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Abstract: In this research,we study Lie algebraic properties of first integrals of simplest second-, third and higher-order ordinary
differential equations. Symmetries of the first integrals for simplest second-order ODEs which are linear or lineariz-
able by point transformations have already been obtained. Firstly we show how one can determine the relationship
between the point symmetries and the first integrals of linear or linearizable simplest ODEs of second order. Secondly,
a complete classification of point symmetries of first integrals of such linear ODEs is studied. As a consequence, we
provide a counting theorem for the point symmetries of first integrals of scalar linearizable second-order ODEs.We
show that there exists the 0, 1 and 2 point symmetry cases. By use of Lie symmetry group methods we further analyze
the relationship between the first integrals of the simplest linear third-order ODEs and their point symmetries. The
simplest scalar linear third-order equation has seven point symmetries. We obtain the classifying relation between
the symmetry and the first integral for the simplest equation. In the case of sub-maximal linear higher-order ODEs,
we show that their full Lie algebras can be generated by the subalgebras of certain basic integrals. For the n +2 sym-
metry class, the symmetries of the first integral I2 and a two-dimensional subalgebra of I1 generate the symmetry
algebra and for the n +1 symmetry class, the full algebra is generated by the symmetries of I1 and a two-dimensional
subalgebra of the quotient I3/I2.
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1. Introduction

The Lie algebraic classification of such differential equations is now well-known from the works of Lie [7] as well
as recently Mahomed and Leach [8]. However, the algebraic properties of first integrals are not known except in the
maximal cases for the basic first integrals and some of their quotients. In this research we investigate the complete
problem for simplest second-order and maximal symmetry classes of higher-order ODEs using Lie algebras and Lie
symmetry methods. More than a century ago, the Norwegian mathematician Sophus Lie put forward many of the
fundamental ideas behind symmetry methods. This method is very successfully used in several branches of physics
such as quantum filed theory,classical mechanics and physical chemistry. In our research we give complete classifi-
cation of point symmetries for the first integrals of scalar linear second-order ODEs and the relationship between the
symmetries and first integrals. For this purpose we use the projective transformations to find the different cases of
symmetries for the first integrals of simplest second-order ODEs are linear or linearizable by point transformations.
Since all scalar second-order ODEs which are linear or linearizable by point transformations are transformable to the
free particle equation, we utilize this as our base ODE. We find that there are: the no symmetry, one symmetry, two
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symmetry.
It is well -known of first integrals for scalar linearizable second -order ODE [1, 6]

φ(x, y, y ′, y ′′) = 0, (1)

is invariant under the infinitesimal generator :

X = ξ(x, y)
∂

∂x
+η(x, y)

∂

∂y
(2)

if and only if

X [2]φ |φ=0= 0, (3)

where X [2] is the second-order extended of Eq.(2) namely

X [2] = ξ(x, y)
∂

∂x
+η(x, y)

∂

∂y
+ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′ (4)

= X +ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′ ,

in which

ζ(1) = Dx (η)− y ′Dx (ξ)

= ηx + (ηy −ξx )y ′−ξy (y ′)2,

ζ(2) = Dx (ζ(1))− y ′′Dx (ξ)

= ηxx + y ′ (2ηx y −ξxx
)+ (y ′)2 (

ηy y −2ξx y
)−ξy y (y ′)3 + (

ηy −2ξx −3ξy y ′) y ′′,

such that ζ(1) is the linearized symmetry condition of second-order ODE and ζ(2) is the linearized symmetry condition
of second-order ODE and Dx is the total differentiation operator.
Now Eq.(2) can be considered as a point symmetry of Eq.(1) while in the case of first integrals, the first integral

I = h(x, y, y ′),

of the ODE (1) , is exterminate by X , such that X is the symmetry generator of

I = h(x, y, y ′)

if and only if

X [1]I = 0,

where X [1] is the first-order extended of Eq.(2) namely

X [1] = ξ(x, y)
∂

∂x
+η(x, y)

∂

∂y
+ζ(1) ∂

∂y ′ .

2. Symmetries of the first integrals

We consider the simplest second-order ODE as follows :

y ′′ = 0, (5)

now we show that the Eq.(5) has the maximum number of symmetries by using the Linearized symmetry condition
for Eq.(5) is

ζ(2) = 0 when y ′′ = 0,

that leave us with

ζ(2) = ηxx + y ′ (2ηx y −ξxx
)+ (y ′)2 (

ηy y −2ξx y
)−ξy y (y ′)3 + (

ηy −2ξx −3ξy y ′) y ′′ = 0,

since y ′′ = 0 so this part (
ηy −2ξx −3ξy y ′) ,
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is canceled. So we get
ζ(2) = ηxx + y ′ (2ηx y −ξxx

)+ (y ′)2 (
ηy y −2ξx y

)−ξy y (y ′)3 = 0,

then
ηxx + y ′ (2ηx y −ξxx

)+ (y ′)2 (
ηy y −2ξx y

)−ξy y (y ′)3 = 0.

As ξ(x, y) and η(x, y) independent of y ′ then we can be split into a system of four equations

ηxx = 0, (6)

2ηx y −ξxx = 0, (7)

ηy y −2ξx y = 0, (8)

ξy y = 0, (9)

we integrate Eq.(9) with respect to y twice result in

ξ(x, y) = A(x)y +B(x),

since
ξx y = A′(x),

then substitute ξx y = A′(x) into Eq.(8) yields

ηy y = 2A′(x), (10)

integrate Eq.(10) with respect to y twice result in

η(x, y) = A′(X )y2 +C (x)y +D(x).

We need to find ηx y ,ξxx and ηxx

ηx y = 2A′′(x)y +C ′(x),

ξxx = A′′(x)y +B ′′(x),

ηxx = A′′′(x)y2 +C ′′(x)y +D ′′(x).

Now substituting ξ(x, y) and η(x, y) into Eqs.(6),(7) yields

2ηx y −ξxx = 2
(
2A′′(x)y +C ′(x)

)− (
A′′(x)y +B ′′(x)

)
= 3A′′(x)y +2C ′(x)−B ′′(x) = 0. (11)

Since ηxx = 0 then

A′′′(x)y2 +C ′′(x)y +D ′′(x) = 0. (12)

Then from Eqs.(11),(12) we can determine that A′′(x) = 0, C ′′(x) = 0, D ′′(x) = 0 and B ′′(x) = 2C ′(x) by integrate A′′(x) =
0, C ′′(x) = 0 and D ′′(x) = 0 twice respectively we get the general solutions for A(x), B(x) and C (x)

A(x) = c1x + c2,

C (x) = c3x + c4,

D(x) = c5x + c6,

where c1, · · · ,c6 are constant.
Since B ′′(x) = 2C ′(x) and C ′(x) =C3 then

B ′′(x) = 2c3, (13)
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Integrate Eq.(13) twice we get B(x) = c3x2 + c7x + c8,
now substituting A(x), B(x) ,C (x), and D(x) into ξ(x, y) and η(x, y) yields

ξ(x, y) = A(x)y +B(x)

= c1 + c3x + c5 y + c7x2 + c8x y, (14)

and

η(x, y) = A′(x)y2 +C (x)y +D(x)

= c2 + c4 y + c6x + c7x y + c8 y2, (15)

where c1, · · · ,c8 are constant.
Hence , the infinitesimal operator

X =
8∑

i=1
ci Xi ,

then
X = c1X1 + c2X2 +·· ·+c8X8.

Now by substituting Eqs.(14) and (15) in generator X = ξ(x, y) ∂
∂x +η(x, y) ∂

∂y we get

X =(c1 + c3x + c5 y + c7x2 + c8x y)
∂

∂x
+ (c2 + c4 y + c6x + c7x y + c8 y2)

∂

∂y

=c1
∂

∂x
+ c2

∂

∂y
+ c3x

∂

∂x
+ c4 y

∂

∂y
+ c5x

∂

∂y
+ c6 y

∂

∂x
+ c7(x2 ∂

∂x
+x y

∂

∂y
)

+ c8(x y
∂

∂x
+ y2 ∂

∂y
),

The maximum number of symmetries [3] are

X1 = ∂

∂x
,

X2 = ∂

∂y
,

X3 = x
∂

∂x
,

X4 = y
∂

∂y
,

X5 = x
∂

∂y
,

X6 = y
∂

∂y
,

X7 = x2 ∂

∂x
+x y

∂

∂y
,

X8 = x y
∂

∂x
+ y2 ∂

∂y
.

Now by reference to simplest second -order ODE (5) we note that it has two functionally independent first integral ,
we find this by integrate Eq.(5) with respect to y get the first integrals, termed fundamental [4]

I1 = y ′, (16)

and integrate again yields

I1x = y + I2,

then

I2 = I1x − y

= x y ′− y, (17)
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that means
X [1](I1) = 0,

i.e.

X [1](I1) =
(
ξ
∂I1

∂X
+η∂I1

∂y
+ζ(1) ∂I1

∂y ′

)
=

(
ξ
∂y ′

∂X
+η∂y ′

∂y
+ζ(1) ∂y ′

∂y ′

)
= ζ(1).

If X1 = ∂
∂x then ξ(x, y) = 1 and η(x, y) = 0,

now we find ζ(1) when ξ(x, y) = 1 and η(x, y) = 0 then

ζ[1] = Dx (η)− y ′Dx (ξ)

= Dx (0)− y ′Dx [1]

= 0,

then
X [1](I1) = 0.

Now If X2 = ∂
∂y then ξ(x, y) = 0 and η(x, y) = 1

ζ[1] = Dx (η)− y ′Dx (ξ)

= Dx (1)− y ′Dx (0)

= 0,

then
X [1](I1) = 0.

If X3 = x ∂
∂x + y ∂

∂y then ξ(x, y) = x and η(x, y) = y

ζ[1] = Dx (η)− y ′Dx (ξ)

= Dx (y)− y ′Dx (x)

= 0,

therefore

X1 = x
∂

∂x
,

X2 = x
∂

∂y
,

X3 = x
∂

∂
+ y

∂

∂y
, (18)

can be considered a symmetry of I1.
Now we find the symmetry of I2. So we must check the condition

X [1](I2) = 0,

since

X [1](I2) =
(
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′

)
(x y ′− y) = ξy ′+xζ(1) −η

I2 has three symmetries [1, 3]

H1 = x
∂

∂x
,

H2 = x
∂

∂y
,

H3 = x2 ∂

∂
+x y

∂

∂y
, (19)
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if H1 = x ∂
∂x then ξ= x and η= 0 we get

ζ(1) = Dx (η)−Dx (ξ)

= Dx (0)−Dx (x)

=−y,

then

X [1](I2) = ξy ′+xζ(1) −η
= x y ′−x y ′−0

= 0.

If H2 = x ∂
∂x then ξ= 0 and η= x and we get

ζ(1) = Dx (η)−Dx (ξ)

= Dx (x)−Dx (0)

= 1,

then

X [1](I2) = ξy ′+xζ(1) −η
= (0)y ′+x(1)−x

= x −x

= 0.

If H3 = x2 ∂
∂x +x y ∂

∂y then ξ(x, y) = x2 and η(x, y) = x y this leads directly to

ζ[1] = Dx (η)− y ′Dx (ξ)

= Dx (x y)− y ′Dx (x2)

= y +x y ′−2x y ′

= y −x y ′,

since
X [1](I2) = ξy ′+xζ(1) −η

then

X [1](I2) = x2 y ′+x(y −x y ′)−x y

= x2 y ′+x y −x2 y ′−x y

= 0,

therefore H1 , H2 , H3 can be considered a symmetry of I2.
Its clear that the symmetry of the first integral of I1 are the same as that of I2 if we multiply the symmetry of I1 by x.
Also the quotient of the first integrals I1, I2 has symmetries, which means

I2

I1
= x − y

y ′ , (20)

the quotient Eq.(20) of the first integrals I1 and I2 has three symmetries:

Y1 = y
∂

∂x
,

Y2 = y
∂

∂y
,

Y3 = x y
∂

∂x
+ y2 ∂

∂y
, (21)

which are the same as the symmetries Eq.(18) if we multiply the symmetries of I1 by y that the Lie algebras of the
symmetries of the first integrals I1, I2 and their quotient I2/I1 are isomorphic.



26 Symmetry Classification of First Integrals for Scalar Linearizable

3. Classifying relation for the symmetries

In section 2 we finding the symmetries of the functionally independent first integrals I1 and I2 or their quotient of
the simplest second-order ODE. Now we look at the study of symmetry properties of product I1I2. So we need to find
them by using symmetry condition. Instead of doing this each time by using symmetry condition A relationship can
be found between symmetries and first integrations. The benefit of having such a relation enables us to also classify
the first integrals of simplest second-order ODE equation in terms of their point symmetries.

Let F be an arbitrary function of I1 and I2, in other words F = (I1, I2). The symmetry of this general function of the first
integrals is

X [1]F = X [1]I1
∂F

∂I1
+X [1]I2

∂F

∂I2
= 0, (22)

in which

X [1](I1) =
(
ξ
∂

∂X
+η ∂

∂y
+ζ(1) ∂

∂y ′

)
y ′ = ζ(1),

X [1](I2) =
(
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′

)
(x y ′− y) = ξy ′+xζ(1) −η, (23)

from section 2 since

ξ(x, y) = c1 + c3x + c6 y + c7x2 + c8x y,

η(x, y) = c2 + c4 y + c5x + c7x y + c8 y2,

then

ζ(1) = Dx (η)− y ′Dx (ξ)

= Dx
(
c2 + c4 y + c6x + c7x y + c8 y2)− y ′Dx

(
c1 + c3x + c5 y + c7x2 + c8x y

)
= ∂

∂x

(
c2 + c4 y + c6x + c7x y + c8 y2)+ y ′ ∂

∂y

(
c2 + c4 y + c6x + c7x y + c8 y2)

− y ′
[
∂

∂x

(
c1 + c3x + c5 y + c7x2 + c8x y

)+ y ′ ∂
∂y

(
c1 + c3x + c5 y + c7x2 + c8x y

)]
=−y ′c3 + y ′c4 + c5 − (y ′)2c6 +

(
y −x y ′)c7 +

(
y y ′−x(y ′)2)c8,

Now substituting the values of X [1](I2), X [1](I2) as in Eq.(23) with ξ, η and ζ(1) in Eq.(22) yields

ζ(1) ∂F

∂I1
+ (
ξy ′+xζ(1) −η) ∂F

∂I2
= 0,

then [
−y ′c3 + y ′c4 + c5 − (y ′)2c6 +

(
y −x y ′)c7 +

(
y y ′−x(y ′)2

)
c8

] ∂F

∂I1

+
[(

c1 + c3x + c6 y + c7x2 + c8x y
)

y ′+
(
−y ′c3 + y ′c4 + c5 − (y ′)2c6 +

(
y −x y ′)c7 +

(
y y ′−x(y ′)2

)
c8

)
x

−(
c2 + yc4 +xc5 +x yc7 + y2c8

)] ∂F

∂I2
= 0, (24)

Simplify the relationship of Eq.(24) more we get

[
−y ′c3 + y ′c4 + c5 − (y ′)2c6 −

(
x y ′− y

)
c7 − y ′ (x y ′− y

)
c8

] ∂F

∂I1

+
[

c1 y ′− c2 + c3x y ′− c3x y ′+ c4x y ′− c4 y + c5x − c5x + c6 y y ′− c6x(y ′)2

+c7x2 y ′+ c7x y − c7x2 y ′− c7x y + c8x y y ′+ c8x y y ′− c8x2(y ′)2 − c8 y2
] ∂F

∂I2
= 0, (25)

We deleted some terms of Eq. (25) yield

[
−y ′c3 + y ′c4 + c5 − (y ′)2c6 −

(
x y ′− y

)
c7 − y ′ (x y ′− y

)
c8

] ∂F

∂I1

+
[

c1 y ′− c2 + c4x y ′− c4 y + c6 y y ′− c6x(y ′)2 + c8x y y ′+ c8x y y ′ −c8x2(y ′)2 − c8 y2
] ∂F

∂I2
= 0,
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More simplify equation above yield

[
−y ′c3 + y ′c4 + c5 − (y ′)2c6 −

(
x y ′− y

)
c7 − y ′ (x y ′− y

)
c8

] ∂F

∂I1
+[(

c1 y ′− c2 + c4(x y ′− y)− c6 y ′(x y ′− y)− c8(x y ′− y)2
)] ∂F

∂I2
= 0, (26)

then by using the relations I1 = y ′ and I2 = x y ′− y from Eqs.(16) and (17), we finally arrive at the classifying relation

(−I1c3 + I1c4 + c5 − I1
2c6 − I2c7 − I1I2c8

) ∂F

∂I1
+ (

I1c1 − c2 + I2c4 − I1I2c6 − I2
2c8

) ∂F

∂I2
= 0, (27)

the relation of Eq.(27) represent the relationship between the symmetries and first integrals of the simplest the second-
order Eq.(5)

4. Symmetry cases of first integrals

We use the classifying relation (27) to determine the number of symmetries formed by the first integrations of the
simplest the second-order Eq.(5).
In this research we study three cases .

Case 1. No Symmetry.

If F is any arbitrary function of I1 and I2 then ∂F /∂I1 and ∂F /∂I2 are not linked with each other. From the Eq.(27),
since ∂F /∂I1 6= 0 and ∂F /∂I2 6= 0 then must be(−I1c3 + I1c4 + c5 − I1

2c6 − I2c7 − I1I2c8
)= 0, (28)

and (
I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8
)= 0, (29)

from Eqs.(28), (29) can see that all the c ,s equals zero. Therefore there is no symmetry in this case.
Take an illustrative example of the case, if F = I1lnI2 , then Eq.(27) yields(−I1c3 + I1c4 + c5 − I1

2c6 − I2c7 − I1I2c8
)= 0,(

I1c1 − c2 + I2c4 − I1I2c6 − I2
2c8

)= 0. (30)

This leads directly results in all the c ,s equal zero.

Case 2. One Symmetry.

Firstly we notice that if F satisfies the classifying relation (27), then X which is a linear combination of the simplest the
second-order generators, is a symmetry of this classifying relation. We also observe from (27) that if one has any of the
free symmetry generators Xi as a symmetry of a first integral of the equation, then one ends up with three symmetries.
That is one can have more than one symmetry. Now if we take X = ∂

∂x then a1 arbitrary then the relation (27) becomes

−I1c3 + I1c4 + c5 − I1
2c6 − I2c7 − I1I2c8 = 0,

because ∂F
∂I2

= 0 and ∂F
∂I1

6= 0 this shows that a2 arbitrary and a3 = a4 , and a5 , a6 , a7 ,a8 are zero, if a3 = a4 this means

X = x ∂
∂x + y ∂

∂x . Thus we will get the three symmetries

X1 = ∂

∂x
,

X2 = ∂

∂x
,

X3 = x
∂

∂x
+ y

∂

∂y
.

Another example if we take c3 arbitrary, X = x ∂
∂x , then Eq.(27) yields (since ∂F

∂I2
6= 0 and ∂F

∂I1
= 0 )(

I1c1 − c2 + I2c4 − I1I2c6 − I2
2c8

)= 0,
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this shows that a5, a7 arbitrary and a1,a2,a4,a6,a8 are zero. Thus we will get the three symmetries

X1 = x
∂

∂x
,

X2 = x
∂

∂y
,

X3 = x2 ∂

∂x
+x y

∂

∂y
.

We have many cases where only one symmetry occurs . If we take F = I1I2 or any function of the product , then the
relation (27) gives exactly one symmetry.
Since ∂F

∂I1
= I2 and ∂F

∂I2
= I1 by substitution this in Eq.(27) yields(−I1c3 + I1c4 + c5 − I1

2c6 − I2c7 − I1I2c8
)

I2

+(
I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8
)

I1 = 0. (31)

Further simplification of relationship (31) we get

−I1I2c3 + I1I2c4 + I2c5 − I1
2I2c6 − I2

2c7 − I1I2
2c8

+I1
2c1 − c2I1 + I1I2c4 − I1

2I2c6 − I1I2
2c8 = 0. (32)

Finally after simplification of the relationship (32) we get

−I1I2c3 +2I1I2c4 + I2c5 −2I1
2I2c6 − I2

2c7 −2I1I2
2c8 + I1

2c1 − c2I1 = 0.

Now put c3 = 2c4 then Obviously it is c3, and c4 are arbitrary and c1, c2, c5, c6, c7 and c8 are zero, since c3, and c4 are
arbitrary, i.e. X3 = x ∂

∂x and X4 = y ∂
∂y then the exist exactly one symmetry in this case :

X = 2x
∂

∂x
+ y

∂

∂y
.

As another example, if we take F = I2e−I1 , then ∂F
∂I1

=−I2e−I1 and ∂F
∂I2

= e−I1

Now by using Eq.(27) we get:(−I1c3 + I1c4 + c5 − I1
2c6 − I2c7 − I1I2c8

)− I2e−I1

+(
I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8
)

e−I1 = 0, (33)

and by simplifying the relationship (35) yields

I1I2e−I1 c3 − I1I2e−I1 − I2e−I1 c5 + I1
2I2e−I1 c6 + I2

2e−I1 c7

+I1I2
2e−I1 c8 + I1e−I1 c1 −e−I1c2 + I2e−I1 c4 = 0.

Now put c4 = 2c5 then obviously it is c4 , and c5 are arbitrary and c1, c2, c3, c6, c7 and c8 are zero, then there exist exactly
one symmetry in this case

X = y
∂

∂y
+2x

∂

∂y

= X4 +2X5.

Well if we take F = e I1
2

I2 , then by using the relation (27) we get the one symmetry

X = 3x
x

∂x
+2y

∂

∂y
.

So there is an infinite number of one symmetry in cases. In order to show that consider the first integral

F = 1

2
I1

2 −bI2,b 6= 0.

By using (27) get(−I1c3 + I1c4 + c5 − I1
2c6 − I2c7 − I1I2c8

)
I1

+(
I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8
)

(−b) = 0,
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separation with respect to powers of I1 and I2 yields

−I1
2c3 + I1

2c4 + c5I1 − I1
3c6 − I1I2c7 − I1

2I2c8

−I1bc1 +bc2 − I2bc4 + I1I2bc6 + I2
2BC8 = 0,

obviously it is c1, and c5 are arbitrary and c2, c3, c4, c6, c7 and c8 are zero then there exist exactly one symmetry in this
case c5 = cc1 .i.e.

X = x
∂

∂y
+b

∂

∂x

= X5 + c X1.

Therefore the one symmetry case is not unique.

Case 2. Two Symmetry.

If we have the symmetries X = ∂
∂y and X = x ∂

∂y which form the two dimensional Abelian algebra, then a2 and a5 are

arbitrary in Eq. (27) this mean that ∂F
∂I1

= ∂F
∂I2

= 0. In this case there is no symmetry for any first integral of the simplest
second-ordr ODE.
The same if we consider X = ∂

∂y and Y = x ∂
∂x which forms a two-dimensional non-Abelian algebra.

Here again there is no symmetry for any first integral of the simplest second-ordr ODE. In previous cases, if the sym-
metry is of a simple type, it can not be obtaine two symmetries of an integral.
Thus there have to be combinations of the symmetries. Example of that combination, if we take F = I2 − I1 have
independent integral and satisfy the one condition

∂F

∂I1
+ ∂F

∂I2
= 0,

hence this F admits two symmetries. Since ∂F
∂I1

=−1 and ∂F
∂I2

= 1 substituting this in the relation (27) we get(−I1c3 + I1c4 + c5 − I1
2c6 − I2c7 − I1I2c8

)
(−1)

+(
I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8
)

(1) = 0, (34)

simplify the relationship (34)

I1c3 − I1c4 − c5 + I1
2c6 + I2c7 + I1I2c8 + I1c1 − c2 + I2c4 − I1I2c6 − I2

2c8 = 0,

obviously it is c1, c2, c3 and c5 are arbitrary and c4, c6 and c7 are zero thats mean a3 = −a1 and a5 = −a2 then

X = ∂

∂x
−x

∂

∂x
, (35)

Y = ∂

∂y
−x

∂

∂y
. (36)

The Lie algebra component of Lie bracket [X ,Y ] =−Y .[9]

Remark 4.1.
Lie Bracket of two vector field

[X ,Y ] = [a
∂

∂xi
,b

∂

∂x j
]

= a
∂b

∂xi

∂

∂x j
−b

∂a

∂x j

∂

∂xi
,

if a = b = 1 then [ ∂
∂xi

, ∂
∂x j

] = [X ,Y ] = 0

Now we find the Lie bracket of (35)

[X ,Y ] = [
∂

∂x
−x

∂

∂x
,
∂

∂y
−x

∂

∂y
]

= [
∂

∂x
,
∂

∂y
]+ [

∂

∂x
,−x

∂

∂y
]+ [−x

∂

∂x
,
∂

∂y
]+ [−x

∂

∂x
,−x

∂

∂y
].
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since [ ∂
∂x , ∂

∂y ] = 0 , because a = b = 1 then

[X ,Y ] =
[

1
∂(−x)

∂x

∂

∂y
− (−x)

∂(1)

∂y

∂

∂x

]
+

[
−x

∂(1)

∂x
− (1)

∂(−x)

∂y

∂

∂x

]
+

[
−x

∂(−x)

∂x

∂

∂y
− (−x)

∂(−x)

∂y

∂

∂x

]
= [− ∂

∂y
+0]+ [0−0]+ [x

∂

∂y
]

=−
(
∂

∂y
−x

∂

∂y

)
=−Y .

Now if we take F = c I2
I1
− 1

I1
, then ∂F

∂I1
= 1

I1
2 − c I2

I1
2 and ∂F

∂I2
= c

I1
, by using the relation (27) subtituting this, we get

−c3

I1
+ cc3

I2

I1
+ c4

I1
+ c5

I1
2 − cc5

I2

I1
2 − c6 − c7

I2

I1
2 + cc7

I2
2

I1
2 − I2

I1
c8 + c1c − c2C

I1
= 0,

clear it c4 = c2c and c1c = c6 thats means

X = c X1 +X6,

Y = c X2 +X4,

two symmetry span a two-dimensional algebra with

[X ,Y ] =−c X .

We conclude from the above examples that the two symmetry case is not unique.

Now if we take the simplest first-order ODE

y ′ = 0, (37)

by using Lie symmetry condition ζ(1) = 0 of Eq.(37) yields

ηx + (ηy −ξx )y ′−ξy (y ′)2 = 0,

we set the coefficient y ′ to zero

ηx = 0, (38)

ηy −ξx = 0, (39)

ξy = 0, (40)

from Eq.(40)

ξ= A(x) then ξx = A′(x),

from Eq.(39)

ηy = ξx then ηy = A′(x), (41)

by integrate both side of Eq.(41) yields

η= A′(x)y +B(x),

then

ηx = A′′(x)y +B ′(x).
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Finally we get the tangent vector.
Since ηx = 0 and ηx = A′′(x)y +B ′(x), so

A′′(x)y +B ′′(x) = 0,

this lead to A′′(x) = 0 and B ′(x) = 0, by twice integrate A′′(x) = 0 both side yields

A(x) = c1x + c2,

and by integrate B ′(x) = 0 both side yields
B(x) = c3,

where c1, c2 and c3 are constant,
now by substituting B(x) and A′(x) in value of η yields

η= c1 y + c3.

Now the infinitesimal operator

X =
3∑

i=1
ci Xi

= c1X1 + c2X2 + c3X3,

since

X = ξ ∂
∂x

+η ∂

∂y
+ζ(1) ∂

∂y ′ ,

and
ζ(1) = 0,

then

X = ξ ∂
∂x

+η ∂

∂y

= (c1X + c2)
∂

∂x
+ (c1 y + c3)

∂

∂y

= c1(x
∂

∂x
+ y

∂

∂y
)+ c2

∂

∂x
+ c3

∂

∂y
,

so the Eq.(37) which has the symmetries

X1 = ∂

∂y
,

X2 = X
∂

∂x
+ y

∂

∂y
,

X3 = ∂

∂y
.

If we take

X = x
∂

∂x
+ y

∂

∂y

it easy to see that X = x ∂
∂x + y ∂

∂y is a point symmetry generator of Eq.(37) if X [1] y ′ |y ′=0= 0 with

ζ(1) = Dx (η)− y ′Dx (ξ),

in which Dx is the totaly differential operator and X [1] is the first extend operator X
i.e

ζ(1) = Dx (η)− y ′Dx (ξ)

= y
∂y

∂x
+ y ′ ∂y

∂y
− y ′

(
∂x

∂x
+ y ′ ∂x

∂y

)
= y ′− y ′

= 0.
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X [1] y ′ =
(
ξ
∂

∂x
+η ∂

∂y

)
y ′

=
(
ξ
∂y ′

∂x
+η∂y ′

∂y

)
= X

∂y ′

∂x
+ y

∂y ′

∂y

= 0,

then X = ξ(x, y) ∂
∂x +η(x, y) ∂

∂y point symmetry of y ′ if

X [1] y ′ |′y= 0.

Since η= y then ηx = 0
η= η(y) where η arbitrary function of y. Therefore

X = ξ(x, y)
∂

∂x
+η(y)

∂

∂y
.

Thus there is an infinite number of point symmetries. If we choose

X = ξ(x, y)
∂

∂x

Now I = y first integral of Eq.(37).

It has point symmetry X if X I = 0 then ξ(x, y) ∂y
∂x = 0 there is an infinite number of symmetries of the first integral I = y

of (37)
Let F = F (I ) = X I ∂F

∂I , therefor X as in X = ξ(x, y) ∂
∂x is asymmetry of I = y and also any function of F (y)

5. Scalar linear nth-order differential equations

The general, homogeneous, form is

y (p) +
p−1∑
i=0

ai (x)y (i ) = 0, p ≥ 1, (42)

we can reduces Eq.(42) for p ≥ 2 to

y (p) +
p−2∑
i=0

ai (x)y (i ) = 0, p ≥ 2. (43)

Theorem 5.1.
The Lie point symmetry generator

X = ξ(x)
∂

∂x
+

[(
p −1

2
ξ′+ c0

)
y +η(x)

]
∂

∂y
, (44)

is admitted by Equation (43) for p ≥ 3 and is the most general, where c0 is a constant, η(x) satisfies Eq.(43) and ξ(x) is
determined by the relations

(n +1)!(i −1)

(n − i )!(i +1)!
ξ(i+1) +2iξ′an−i +2ξa′

n−i

+
i−1∑
j=2

an− j
(n − j )![n(i − j −1)+ i + j −1]

(n − i )!(i − j +1)!
ξ(i− j+1) = 0, i = 1, · · · ,n. (45)

Definition 5.1 (Principal Lie algebra[2]).
For arbitrary coefficients ai (x) Eq.(43) admits the Lie algebra spanned by the p +1 homogeneous and superposition
operators

X1 = y
∂

∂y
, (46)

Xi +1 = ηi (x)
∂

∂y
, i = 1, · · · ,n, (47)

where ηi (x) are p linearly independent solution of Eq.(43). This algebra is referred to as the principal Lie algebra of
Eq.(43).
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consider the simplest pth-order equation

y (p) = 0, p ≥ 3. (48)

We have (n+1) symmetry generators giving by Eqs.(46) and (47) with ηi (x) = ci xi−1, i = 1, · · · ,n where c ,
i s are arbitrary

constants. Moreover, the use of Eq.(45), since ai = 0, gives
ξ= A0 + A1x + A2x2, Ai are constants.
The extension is maximum, i.e. three dimensional. Therefore, the maximum symmetry algebra of Eq.(48) is spanned
by Eqs.(46) and (47) with ηi given above and

Xp +2 = ∂

∂x
, Xp +3 = x

∂

∂x
, Xp +4 = x2 ∂

x
+ (p −1)x y

∂

∂y
. (49)

6. The algebra structure of the first integral of third-order linear equation

consider the simplest third-order ODE

y ′′′ = 0, (50)

which as is well-know has the n +4 symmetries. [2, 7]
since p = 3 and ηi (x) = ci xi−1, ci constant, i = 1,2,3

η1(x) = c1,

η2(x) = c2x,

η3(x) = c3x2,

if ci = 1, for i = 1,2,3 then

η1(x) = 1,

η2(x) = x,

η3(x) = x2.

From Eqs.(46) and (47) we get

X1 = ∂

∂y
,

X2 = x
∂

∂y
,

X3 = x2 ∂

∂y
,

X4 = y
∂

∂y
,

since Xn +2 = ∂
∂x , Xn +3 = x ∂

∂x + ∂
∂y and Xn +4 = x2 ∂

∂x + (n −1)x y ∂
∂x .

If n = 3 then

X5 = ∂

∂x
,

X6 = x
∂

∂x
+ y

∂

∂y
,

X7 =x2 ∂

∂x
+2x y

∂

∂y
.

So the simplest Eq.(50) has seven symmetris

X1 = ∂

∂y
,

X2 = x
∂

∂y
,

X3 = x2 ∂

∂y
,

X5 = ∂

∂x
,

X6 = x
∂

∂x
+ y

∂

∂y
,

X7 = x2 ∂

∂x
+2x y

∂

∂y
.
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It is obvious that Eq.(50) has three functionally independent first integral

I1 = y ′′, (51)

I2 = x y ′′− y ′, (52)

I3 = 1

2
x2 y ′′−x y ′+ y, (53)

the first integral (51) has four symmetries.
since X [2]I1 = 0 then

X1 = ∂

∂x
,

X2 = ∂

∂y
,

X3 = x
∂

∂y
,

X4 = x
∂

∂x
+2y

∂

∂y
, (54)

Lie point symmetry of I1.
i.e
Since

X [2]I2 = 0,

because

X [2]I2 =
(
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′

)
y ′′ = ζ(2) = 0,

ζ(2) = ηxx + y ′ (2ηx y −ξxx
)+ (y ′)2 (

ηy y −2ξx y
)−ξy y (y ′)3 + (

ηy −2ξx −3ξy y ′) y ′′ = 0.

If X1 = ∂
∂x then η= 1 and ξ= 0

means X1 = 1 ∂
∂x +0 ∂

∂y then we get ηxx = 0, ηx y = ξxx = 0 and ξy = ηy = 0.

So X [2]I1 = ζ(2) = 0 then X1 = ∂
∂x Lie point symmetry of I1

In the same way we can show it X2, X3 and X4 are Lie point symmetry of I2.
Now the second first integral I2 has three symmetries

Y1 = ∂

∂y
,

Y2 = x2 ∂

∂y
,

Y3 = x
∂

∂x
+ y

∂

∂y
, (55)

by using the condition X [2]I2 = 0 we get the results above in the same way as before.
Now the third first integral I3 also has four symmetries

H1 = x
∂

∂x
,

H2 = x
∂

∂y
,

H3 = x2 ∂

∂y
,

H4 = x2 ∂

∂x
+2x y

∂

∂y
. (56)

Note further that the symmetries in Eq.(56) are found by multiplying those of Eq.(54) by the factor x.
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Classifying relation for the symmetries
let F be an arbitrary function of the integrals I1, I2 and I3, namely

F = F (I1, I2, I3).

The symmetry of this general function of the first integrals is

X [2]F = X [2]I1
∂

∂I1
+X [2]I2

∂

∂I2
+X [2]I3

∂

∂I3
= 0, (57)

where

X [2]I1 =
[
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′

]
y ′′

= ζ(2),

X [2]I2 =
[
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′

]
(x y ′′− y ′)

= ξy ′′−ζ(1) +xζ(2),

X [2]I3 =
[
ξ
∂

∂x
+η ∂

∂y
+ζ(1) ∂

∂y ′ +ζ(2) ∂

∂y ′′

]
(

1

2
x2 y ′′−x y ′+ y)

= ξ(x y ′′− y ′)+η−xζ(1) + 1

2
x2ζ(2).

Now we will find coefficient functions ξ,η,ζ(1) and ζ(2)

since η is linearly independent solution of Eq.(43) then

η= c1 +xc2 +x2c3 + yc4 + yc6 +2x yc7.

Since ξ= A0 + A1x + A2x2, Ai constant
then

ξ= c5 +xc6 +x2c7,

ζ(1) = Dx (η)− y ′Dx (ξ)

= ∂

∂x
(η)+ y ′ ∂

∂y
(η)− y ′

(
∂

∂x
(ξ)+ y ′ ∂

∂y
(ξ)

)
= c2 +2c3x +2yc7 + y ′(c4 + c6 +2xc7)− y ′(c6 +2c7x + y ′(0))

= c2 +2xc3 + y ′c4 +2yc7

ζ(2) = 2c3 + y ′′c4 − y ′′c6 + (2y ′−2x y ′′)c7,

these are obtained by setting

X [2] =
7∑

i=1
ai X [2]

i ,

where the Xi are the symmetry generator and the ai are constant.
After substitution of the value of X [2]I1 ,X [2]I2 and X [2]I3 with ξ , η , ζ(1) and ζ(2) in Eq.(57).
Now we arrive at the classifying relation

[2c3 + (c4 − c6)I1 −2c7I2]
∂F

∂I1

+ (−c2 + c4I2 + c5I2 −2c7I3)
∂F

∂I2

+ [c1 + (c4 + c6)I3 + c5I2]
∂F

∂I3
= 0, (58)

the relation (58) explicitly provides the relationship between the symmetries and the first integrals of the simple
third-order Eq.(50). We use the classifying relation (58) to establish the number and property of symmetries possessed
by the first integrals of the simplest third-order Eq.(50).
In this research we study three cases
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Case 1. No Symmetry.

If F is any arbitrary function of I1, I2 and I3 then ∂F
∂I1

, ∂F
∂I2

and ∂F
∂I3

are not related to each other. In this case we have
from relation (58) and

∂F

∂I1
= ∂F

∂I2
= ∂F

∂I3
= 0

that

2c3 + (c4 − c6)I1 −2c7I2 = 0, (59)

−c2 + c4I2 + c5I1 −2c7I3 = 0, (60)

c1 + (c4 + c6)I3 + c5I2 = 0, (61)

we see that from Eqs.(59), (60) and (61) that all the a,s are zero. So no symmetry exists in this case. As an example if
we take F = I1I2lnI3, then the relation (58) becomes

[2c3 + (c4 − c6)I1 −2c7I2]I2I3lnI3

+ (−c2 + c4I2 + c5I2 −2c7I3)I1I2lnI3

+ [c1 + (c4 + c6)I3 + c5I2]I1I2 = 0,

its clear c ,s = 0, so no symmetry exists in this case

Case 2. One Symmetry.

If F satisfies the relation (58), then there exists one symmetry. For the simple symmetries of Eq.(50) one obtains
further symmetries except for X6 which we consider below if we take F = I1I2I3 or any function of this product, then
the relation (58) becomes

[2c3 + (c4 − c6)I2 −2c7I2]I2I3

+ (−c2 + c4I2 + c5I2 −2c7I3)I1I3

+ [c1 + (c4 + c6)I3 + c5I2]I1I2 = 0, (62)

Simplify the Eq.(62) yields

2c3I2I3 + c4I1I2I3 − c6I1I2I3 −2c7I 2
2 I3 − c2I1I3 + c4I1I2I3

+ c5I 2
1 I3 −2c7I1I 2

3 + c1I1I2 + c4I1I2I3 + c6I1I2I3 + c5I1I 2
2 = 0, (63)

in Eq.(63), c1 to c7 are zero expect c6 which gives one symmetry

X6 = x
∂

∂x
+ y

∂

∂x
.

Case 3. Two Symmetry.

Here there are many cases as well. We begin by using the Lie Table 1 for the classification of the two-dimensional
algebras.[5]
such that for example L2,1 denotes the second realizations of the 1 Lie algebra of dimension 2.
i.e.the notation Lα2,i where 2 refers to the dimension of the algebra, i to the number of the algebra in some given

ordinary and α is the realizations as an algebra many have more than on realizations for example LI I
2,1. Now from

Table 1. [2] They are

Y1 = ∂

∂y
, Y2 = ∂

∂x
,

Y1 = ∂

∂y
, Y2 = x

∂

∂y
,

Y1 = ∂

∂y
, Y1 = x

∂

∂x
+ y

∂

∂y
,

Y1 = ∂

∂y
, Y2 = y

∂

∂y
. (64)



Mayada Gassab Mohammad et al. / Int. J. Adv. Appl. Math. and Mech. 7(1) (2019) 20 – 40 37

Table 1. Realizations of two dimensional algebras in the real plane

p= ∂
∂x and q = ∂

∂y

Algebra Realizations in (x,y) plane

LI
2,1 X1 = p, X2 = q,

LI I
2,1 X1 = q, X2 = xq,

LI
2,2 X1 = q, X2 = xp + yq,

LI I
2,2 X1 = q, X2 = yq.

These form subalgebra of the Lie algebra of symmetries of Eq.(50) as can clearly be observed.
Now we take the first realization listed above (64)

Y1 = ∂

∂y
, Y2 = ∂

∂x

If c1 is arbitrary in relation (58) That means it F is independent of I3 Further X5 = ∂
∂x yields that F does not depend on

I2 as well.
Since we require that ∂F

∂I1
6= 0 then we have

2c3 + I1(c4 − c6)−2c7I2 = 0,

from which it follows that c3 = c7 = 0 and c4 = c6, in the end we possing with two more symmetries.

X = y
∂

∂y
+x

∂

∂x
+ y

∂

∂y

= x
∂

∂x
+2y

∂

∂y

= X4 +X6.

Now we take the second realizations listed Eq.(64)

Y1 = ∂

∂y
, Y2 = x

∂

∂y

we get if c1 arbitrary in relation (58) then X1 = ∂
∂y this means F is independent of I3 and if X2 = x ∂

∂y yield that F does

not dependent on I2 we require that ∂F
∂I1

6= 0 so

2c3 + I1(c4 − c6)−2c7I2 = 0,

then c3 = c7 = 0 and c4 = c6. So in the end we have more than two symmetries X2 and X4+X6 then we get the symmetry

X1 = ∂

∂y
, X2 = x

∂

∂y
,

and since c5 arbitrary then X5 = ∂
∂x .

Then the symmetry of first integral I1 are

X1 = ∂

∂x
,

X2 = ∂

∂y
,

X3 = x
∂

∂y
,

X4 = ∂

∂x
+2y

∂

∂y
.

Now if we take the third realization listed above Eq.(64).
Y1 = ∂

∂y , Y2 = x ∂
∂x + y ∂

∂y , we find the symmetries of I2

Y1 = ∂

∂y
,

Y2 = x2 ∂

∂y
,

Y3 = x
∂

∂x
+ y

∂

∂y
.
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The fourth realization results in a two symmetry case as c1 and c4 arbitrary thats means

∂F

∂I3
= 0, I1

∂F

∂I1
+ I2

∂F

∂I2
= 0

which as solution F = H(I2/I1).
The further substitution of this form into the relation (58) constrains all the c ,s equal zero except for c1 and c4. This
result prompts the following simple products and quotients that do give two symmetries.
If F = I1I2 then relation (58) get

[2c3 + (c4 − c6)I1 −2c7I2]I2 + (−c2 + c4I2 + c5I1 −2c7I3)I1 = 0,

we observe that c2,c3,c5 and c7 are zero whereas c1 is arbitrary and c6 = 2c4

i.e.
2c3I2 + c4I1I2 − c6I1I2 −2c7I 2

2 − c2I1 + c4I1I2 + c5I 2
1 −2c7I1I3 = 0,

more simplification we get

2c3I2 +2c4I1I2 − c6I1I2 −2c7I 2
2 − c2I1 + c5I 2

1 −2c7I1I3 = 0

Therefore we obtain the two symmetries

X1 = ∂

∂Y
,

Y = x
∂

∂x
+3y

∂

∂Y
,

which form a two-dimensional algebra with
[X ,Y ] = 3X1

If we set F = I1I3 then we in the end getting c1, c3, c4, c5 and c7 are zero,since c2 and c6 are arbitrary so they result in
two symmetry

X2 = x
∂

∂Y
,

X6 = x
∂

∂x
+ y

∂

∂Y
,

and
[X2, X6] = 0

If we take F = I3/I1 this shows that c2, c4 are arbitrary and the resulting two symmetries.Since ∂F
∂I2

= 0, ∂F
∂I1

=−I3/I 2
1 ,

∂F
∂I3

= 1/I1

Now by using (58) we get

−2c3I3/I 2
1 − c4I3/I1 + c6I3/I1 +2c7I2I3/I 2

1 + c1/I1 + c4I3/I1 + c6I3/I1 + c5I2/I1 = 0

Clear it c4 arbitrary and c3, c6, c7 are zero. Since ∂F
∂I2

= 0 then from (58) we arrive

−c2 + c4I2 + c5I1 −2c7I3 = 0

c2 arbitrary then X2 = x ∂
∂Y with

[X2, X4] = X2.

If we take F = I3/I2,
since ∂F

∂I1
= 0, ∂F

∂I2
=−I3/I 2

2 , ∂F
∂I3

= 1/I2

Now by using Eq.(58) we arrive

c2I3/I 2
2 − c4I3/I2 − c5I1I3/I 2

2 +2c7I 2
3 /I 2

2 + c1/I2 + c4I3/I2 + c6I3/I2 + c5I2/I2 = 0,

its clear c2 = 0,c5 = 0,c6 = 0, c7 = 0 and c3, c4 arbitrary,
So we obtain the two symmetries

X3 = x2 ∂

∂Y
,

X4 = y
∂

∂Y
,

with Lie bracket [X3, X4].
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7. Symmetry properties of first integrals of higher order ODEs

Consider the pth-order ODE of maximal symmetry

y (p) = 0, p ≥ 3, (65)

this ODE (65) has p + 4 symmetries as it’s known. Our attention will be about the first integral and p first integrals
which are

I1 = y (p−1), (66)

and

Ip =
p∑

i=1

(−1)i−1

(p −1)!
xp−i y (p−i ). (67)

The first integral (66) has p +1 symmetries which are

Xi = xi−1 ∂

∂y
, i = 1, · · · , p −1,

Xp = ∂

∂x
,

Xp +1 = x
∂

∂x
+ (p −1)y

∂

∂y
, (68)

these formulas an p +1-dimensional subalgebra of the Eq.(65). the first integral Eq.(67) has symmetries

Yi = xi ∂

∂y
, i = 1, · · · , p −1,

Yp = x
∂

∂x
,

Yp +1 = x2 ∂

∂x
+ (p −1)x y

∂

∂y
, (69)

note that it is the Eq.(69) comes from multiplying the symmetries of Eq.(68) by x.

8. Conclusion

In this research we have provided the algebraic structure of first integrals of simplest second-, third and higher-
order ordinary differential equations or any scalar linearizable, by point transformation, ODE. Firstly, we derived the
relationship between the symmetries and the first integrals of the simplest ordinary differential equation. By analyzing
this classifying relation, we were able to establish the number of symmetries possessed by any first integral of the sim-
plest equation. We obtained the important result that the symmetries admitted by a first integral can be 0, 1, 2 . It was
observed that the zero symmetry case was rather surprising or unexpected as one does not have a route to integration
of the equation due to the lack of any symmetry and this too for the simplest equation. The one and two symmetry
cases were not unique - there were many first integrals with differing one and two symmetry structures.Finally, we
studied completely the situation when a first integral has three symmetries. We used the classification of realizations
in the plane adapted as simplest equation. We showed that the only three-dimensional algebra admitted by a first
integral of the simplest equation is LI

3;5 which is admitted by the functionally independent integrals I1 and I2 as well
as their quotient I2/I1. We discussed this research study the point symmetry properties of the first integrals of y ′′′ = 0
which also represents all linearizable by point transformations third-order ODEs that reduce to this class. Finally we
study symmetry properties of first integrals of higher ODE.
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