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1. Introduction

During last few decades, fractional order partial differential equations have been proposed and investigated in
many research fields, such as fluid mechanics, mechanics of materials, biology, plasma physics, finance and chem-
istry, see [1–6]. The systems of fractional partial differential equations have been increasingly used to represent phys-
ical and control systems (see for instant, [7–11] and some references cited therein). Since some of the fractional order
partial differential equations do not have exact analytic solutions, approximating or numerical techniques are gener-
ally applied. There are many different analytical and numerical methods such as ADM [12], the fractional complex
transformation (Elsayed M.E. Zayed ([13]), homotopy perturbation method (S. Momani [14]), a homotopy perturba-
tion technique (S. T. Mohyud-Din [15]), Variational iteration method (Z. Odibat [16]), homotopy perturbation trans-
form method (Brajesh Kumar Singh and Pramod Kumar [17]), generalized differential transform method (A. Ebadian
et al. [18]), decomposition method (Zaid Odibat [16]), Modified least squares homotopy perturbation method (H.
Thabet and S. Kendre [19]) and so on.

The ADM due to Adomian [20] has been successfully used in solving a wide variety of deterministic as well as
stochastic problems in differential equations. The ADM provides the solution in a rapidly convergent series with eas-
ily computable components. The main advantage of ADM is that it can be used directly to solve,all types of differential
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equations with homogeneous and inhomogeneous initial and boundary conditions. These include linear and nonlin-
ear ordinary, and partial differential equations, see [21–25].

More recently, the powerful modifications of ADM were proposed by Wazwaz [26], Odibat [16] and Ramana [27].
The established modifications in [16, 26–28] demonstrated a rapid convergence of the series solution if compared with
the standard Adomian method, and therefore presented a major progress. The modified decomposition method has
been shown to be computationally efficient in several examples that are important to researchers in applied science.

The purpose of this paper is to introduce a new reliable modification of ADM to find the approximate analytical
solution for the following general system of nonlinear fractional partial differential system with initial values:

D
qi
t ui (x̄, t ) = fi (x̄, t )+Li ū(x̄, t )+Ni ū(x̄, t ), mi −1 < qi ≤ mi ∈N,

∂ki ui (x̄,0)

∂t ki
= fi ki (x̄), ki = 0,1,2, . . . ,mi −1, i = 1,2, . . . ,m,

(1)

for ū(x̄, t ) = (u1(x̄, t ),u2(x̄, t ), . . . ,un(x̄, t )), x̄ = (x1, x2, . . . , xn) ∈ Rn where Li , Ni are linear and nonlinear operators re-
spectively of ū = ū(x̄, t ) and its derivatives which might include other fractional derivatives of orders less than qi ,
and fi (x̄, t ) are known analytic functions and D

qi
t are the Caputo partial derivatives of fractional order qi . In case of

fi (x̄, t ) = 0, the system (1) becomes in the homogeneous form.
Our aim is to generalize the achievements established by others in away to include the standard Adomian method
[21–23, 25] and the modifications of ADM are presented in [16, 26–28].

The rest of the paper is organized as follows: In Section 2, we will present basic definitions, theorems and prelimi-
nary results that are needed in the sequel. In Section 3, we introduce a new modification of ADM for solving a system
of NFPDEs. Applications and numerical implementations are found out in Section 4.

2. Preliminaries

There are various definitions and properties of fractional integrals and derivatives. In this section, we give some
modified definitions, theorems and properties of the fractional calculus theory, which can be found in [14, 29–33].

Definition 2.1.
A real function u(x, t ), x ∈ R, t > 0, is said to be in the space Cµ, µ ∈ R if there exists a real number p(> µ), such that

u(x, t ) = t p u1(x, t ), where u1(x, t ) ∈C (R×[0,∞)), and it is said to be in the space C m
µ if and only if ∂

m u(x,t )
∂t m ∈Cµ, m ∈N.

Definition 2.2.
Let q ∈ R\N and q ≥ 0. The Riemann-Liouville fractional partial integral denoted by I

q
t of order q for a function

u(x, t ) is defined as:I
q

t u(x, t ) = 1

Γ(q)

∫ t

0
(t −τ)q−1u(x,τ)dτ, q, t > 0,

I 0
t u(x, t ) = u(x, t ), q = 0, t > 0,

(2)

where Γ is the well-known Gamma function.

Theorem 2.1.
Let q1, q2 ∈ R\N, q1, q2 ≥ 0 and p > −1. For a function u(x, t ) ∈ Cµ, µ > −1, the operator I

q
t satisfies the following

properties:
I

q1
t I

q2
t u(x, t ) =I

q1+q2
t u(x, t ),

I
q2

t I
q1

t u(x, t ) =I
q1

t I
q2

t u(x, t ),

I
q

t t p = Γ(p +1)

Γ(p +q +1)
t p+q .

(3)

Definition 2.3.
For q ∈ R, m − 1 < q < m ∈ N, the Riemann-Liouville fractional partial derivative of order q for u(x, t ) is defined as
follows:

D
q
t u(x, t ) = ∂m

∂t m

∫ t

0

(t −τ)m−q−1

Γ(m −q)
u(x,τ)dτ, t > 0. (4)



Hayman Thabet, Subhash Kendre / Int. J. Adv. Appl. Math. and Mech. 6(3) (2019) 1 – 13 3

Definition 2.4.
Let q, t ∈R, t > 0 and u(x, t ) ∈C m

µ . Then
D

q
t u(x, t ) =

∫ t

a

(t −τ)m−q−1

Γ(m −q)

∂mu(x,τ)

∂τm dτ, m −1 < q ≤ m ∈N,

D
q
t u(x, t ) = ∂mu(x, t )

∂t m , q = m ∈N,

(5)

is called the Caputo fractional partial derivative of order q for a function u(x, t ).

Theorem 2.2.
Let t , q ∈R, t > 0 and m −1 < q ≤ m ∈N. ThenI

q
t D

q
t u(x, t ) = u(x, t )−

m−1∑
k=0

t k

k !
u(k)

t (x,0),

D
q
t I

q
t u(x, t ) = u(x, t ).

(6)

3. New modification of ADM for solving a system of NFPDEs

The reliable modifications of Adomian decomposition method and its effectiveness had been confirmed through
many studies. In this section, we introduce a new modification of ADM to solve a system of NFPDEs.
We assume that the solution functions ui (x̄, t ) of the system (1) have the following analytic expansion:

ui (x̄, t ) =
∞∑

k=0
ui k (x̄, t ), i = 1,2, . . . ,m. (7)

The modified decomposition method [26] is assumed that the function ui 0(x̄, t ) can be divided into the sum of two
parts, namely φi 1(x̄, t ) and φi 2(x̄, t ) and it can be written as

ui 0(x̄, t ) =φi 1(x̄, t )+φi 2(x̄, t ), i = 1,2, . . . ,m. (8)

The variation here is that only one part namely φi 1(x̄, t ) is to be assigned to the zeroth component ui 0(x̄, t ), whereas
the remaining part φi 2(x̄, t ) is combined with the other terms to define ui 1(x̄, t ).
To introduce our modification, first we need to present the following results:

Theorem 3.1.
Let ū(x̄, t ) =∑∞

k=0 ūk (x̄, t ), for the parameter λ, we define ūλ(x̄, t ) =∑∞
k=0λ

k ūk (x̄, t ), then the nonlinear operators Ni ūλ
satisfy the following property:

Ni ūλ = Ni

∞∑
k=0

λk ūk =
∞∑

n=0

[ 1

n!

∂n

∂λn

[
Ni

n∑
k=0

λk ūk
]
λ=0

]
λn , i = 1,2, . . . ,m. (9)

Proof. According to Maclaurin expansion of Ni
∑∞

k=0λ
k ūk with respect to λ, we have

Ni ūλ = Ni

∞∑
k=0

λk ūk = [Ni

∞∑
k=0

λk ūk ]λ=0 +
[ ∂
∂λ

[Ni

∞∑
k=0

λk ūk ]λ=0
]
λ+ [ ∂2

∂λ2 [Ni

∞∑
k=0

λk ūk ]λ=0
]
λ2 +·· ·

=
∞∑

n=0

[ 1

n!

∂n

∂λn [Ni

∞∑
k=0

λk ūk ]λ=0
]
λn

=
∞∑

n=0

[ 1

n!

∂n

∂λn

[
Ni (

n∑
k=0

λk ūk +
∞∑

k=n+1
λk ūk )

]
λ=0

]
λn

=
∞∑

n=0

[ 1

n!

∂n

∂λn

[
Ni

n∑
k=0

λk ūk
]
λ=0

]
λn , i = 1,2, . . . ,m, (10)

which completes the proof.

Definition 3.1.
Let the polynomials, Ai n(ui 0,ui 1, . . . ,ui n), for i = 1,2, . . .m, to be defined as follows:

Ai n(ui 0,ui 1, . . . ,ui n) = 1

n!

∂n

∂λn

[
Ni

n∑
k=0

λk ūk

]
λ=0

, i = 1,2, . . . ,m, (11)

we call Ai n(ui 0,ui 1, . . . ,ui n) as the generalized Adomian polynomials [34, 35].
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Remark 3.1.
Let Ai n = Ai n(ui 0,ui 1, . . . ,ui n), by using Theorem 3.1 and Definition 3.1, the nonlinear operators Ni ūλ can be ex-
pressed in terms of Admomian polynomials as follows:

Ni ūλ =
∞∑

n=0
λn Ai n , i = 1,2, . . . ,m. (12)

Remark 3.2.
Let λ→ 1 in Remark 3.1 and by using Theorem 3.1, we have

Ni

∞∑
k=0

ūk =
∞∑

n=0
Ai n , i = 1,2, . . . ,m. (13)

3.1. Existence Theorem

The following theorem presents a general solution form obtained by new modification of ADM for a system of
nonlinear fractional partial differential equations:

Theorem 3.2.
Let mi −1 < qi < mi ∈N, for i = 1,2, . . .m, and let fi (x̄, t ), fi (x̄) to be as in system (1). Then the system (1) admit at least
a solution given by

ui (x̄, t ) =
mi−1∑
ki=0

t ki

ki !
fi k (x̄)+ f (−qi )

i t (x̄, t )+
∞∑

k=2

[
L(−qi )

i t ū(k−1) + A(−qi )
i (k−1)t

]
, (14)

for i = 1,2, . . .m, where L(−qi )
i t ū(k−1) and A(−qi )

i (k−1)t denote the q th
i fractional partial integral with respect to t for Li (k−1)

and Ai (k−1) respectively.

Proof. To prove the above theorem, we perform Riemann-Liouville fractional partial integral given by Definition2.2
with respect to t to both sides of the equations of the system (1), and by using Theorem 2.2, we obtain

ui (x̄, t ) =
mi−1∑

j=0

t ki

ki !
u(ki )

i t (x̄,0)+ f (−qi )
i t (x̄, t )+I

qi
t [Li ū]+I

qi
t [Ni ū], (15)

for i = 1,2, . . . ,m. Substituting the initial condition from system (1) in system (9), we get

ui (x̄, t ) = f (−qi )
i t (x̄, t )+

mi−1∑
ki=0

t ki

ki !
fi ki (x̄)+I

qi
t [Li ū]+I

qi
t [Ni ū], i = 1,2, . . . ,m. (16)

According to the decomposition method [12], we decompose the unknown functions ui k (x̄, t ) into sums of compo-
nents defined by the following decomposition series:

ui (x̄, t ) =
∞∑

k=0
ui k (x̄, t ), i = 1,2, . . . ,m. (17)

By substituting the system (17) into the system (16), we obtain

∞∑
k=0

ui k (x̄, t ) =
m−1∑
k=0

t k

k !
fi ki (x̄)+ f (−qi )

i (x̄, t )+I
q

t [Li

∞∑
k=0

ūk ]+I
q

t [Ni

∞∑
k=0

ūk ], (18)

for i = 1,2, . . . ,m. The linear terms Li ū satisfy

Li ū(x̄, t ) = Li

∞∑
k=0

ūk (x̄, t ) =
∞∑

n=0
Li ūk (x̄, t ), i = 1,2, . . . ,m. (19)

By using Remark 3.2, the system (18) can be rewritten as:

∞∑
k=0

ūi k (x, t ) =
mi−1∑
k=0

t ki

ki !
fi ki (x̄)+ f (−qi )

i t (x̄, t )+I
qi

t [
∞∑

k=0
Li ūk ]+I

qi
t [

∞∑
n=0

Ai n], (20)

for i = 1,2, . . . ,m. Under the assumption of modified ADM [26], we propose a slight variation in ui 0(x̄, t ) and ui 1(x̄, t ) as
compared to ADM [12]. So we assume that u0i (x̄, t ) =φi 1(x̄, t ) for i = 1,2, . . . ,m, and the variation here is that only one
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part φi 1(x̄, t ) =∑mi−1
k=0

t ki

ki ! fi ki (x̄) be assigned to the zeroth component ui 0(x̄, t ), whereas the remaining part φi 2(x̄, t ) =
f (−qi )

i t (x̄, t ) is combined with the other terms to define ui 1(x̄, t ). According to these suggestions, it formulates the
modified recursive algorithm as follows:

ui 0(x̄, t ) =
mi−1∑
ki=0

t ki

ki !
fi ki (x̄),

ui 1(x̄, t ) = f (−qi )
i t (x̄, t )+L(−qi )

i t ū0]+ A(−qi )
i 0t ,

ui 2(x̄, t ) = L(−qi )
i t ū1 + A(−qi )

i 1t ,

...

ui k (x̄, t ) = L(−qi )
i t ū(k−1) + A(−qi )

i (k−1)t , k = 2,3, . . . , i = 1,2, . . . ,m.

(21)

The decomposition series given by the system (17) can be written as:

ui (x̄, t ) =
n∑

k=0
ui k (x̄, t ) = ui 0(x̄, t )+ui 1(x̄, t )+

n∑
k=2

ui k (x̄, t ), i = 1,2, . . . ,m. (22)

Inserting (21) into (22) completes the proof.

3.2. Convergence and Error analysis

The following theorems shows the convergence and the error analysis for the solution of a system of NFPDEs ob-
tained by the proposed modification of ADM:

Theorem 3.3.
Let B be a Banach space. Then the series {ui n(x̄, t )}∞n=0 obtained by the system (1) converges to Si ∈ B for i = 1,2, . . . ,m, if
there exists γi , 0 ≤ γi < 1, then ‖ui n‖ ≤ γi‖ui (n−1)‖, ∀n ∈N.

Proof. Define that Si n are the sequences of partial sums of the series given by the system (21) as:

Si 0 = ui 0(x̄, t ),

Si 1 = ui 0(x̄, t )+ui 1(x̄, t ),

Si 2 = ui 0(x̄, t )+ui 1(x̄, t )+ui 2(x̄, t ),

...

Si n = ui 0(x̄, t )+ui 1(x̄, t )+ui 2(x̄, t )+·· ·+ui n(x̄, t ), i = 1,2, . . . ,m,

(23)

and we need to show that {Si n}∞n=0 are a Cauchy sequences in Banach space B . For this purpose, we consider

‖Si (n+1) −Si n‖ = ‖ui (n+1)(x̄, t )‖ ≤ γi‖ui n(x̄, t )‖ ≤ γ2
i ‖ui (n−1)(x̄, t )‖ ≤ ·· · ≤ γn+1

i ‖ui 0‖, i = 1,2, . . . ,m.
(24)

For every n,r ∈N, n ≥ r , by using the system (24) and the triangle inequality successively, we have

‖Si n −Si r ‖ = ‖(Si n −Si (n−1))+ (Si (n−1) −Si (n−2))+·· ·+ (Si (r+1) −Si r )‖
≤ ‖(Si n −Si (n−1))‖+‖(Si (n−1) −Si (n−2))‖+·· ·+‖(Si (r+1) −Si r )‖
≤ γn

i ‖ui 0(x̄, t )‖+γn−1
i ‖ui 0(x̄, t )‖+·· ·+γr+1

i ‖ui 0(x̄, t )‖

≤ γr+1
i (1+γi +·· ·+γn

i +·· · )‖ui 0(x̄, t )‖ = γr+1
i

1−γi
‖ui 0(x̄, t )‖, (25)

for i = 1,2, . . . ,m. Since ui 0(x̄, t ) is bounded, we have

lim
n,r→∞‖Si n −Si r ‖ = 0, i = 1,2, . . . ,m. (26)

Therefore, the sequences {Si n}∞n=0 , i = 1,2, . . . ,m are Cauchy sequences in the Banach space B , so the series solution
defined in the system (22) converges. This completes the proof.



6 New modification of Adomian decomposition method for solving a system of nonlinear fractional partial differential equations

Theorem 3.4.
The maximum absolute truncation error of the series solution (14) of the nonlinear time-space fractional partial differ-
ential system (2) is estimated to be

sup
(x̄,t )∈Ω

∣∣ui (x̄, t )−
r∑

k=0
ui k (x̄, t )

∣∣≤ γr+1
i

1−γi
sup

(x̄,t )∈Ω
|ui 0(x̄, t )|, Ω⊂Rn+1, i = 1,2, . . . ,m. (27)

Proof. From Theorem 3.3, we have

‖Si n −Si r ‖ ≤
γr+1

i

1−γi
sup

(x̄,t )∈Ω
|ui 0(x̄, t )|, i = 1,2, . . . ,m. (28)

But we assume that Si n = ∑n
k=0 ui k (x̄, t ) for i = 1,2, . . . ,m, and since n →∞, we obtain Si n → ui (x̄, t ), so the system

(28) can be rewritten as:

‖ui (x̄, t )−Si r ‖ = ‖ui (x̄, t )−
r∑

k=0
ui k (x̄, t )‖ ≤ γr+1

i

1−γi
sup

(x̄,t )∈Ω
|ui 0(x̄, t )|, i = 1,2, . . . ,m. (29)

So, the maximum absolute truncation error in the regionΩ is

sup
(x̄,t )∈Ω

∣∣ui (x̄, t )−
r∑

k=0
ui k (x̄, t )

∣∣≤ γr+1
i

1−γi
sup

(x̄,t )∈Ω
|ui 0(x̄, t )|, i = 1,2, . . . ,m, (30)

and this completes the proof.

4. Applications and numerical implementations

In this section, we apply the new modification of ADM for solving systems of NFPDEs. These examples are cho-
sen because their closed form solutions are available or they have been solved previously by some other well-known
methods.

Example 4.1.
Consider the following system of nonlinear homogeneous dispersive long wave equations of time fractional order with
initial values:

D
q
t u(x, t )+ vx (x, t )+ 1

2
u2

x (x, t ) = 0, u(x,0) =α[
1+ tanh(

1

2
[β+αx])

]
,

D
q
t v(x, t )+ (u(x, t )v(x, t )+u(x, t )+uxx (x, t ))x = 0, v(x,0) =−1+ 1

2
α2sech2(

1

2
[β+αx]).

(31)

For q = 1, the exact solitary wave solution for the system (31) given by [36, 37] is as follows:

u(x, t ) =α[
1+ tanh(

1

2
[β+αx −α2t ])

]
,

v(x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx −α2t ]), (32)

where α,β are arbitrary constants.
By comparing the system (31) with system (1), we observe that, f1(x, t ) = f2(x, t ) = 0, N1(u, v) =− 1

2 (u2)x and N2(u, v) =
−(uv)x , and the system (31) can be rewritten as:

D
q
t u(x, t ) =−vx (x, t )+N1(u(x, t ), v(x, t )), D

q
t v(x, t ) =−ux (x, t )−uxxx (x, t )+N2(u(x, t ), v(x, t )). (33)

To obtain the approximate solution for the system (31), we operate the Riemann-Liouville fractional integral given by
Definition 2.2 with respect to t to both sides of the equations of the system (31), and by using Theorem 2.2, we obtain

u(x, t ) = u(x,0)−I
q

t [vx (x, t )]+I
q

t [N1(u(x, t ), v(x, t ))],

v(x, t ) = v(x,0)−I
q

t [u(x, t )+uxx (x, t )]+I
q

t [N2(u(x, t ), v(x, t ))]. (34)

Assume that the solution is given as:

u(x, t ) =
∞∑

k=0
uk (x, t ), v(x, t ) =

∞∑
k=0

vk (x, t ). (35)
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By using the system (35) in the system (34), we obtain
∞∑

k=0
uk (x, t ) =α[

1+ tanh(
1

2
[β+αx])

]−I
q

t [
∞∑

k=0
vkx (x, t )]+I

q
t [N1(

∞∑
k=0

uk (x, t ),
∞∑

k=0
vk (x, t ))],

∞∑
k=0

vk (x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx])−I

q
t [

∞∑
k=0

(ukx (x, t )+ukxx (x, t ))]+I
q

t [N2(
∞∑

k=0
uk (x, t ),

∞∑
k=0

vk (x, t ))].

(36)

By using Remark 3.2 in the system (36), we get
∞∑

k=0
uk (x, t ) =α[

1+ tanh(
1

2
[β+αx])

]−I
q

t [
∞∑

k=0
vkx (x, t )]+I

q
t [

∞∑
k=0

A1k ],

∞∑
k=0

vk (x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx])−I

q
t [

∞∑
k=0

(ukx (x, t )+ukxx (x, t ))]+I
q

t [
∞∑

k=0
A2k ].

(37)

By using Theorem 3.3, the components of decomposition series in the system (35) can be obtained as

u0(x, t ) =α[
1+ tanh(

1

2
[β+αx])

]
, v0(x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx]),

u1(x, t ) =−I
q

t [v0x ]+I
q

t [A10], v1(x, t ) =−I
q

t [u0x +u0xx ]+I
q

t [A20],

u2(x, t ) =−I
q

t [v1x ]+I
q

t [A11], v2(x, t ) =−I
q

t [u1x +u1xx ]+I
q

t [A21],

...

uk (x, t ) =−I
q

t [v(k−1)x ]+I
q

t [A1(k−1)], vk (x, t ) =−I
q

t [u(k−1)x +u(k−1)xx ]+I
q

t [A2(k−1)], (38)

where A1(k−1), A2(k−1),k = 1,2, . . . are generalized Adomian polynomials which can be obtain by using the system (11).
Consequently, after a few calculations using Mathematica software, we obtain

u0(x, t ) =α[
1+ tanh(

1

2
[β+αx])

]
, v0(x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx]),

u1(x, t ) =−α
3sech2( 1

2 [β+αx])

2Γ(q +1)
t q , v1(x, t ) = α4 sinh(β+αx)sech4( 1

2 [β+αx])

4Γ(q +1)
t q ,

u2(x, t ) =−4α5t 2q sinh4 ( 1
2 (β+αx)

)
csch3(β+αx)

Γ(2q +1)
, v2(x, t ) = α6t 2q (cosh(β+αx)−2)sech4 ( 1

2 (β+αx)
)

4Γ(2q +1)
,

u3(x, t ) = α7t 3q sech4( 1
2 [β+αx])

4Γ(q +1)2Γ(3q +1)

[
Γ(q +1)2[2−cosh(β+αx)]+ [

Γ(2q +1)−2Γ(q +1)2] tanh(
1

2
[β+αx])

]
,

v3(x, t ) = α8t 3q sech6( 1
2 [β+αx])

16Γ(q +1)2Γ(3q +1)

[
Γ(2q +1)(3−2cosh(β+αx))+Γ(q +1)2[−10sinh(β+αx)

+ sinh(2[β+αx])+8cosh(β+αx)−12
]]

,

...

and so on. Hence the third-order term approximate solution for the system (23) is given by

u(x, t ) =α[
1+ tanh(

1

2
[β+αx])

]− α3sech2( 1
2 [β+αx])

2Γ(q +1)
t q −4α5 sinh4(

1

2
[β+αx])

csch3(β+αx)t 2q

Γ(2q +1)

+ α7t 3q sech4( 1
2 [β+αx])

4Γ(q +1)2Γ(3q +1)

[
Γ(q +1)2[2−cosh(β+αx)]+ [

Γ(2q +1)−2Γ(q +1)2] tanh(
1

2
[β+αx])

]
,

v(x, t ) =−1+ 1

2
α2sech2(

1

2
[β+αx])+ α4 sinh(β+αx)sech4( 1

2 [β+αx])

4Γ(q +1)
t q

+ α6t 2q (cosh(β+αx)−2)sech4 ( 1
2 (β+αx)

)
4Γ(2q +1)

+ α8t 3q sech6( 1
2 [β+αx])

16Γ(q +1)2Γ(3q +1)

[
Γ(2q +1)(3−2cosh(β+αx))

+Γ(q +1)2[−10sinh(β+αx)+ sinh(2[β+αx])+8cosh(β+αx)−12
]]

.
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Table 1. Numerical values of the approximate and exact solutions when α=β= 0.5 and q = 0.5,1 for Example 4.1.

x t q = 0.5 q = 1 α= 0.5 β= 0.5 Absolute Error

u(x, t ) v(x, t ) u(x, t ) v(x, t ) uE X (x, t ) vE X |uE X (x, t )−u(x, t )| |vE X (x, t )− v(x, t )|
0.25 0.20 0.621909 -0.882706 0.639916 -0.884788 0.639916 -0.884788 3.06513×10−8 3.40335×10−8

0.40 0.609298 -0.881558 0.628316 -0.883233 0.628316 -0.883233 4.86441×10−7 1.94750×10−6

0.60 0.599481 -0.880867 0.616564 -0.881795 0.616567 -0.881794 2.44103×10−6 1.02872×10−6

0.50 0.20 0.650758 -0.886618 0.668188 -0.889144 0.668188 -0.889144 3.27352×10−8 5.06759×10−9

0.40 0.638477 -0.885130 0.657010 -0.887326 0.657010 -0.887326 5.21894×10−7 8.93617×10−8

0.60 0.628869 -0.884155 0.645654 -0.885608 0.645656 -0.885608 2.63121×10−6 1.55116×10−6

0.75 0.20 0.678547 -0.891172 0.695297 -0.894070 0.695297 -0.894070 3.32246×10−8 1.03626×10−9

0.40 0.666676 -0.889385 0.684601 -0.892039 0.684602 -0.892039 5.31703×10−7 9.12339×10−9

0.60 0.106929 -0.952285 0.673704 -0.890087 0.673707 -0.890087 2.69101×10−6 7.75541×10−9

Out[11]=
u(x, t)

v(x, t)

Fig. 1. The graph of the approximate solution when α=β= 0.5 and q = 1 for Example 4.1.

Out[14]=
uEX(x, t)

vEX(x, t)

Fig. 2. The graph of the exact solution when α=β= 0.5 for Example 4.1.

Example 4.2.
Consider the following system of inhomogeneous nonlinear time-fractional partial differential equations with initial
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values:{
Dq1

t u(x, t )+u(x, t )+ v(x, t )ux (x, t ) = 1, u(x,0) = ex ,

Dq2
t v(x, t )− v(x, t )−u(x, t )vx (x, t ) = 1, v(x,0) = e−x .

(39)

For q1 = q2 = 1, the exact solution for the system (39) given by [12] is as follows:

u(x, t ) = ex−t , v(x, t ) = e−x+t . (40)

By comparing the system (39) with system (1), for i = 1,2, we define

N1(u(x, t ), v(x, t )) =−v(x, t )ux (x, t ),

N2(u(x, t ), v(x, t )) = u(x, t )vx (x, t ),

f1(x, t ) = f2(x, t ) = 1.

(41)

So the system (39) can be rewritten as:

Dq1
t u(x, t ) = 1−u(x, t )+N1(u(x, t ), v(x, t )),

Dq2
t v(x, t ) = 1+ v(x, t )+N2(u(x, t ), v(x, t )).

(42)

To find out the approximate solution for the system (31), we operate the Riemann-Liouville fractional integral given by
Definition2.2 with respect to t to both sides of the equations of the system (31), and by using Theorem 2.2, we obtain

u(x, t ) = u(x,0)+I
q1

t [1−u(x, t )]+I
q2

t [N1(u(x, t ), v(x, t ))],

v(x, t ) = v(x,0)+I
q2

t [1+ v(x, t )]+I
q2

t [N2(u(x, t ), v(x, t ))]. (43)

Next, we assume that the solution is given by

u(x, t ) =
∞∑

k=0
uk (x, t ), v(x, t ) =

∞∑
k=0

vk (x, t ). (44)

By using the system (44) in the system (44), we obtain
∞∑

k=0
uk (x, t ) = ex +I

q1
t

[
1−

∞∑
k=0

uk (x, t )+N1(
∞∑

k=0
uk (x, t ),

∞∑
k=0

vk (x, t ))],

∞∑
k=0

vk (x, t ) = g2(x)+I
q2

t

[
1+

∞∑
k=0

vk (x, t )+N2(
∞∑

k=0
uk (x, t ),

∞∑
k=0

vk (x, t ))
]
.

(45)

By using Remark 3.2 in the system (45), we get
∞∑

k=0
uk (x, t ) = ex +I

q1
t

[
1−

∞∑
k=0

uk (x, t )+
∞∑

n=0
A1n

]
,

∞∑
k=0

vk (x, t ) = e−x +I
q2

t

[
1+

∞∑
k=0

vk (x, t )+
∞∑

n=0
A2n

]
.

(46)

By using Theorem 3.3, the components of decomposition series in the system (35) can be obtained as:

u0(x, t ) = ex , v0(x, t ) = e−x ,

u1(x, t ) =I
q1

t

[
1−u0(x, t )+ A10

]
, v1(x, t ) =I

q
t

[
1+ v0(x, t )+ A20

]
,

u2(x, t ) =I
q2

t

[−u1(x, t )+ A11
]
, v2(x, t ) =I

q
t

[
v1(x, t )+ A21

]
,

...

uk (x, t ) =I
q1

t

[−uk−1(x, t )+ A1(k−1)
]
, vk (x, t ) =I

q2
t

[
v(k−1)(x, t )+ A2(k−1)

]
, k = 1,2, . . .

(47)

where A1(k−1), A2(k−1),k = 1,2, . . . are generalized Adomian polynomials which can be obtain by using the system (20).
Consequently, by explicit calculations using Mathematica software, we obtain

u0(x, t ) = ex , v0(x, t ) = e−x ,

u1(x, t ) =− ex t q1

q1Γ
(
q1

) , v1(x, t ) = e−x t q2

q2Γ
(
q2

) ,

u2(x, t ) = [ex +1]t 2q1

Γ
(
2q1 +1

) − t q1+q2

Γ
(
q1 +q2 +1

) ,

v2(x, t ) = t 2q1

Γ
(
2q1 +1

) − [e−x −1]t q1+q2

Γ
(
q1 +q2 +1

) ,

u3(x, t ) = [ [ex −1]t 2q2

Γ(q1 +2q2 +1)
+ Γ(q1 +q2 +1)t q1+q2

Γ(q1 +1)Γ(q +1)Γ(2q1 +q2 +1)
− [ex −1]t q1+q2

Γ(2q1 +q2 +1)
− [ex +2]t 2q1

Γ(3q1 +1)

]
t q1 ,

v3(x, t ) = [− [1+e−x ]t 2q1

Γ(2q1 +q2 +1)
+ Γ(q1 +q2 +1)t q1+q2

Γ(q1 +1)Γ(q2 +1)Γ(q1 +2q2 +1)
+ [1+e−x ]t q1+q2

Γ(q1 +2q2 +1)
+ e−x [1−2ex ]t 2q2

Γ(3q2 +1)

]
t q2 ,

...
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and so on.
Hence the third-order term approximate solution for the system (39) is given by

u(x, t ) =− t q1+q2

Γ(q1 +q2 +1)
+ [ [ex −1]t 2q2

Γ(q1 +2q2 +1)
− [ex −1]t q1+q2

Γ(2q1 +q2 +1)
− [ex +2]t 2q1

Γ(3q1 +1)

]
t q1

+ Γ(q1 +q2 +1)t q1+q2

Γ(q1 +1)Γ(q2 +1)Γ(2q1 +q2 +1)
+ [ex +1]t 2q1

Γ(2q1 +1)
− ex t q1

q1Γ(q1)
+ex ,

v(x, t ) = t q1+q2

Γ
(
q1 +q2 +1

) − [1−e−x ]t 2q2

Γ
(
2q2 +1

) + [1+e−x ]t q1+q2

Γ
(
q1 +2q2 +1

) − t q2
[ [1+e−x ]t 2q1

Γ
(
2q1 +q2 +1

)
− [e−x −2]t 2q2

Γ
(
3q2 +1

) − t q1+q2Γ
(
q1 +q2 +1

)
Γ

(
q1 +1

)
Γ

(
q2 +1

)
Γ

(
q1 +2q2 +1

) ]+ e−x t q2

q2Γ
(
q2

) +e−x .

Table 2. Numerical values for the approximate and exact solutions when q1 = q2 = 0.5 and q1 = q2 = 1 for Example 4.2.

x t q1 = q2 = 0.5 q1 = q2 = 1 Absolute Error

u(x, t ) v(x, t ) u(x, t ) v(x, t ) uE X (x, t ) vE X |uE X (x, t )−u(x, t )| |vE X (x, t )− v(x, t )|
0.25 0.20 0.757584 1.331070 1.051190 0.951175 1.051270 0.951229 0.00008229 0.000054068

0.40 0.498626 1.656020 0.859441 1.160930 0.860708 1.161830 0.00126696 0.000901875

0.60 0.229151 1.944980 0.698510 1.414300 0.704688 1.419070 0.00617826 0.004765330

0.50 0.20 0.986646 1.025820 1.349750 0.740776 1.349860 0.740818 0.00010566 0.000042108

0.40 0.679531 1.259110 1.103540 0.904135 1.105170 0.904837 0.00162681 0.000702381

0.60 0.366403 1.458550 0.896904 1.101460 0.904837 1.105170 0.00793305 0.003711240

0.75 0.20 1.280770 0.788092 1.733120 0.576917 1.733250 0.576950 0.00013567 0.000032794

0.40 0.911817 0.950005 1.416980 0.704141 1.419070 0.704688 0.00208887 0.000547015

0.60 0.542637 1.079710 1.151650 0.857818 1.161830 0.860708 0.01018620 0.002890320

Out[25]=
u(x, t)

v(x, t)

Fig. 3. The graph of the approximate solution for Example 4.2 when q1 = q2 = 1.
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Out[26]=
uEX(x, t)

vEX(x, t)

Fig. 4. The graph of the exact solution for Example 4.2.

5. Discussion and Conclusions

Table 1 shows the numerical comparison between the approximate solution and the exact solution for Example 4.1
among different values of x, t when q = 0.5, q = 1 and α=β= 0.5. In Fig. 1, we plot the graph of the approximate solu-
tion for Example 4.1 whenα=β= 0.5 and q = 1. Fig. 2 presents the graph of the approximate solution for Example 4.1
when α = β = 0.5. In Table 2, we evaluated the numerical values for the approximate and exact solutions for Exam-
ple 4.2 among different values of x, t when q1 = q2 = 0.5, q1 = q2 = 1 to make a comparison between the approximate
solution and the exact solution for Example 4.2. Fig. 3 presents the graph of the approximate solution for Example 4.2
when q1 = q2 = 1. In Fig. 4, we plot the graph of the exact solution for Example 4.2.

In this paper, a new modification of ADM for solving a fully general system of NFPDEs was introduced. We have
seen that the approximate analytical and numerical solutions present in this paper were in very good conformity with
the exact solutions that previously obtained by some other well-known methods to confirm the effectiveness and
accuracy of this modification. We used Mathematica software to obtain the approximate solutions and plotting the
graphs.
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