = 0.2 and four values of η chosen in the regions (i), (ii),
(iii) and (iv) in Fig. 2.

Fig. 4. Numerically computed stable and unstable manifolds of the saddle fixed point of the paramertically driven system (Eq.
(7)) for four values of η chosen in the regions (i), (ii), (iii) and (iv) with p = 0.5. The values of the other parameters in Eq.(7) are
α= 1.0,β= 5.0,γ= 0.4, f = 0.2 and ω=Ω= 1.0.
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Next we study the occurrence of homoclinic bifurcation numerically measuring the time τM elapsed between suc-
cessive change in the sign of M(t0). τM can be determined from Eq. (17). We fix the parameters in Eq. (17) as
α= 1.0,β= 5.0,γ= 0.4 andω=Ω= 1.0. Fig. 5 shows the variation of 1/τM versus η for f = 0.2 and few values of p. The
variation of 1/τM versus η for f = 1.0 and few values of p is shown in Fig. 6. Continuous curve corresponds to positive
sign while dashed curve corresponds to negative sign in Eq. (17). Horseshoe dynamics does not occur when 1/τM is
zero and it occurs in the region when 1/τM > 0.

Fig. 5. Variation of 1/τ±M versus η for f = 0.2 and four values of p. The values of the other parameters in Eq. (7) are
α= 1.0,β= 5.0,γ= 0.4, andΩ=ω= 1.0.

Fig. 6. Variation of 1/τ±M versus η for f = 1.0 and four values of p. The values of the other parameters in Eq. (7) are
α= 1.0,β= 5.0,γ= 0.4, andΩ=ω= 1.0.

From Figs. 5 - 6, we obtain the following conclusions

1. in Fig. 5(a), for f = 0.2 and p = 0.1, both 1/τ+M and 1/τ−M are zero (that is τ± are infinity) in the interval 0 < η <
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5.815. This implies that horseshoe chaos does not occur for η < η±M = 5.815. For η > 5.815, both M+(t0) and
M−(t0) oscillate and hence 1/τ±M are non-zero. For η > η±M horseshoe chaos is possible. One clear observation
from the Figs. 5(b), 5(c) and 5(d) is that, the threshold for horseshoe chaos ηM increases when the damping
exponent (p) decreases The Melnikov threshold value (ηM ) for p = 0.1,0.5,1.0 and 2.0 are η±M = 5.815,5.130,4.441
and 3.452.

2. In Fig. 6(a), for f = 1.0 and p = 0.1, 1/τM+ and 1/τM− are non-zero for η< η±M = 4.712, that is horseshoe chaos is
possible for η< η±M = 4.712. For η> η±M = 4.712, horseshoe chaos does not occur. As p increases the threshold for
horseshoe chaos (ηM ) also increases which are clearly evident in Figs. 6(b), 6(c) and 6(d). The case is opposite
for f = 0.2 (Fig. 5). The Melnikov threshold (η±M ) values for horseshoe chaos for p = 0.1,0.5,1.0 and 2.0 are
ηM = 4.712,5.390,6.083 and 7.074.

Fig. 7. Numerically computed stable and unstable manifolds of the saddle fixed point of the paramertically driven system (Eq. (7))
for two values of η with p = 0.5. The values of the other parameters in Eq. (7) are α= 1.0,β= 5.0,γ= 0.4, f = 0.2 and ω=Ω= 1.0.

The above analytical results are verified numerically. Fig. 7 shows the part of stable and unstable orbits in the Poincaré
map for two values of η chosen around the critical values of η±M for f = 0.2 (Fig. 5) and f = 1.0 (Fig. 6). For η= 0.5, f =
0.2 and p = 0.5, there is no transverse intersection of stable and unstable orbits of the saddle as in Fig. 7(a) and for
η= 5.6, transverse intersections of stable and unstable orbits in x < 0 and x > 0 are clearly seen in Fig. 7(b).

Fig. 8. Variation of 1/τ±M versus η for f = 0.2 and four values of p. The values of the other parameters in Eq.(7) are

α= 1.0,β= 5.0,γ= 0.4,Ω= (
p

5−1)/2 and ω= 1.0.

Finally we consider the effect of parametric perturbation for the case ofΩ 6=ω. In Fig. 8, we have plotted 1/τ±M as a

function of η for ω = 1.0,Ω =
p

5−1
2 and four values of p. The other parameters values are fixed at α = 1.0,β = 5.0, f =
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Fig. 9. Variation of 1/τ±M versus f for η= 0.02 and four values of p. The values of the other parameters in Eq.(7) are

α= 1.0,β= 5.0,γ= 0.4,Ω= (
p

5−1)/2 and ω= 1.0.

Fig. 10. Numerically computed stable and unstable manifolds of the saddle fixed point of the paramertically driven system (Eq.
(7)) for two values of f with p = 0.5. The values of the other parameters in Eq. (7) are α= 1.0,β= 5.0,γ= 0.4,η= 0.02,
Ω= (

p
5−1)/2 and ω= 1.0.

0.2 and γ = 0.4. In Fig. 8 where the value of f is fixed at 0.2, 1/η±M are zero for 0 < η < 2.310 for p = 0.1 (Fig. 8(a))
and 0 < η < 0.342 for p = 0.5 (Fig. 8(b)) and hence no horseshoe chaos occurs in this interval of η. For p ≥ 1 only
horseshoe chaos is possible, which is clearly shown in Figs. 8 (c) and (d). Fig. 9 shows the plot of 1/τ±M versus f for

η= 0.002,ω= 1,Ω=
p

5−1
2 and four values of p. As p increases the region of horseshoe chaos increases, which is clearly

evident in Fig. 9. The critical values of the threshold ( fM ) for horseshoe chaos for p = 0.1,0.5,1.0 and 2.0 are 0.462,
0.233, 0.112 and 0.021. The above analytical results are verified numerically. Figure 10 shows the part of stable and
unstable orbits in the Poincaré map for two values of f chosen around the critical values of f ±

M for η= 0.02 (Fig. 9). For
f = 0.2 and p = 0.5, there is no transverse intersection of stable and unstable orbits of the saddle as in Fig. 10(a) and
f = 0.5, transverse intersection of stable and unstable orbits are clearly seen in Fig. 10(b).

4. Conclusion

Using the Melnikov and numerical methods, the occurrence of horseshoe chaos for the nonlinearly damped
DVP oscillator with external and parametric excitations are investigated in this paper. Applying Melnikov analyti-
cal method, we obtained the threshold for the onset of horseshoe chaos, that is transverse intersections of stable and
unstable branches of homoclinic orbits. In the present work, we have analysed the effect of parametric and external
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excitations with the frequencies ω = Ω and ω 6= Ω. Threshold curves are drawn in various parameters space. The
Melnikov threshold curves separating the chaotic and non-chaotic regions are obtained.

For ω = Ω, when the amplitude ( f ) of the external excitation is fixed at small value ie., f = 0.2, as p increases,
horseshoe chaos occurs at η> η±M but for the higher values of f (ie., f > 1) horseshoe chaos occurs at η< η±M (Figs.5 and
6). For ω 6=Ω and f = 0.2, no horseshoe chaos occurs for p < 1 but for p ≥ 1 only horseshoe chaos is possible (Fig. 8).
For ω 6= Ω and η = 0.02 the threshold for horseshoe ( f ±

M ) decreases as p increases (Fig. 9). It is important to study
the effect of parametric excitation in nonlinearly damped DVP oscillator with other excitations such as sinusoidal and
nonsinusoidal, amplitude and frequency modulated forces. This will be investigated in future.
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