Generalized Tribonacci Numbers: Summing Formulas

Yüksel Soykan

Department of Mathematics, Art and Science Faculty, Zonguldak Bulent Ecevit University, 67100, Zonguldak, Turkey

Received 04 February 2020; accepted (in revised version) 18 February 2020

Abstract: In this paper, closed forms of the summation formulas for generalized Tribonacci numbers are presented. As special cases, we give summation formulas of Tribonacci, Tribonacci-Lucas, Padovan, Perrin, Narayana and some other third order recurrence sequences.

MSC: 11B37 • 11B39 • 11B83

Keywords: Tribonacci numbers • Padovan numbers • Perrin numbers • Narayana numbers • Sum formulas

© 2020 The Author(s). This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/3.0/).

1. Introduction

The generalized Tribonacci sequence \(\{W_n(W_0, W_1, W_2; r, s, t)\}_n \geq 0 \) (or shortly \(\{W_n\}_n \geq 0 \)) (as a third-order generalization of Fibonacci numbers) is defined as follows:

\[
W_n = r W_{n-1} + s W_{n-2} + t W_{n-3}, \quad W_0 = a, W_1 = b, W_2 = c, \quad n \geq 3
\]

where \(W_0, W_1, W_2 \) are arbitrary complex numbers and \(r, s, t \) are real numbers.

This sequence has been studied by many authors, see for example [1],[2],[3],[4],[5],[12],[14],[15],[16],[20],[29],[31],[32]. See also [7],[8],[30] for some work on second-order generalization of Fibonacci numbers.

The sequence \(\{W_n\}_n \geq 0 \) can be extended to negative subscripts by defining

\[
W_{-n} = -\frac{s}{t} W_{-(n-1)} - \frac{r}{t} W_{-(n-2)} + \frac{1}{t} W_{-(n-3)}
\]

for \(n = 1, 2, 3, ... \) when \(t \neq 0 \). Therefore, recurrence (1) holds for all integer \(n \).

If we set \(r = s = t = 1 \) and \(W_0 = 0, W_1 = 1, W_2 = 1 \) then \(\{W_n\} \) is the well-known Tribonacci sequence and if we set \(r = s = t = 1 \) and \(W_0 = 3, W_1 = 1, W_2 = 3 \) then \(\{W_n\} \) is the well-known Tribonacci-Lucas sequence.

In fact, the generalized Tribonacci sequence is the generalization of the well-known sequences like Tribonacci, Tribonacci-Lucas, Padovan (Cordonnier), Perrin, Padovan-Perrin, Narayana, third order Jacobsthal and third order Jacobsthal-Lucas. In literature, for example, the following names and notations (see Table 1) are used for the special case of \(r, s, t \) and initial values. Note that the sequence \(\{C_n\} \) is't in the database of http://oeis.org [[17], yet.

In this work, we investigate summation formulas of generalized Tribonacci numbers. We present some works on summing formulas of the numbers in the Table 2.

* E-mail address(es): yuksel_soykan@hotmail.com
A few special case of generalized Tribonacci sequences

<table>
<thead>
<tr>
<th>Sequences (Numbers)</th>
<th>Notation</th>
<th>OEIS [17]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tribonacci</td>
<td>((T_3) = {W_n(0,1,1;1,1,1)})</td>
<td>A000073, A057597</td>
</tr>
<tr>
<td>Tribonacci-Lucas</td>
<td>((K_3) = {W_n(3,1,1;1,1,1)})</td>
<td>A001644, A073145</td>
</tr>
<tr>
<td>third order Pell</td>
<td>((P_n^{(3)} = {W_n(0,1,2;2,1,1)})</td>
<td>A077939, A077978</td>
</tr>
<tr>
<td>third order Pell-Lucas</td>
<td>((Q_n^{(3)} = {W_n(3,2,6;2,1,1)})</td>
<td>A276225, A276228</td>
</tr>
<tr>
<td>third order modified Pell</td>
<td>((E_n^{(3)} = {W_n(0,1,1;2,1,1)}))</td>
<td>A077997, A078049</td>
</tr>
<tr>
<td>Padovan (Cordonnier)</td>
<td>((P_n) = {W_n(1,1,1;0,1,1)})</td>
<td>A000931</td>
</tr>
<tr>
<td>Perrin (Padovan-Lucas)</td>
<td>((E_n) = {W_n(3,0,2;0,1,1)})</td>
<td>A001608, A078712</td>
</tr>
<tr>
<td>Padovan-Perrin</td>
<td>((S_n) = {W_n(0,0,1;0,1,1)})</td>
<td>A000931, A176971</td>
</tr>
<tr>
<td>Pell-Padovan</td>
<td>((R_n) = {W_n(1,1,1;0,2,1)})</td>
<td>A066983, A128587</td>
</tr>
<tr>
<td>Perrin-Perrin</td>
<td>((Q_n) = {W_n(3,0,2;0,2,1)})</td>
<td>-</td>
</tr>
<tr>
<td>Jacobsthal-Perrin</td>
<td>((L_n) = {W_n(1,1,1;0,1,2)})</td>
<td>A159284</td>
</tr>
<tr>
<td>Jacobsthal-Perrin (-Lucas)</td>
<td>((N_n) = {W_n(3,0,2;0,1,2)})</td>
<td>A072328</td>
</tr>
<tr>
<td>Narayana</td>
<td>((N_n) = {W_n(0,1,1;1,0,1)})</td>
<td>A078012</td>
</tr>
<tr>
<td>third order Jacobsthal</td>
<td>((J_n^{(3)} = {W_n(1,1,1;1,1,2)})</td>
<td>A077947</td>
</tr>
<tr>
<td>third order Jacobsthal-Lucas</td>
<td>((j_n^{(3)} = {W_n(2,1,5;1,1,2)})</td>
<td>A226308</td>
</tr>
</tbody>
</table>

A few special study of sum formulas

<table>
<thead>
<tr>
<th>Name of sequence</th>
<th>Papers which deal with summing formulas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pell and Pell-Lucas</td>
<td>[8],[10],[11]</td>
</tr>
<tr>
<td>Generalized Fibonacci</td>
<td>[9],[22],[23],[21]</td>
</tr>
<tr>
<td>Generalized Tribonacci</td>
<td>[6],[13],[18],[19]</td>
</tr>
<tr>
<td>Generalized Tetrannacci</td>
<td>[24],[25],[33]</td>
</tr>
<tr>
<td>Generalized Pentanacci</td>
<td>[26],[27]</td>
</tr>
<tr>
<td>Generalized Hexanacci</td>
<td>[28]</td>
</tr>
</tbody>
</table>

2. Sum formulas of Generalized Tribonacci Numbers with Positive Subscripts

The following theorem presents some summing formulas of generalized Tribonacci numbers with positive subscripts.

Theorem 2.1.

Let \(x\) be a complex number. For \(n \geq 0\), we have the following formulas:

(a) If \(tx^3 + sx^2 + rx - 1 \neq 0\), then

\[
\sum_{k=0}^{n} x^k W_k = \frac{\Omega_1}{tx^3 + sx^2 + rx - 1}
\]

where

\[
\Omega_1 = x^{n+3} W_{n+3} - (rx - 1)x^{n+2} W_{n+2} - (sx^2 + rx - 1) x^{n+1} W_{n+1}
\]

\[
- x^2 W_2 \cdot (x r - 1) \cdot W_1 + (sx^2 + rx - 1) W_0.
\]

(b) If \(r^2 x - s^2 x^2 + t^2 x^3 + 2sx + 2rx x^2 - 1 \neq 0\) then

\[
\sum_{k=0}^{n} x^k W_{2k} = \frac{\Omega_2}{r^2 x - s^2 x^2 + t^2 x^3 + 2sx + 2rx x^2 - 1}
\]

where

\[
\Omega_2 = - (sx - 1) x^{n+1} W_{2n+2} + (t + rs) x^{n+2} W_{2n+1} + t (r + tx) x^{n+2} W_{2n}
\]

\[
+ x (sx - 1) W_2 \cdot (t + rs) x^2 W_1 + (r^2 x - s^2 x^2 + 2sx + 2rx x^2 - 1) W_0.
\]

(c) If \(r^2 x - s^2 x^2 + t^2 x^3 + 2sx + 2rx x^2 - 1 \neq 0\) then

\[
\sum_{k=0}^{n} x^k W_{2k+1} = \frac{\Omega_3}{r^2 x - s^2 x^2 + t^2 x^3 + 2sx + 2rx x^2 - 1}
\]

where

\[
\Omega_3 = (r + tx) x^{n+1} W_{2n+2} + (s - s^2 x + t^2 x^2 + rtx) x^{n+1} W_{2n+1}
\]

\[
- t (sx - 1) x^{n+1} W_{2n} - x(r + tx) W_2 + (r^2 x + sx + rtx x^2 - 1) W_1 + tx(sx - 1) W_0.
\]
Proof:

(a) Using the recurrence relation

\[W_n = rW_{n-1} + sW_{n-2} + tW_{n-3} \]

i.e.

\[tW_{n-3} = W_n - rW_{n-1} - sW_{n-2} \]

we obtain

\[tx^0W_0 = x^0W_3 - rx^0W_2 - sx^0W_1 \]
\[tx^1W_1 = x^1W_4 - rx^1W_3 - sx^1W_2 \]
\[tx^2W_2 = x^2W_5 - rx^2W_4 - sx^2W_3 \]
\[tx^3W_3 = x^3W_6 - rx^3W_5 - sx^3W_4 \]
\[\vdots \]
\[tx^{n-3}W_{n-3} = x^{n-3}W_n - rx^{n-3}W_{n-1} - sx^{n-3}W_{n-2} \]
\[tx^{n-2}W_{n-2} = x^{n-2}W_{n+1} - rx^{n-2}W_n - sx^{n-2}W_{n-1} \]
\[tx^{n-1}W_{n-1} = x^{n-1}W_{n+2} - rx^{n-1}W_{n+1} - sx^{n-1}W_n \]
\[tx^nW_n = x^nW_{n+3} - rx^nW_{n+2} - sx^nW_{n+1}. \]

If we add the equations by side by, we get (a)

(b) and (c) Using the recurrence relation

\[W_n = rW_{n-1} + sW_{n-2} + tW_{n-3} \]

i.e.

\[rW_{n-1} = W_n - sW_{n-2} - tW_{n-3} \]

we obtain

\[rx^1W_3 = x^1W_4 - sx^1W_2 - tx^1W_1 \]
\[rx^2W_5 = x^2W_6 - sx^2W_4 - tx^2W_3 \]
\[rx^3W_7 = x^3W_8 - sx^3W_6 - tx^3W_5 \]
\[rx^4W_9 = x^4W_{10} - sx^4W_8 - tx^4W_7 \]
\[\vdots \]
\[rx^{n-1}W_{2n-1} = x^{n-1}W_{2n} - sx^{n-1}W_{2n-2} - tx^{n-1}W_{2n-3} \]
\[rx^nW_{2n+1} = x^nW_{2n+2} - sx^nW_{2n} - tx^nW_{2n-1}. \]

Now, if we add the above equations by side by, we get

\[r(-x^0W_1 + \sum_{k=0}^n x^kW_{2k+1}) = (x^nW_{2n+2} - x^0W_2 - x^{-1}W_0 + \sum_{k=0}^n x^{-k-1}W_{2k}) \]
\[-s(-x^0W_1 + \sum_{k=0}^n x^kW_{2k}) - t(-x^{n+1}W_{2n+1} + \sum_{k=0}^n x^{k+1}W_{2k+1}). \]

Similarly, using the recurrence relation

\[W_n = rW_{n-1} + sW_{n-2} + tW_{n-3} \]

i.e.

\[rW_{n-1} = W_n - sW_{n-2} - tW_{n-3} \]
we write the following obvious equations;

\[
\begin{align*}
rx^1W_2 &= x^1W_3 - sx^1W_1 - tx^1W_0 \\
rx^2W_4 &= x^2W_5 - sx^2W_3 - tx^2W_2 \\
rx^3W_6 &= x^3W_7 - sx^3W_5 - tx^3W_4 \\
rx^4W_8 &= x^4W_9 - sx^4W_7 - tx^4W_6 \\
rx^5W_{10} &= x^5W_{11} - sx^5W_9 - tx^5W_8 \\
rx^6W_{12} &= x^6W_{13} - sx^6W_{11} - tx^6W_{10} \\
\vdots \\
rx^{n-1}W_{2n-2} &= x^{n-1}W_{2n-1} - sx^{n-1}W_{2n-3} - tx^{n-1}W_{2n-4} \\
rx^nW_{2n} &= x^nW_{2n+1} - sx^nW_{2n-1} - tx^nW_{2n-2}
\end{align*}
\]

Now, if we add the above equations by side by, we obtain

\[
(\sum_{k=0}^{n} x^kW_{2k}) = (-W_1 + \sum_{k=0}^{n} x^kW_{2k+1}) - s(-x^{n+1}W_{2n+1} + \sum_{k=0}^{n} x^{k+1}W_{2k+1})
\]

(3)

Then, solving the system (2)-(3), the required result of (b) and (c) follow.

2.1. The case \(x = 1 \)

The case \(x = 1 \) of Theorem 2.1 is given in [18], see also [19]. In this subsection, we only consider the case \(x = 1, r = 0, s = 2, t = 1 \) and we present a theorem which is in different forms than given in [18].

Observe that setting \(x = 1, r = 0, s = 2, t = 1 \) (i.e. for the generalized Pell-Padovan case) in Theorem 2.1 (b) and (c) makes the right hand side of the sum formulas to be an indeterminate form. Application of L’Hospital rule however provides the evaluation of the sum formulas. If \(r = 0, s = 2, t = 1 \) then we have the following theorem.

Theorem 2.2.
If \(r = 0, s = 2, t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} W_k = \frac{1}{2} (W_{n+3} + W_{n+2} - W_{n+1} - W_2 - W_1 + W_0) \).

(b) \(\sum_{k=0}^{n} W_{2k} = (n+3)W_{2n+2} - (n+2)W_{2n+1} - (n+3)W_{2n} - 3W_2 + 2W_1 + 4W_0 \).

(c) \(\sum_{k=0}^{n} W_{2k+1} = -(n+2)W_{2n+2} + (n+3)W_{2n+1} + (n+3)W_{2n} + 2W_2 - 2W_1 - 3W_0 \).

Proof:

(a) Taking \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (a) we obtain (a).

(b) We use Theorem 2.1 (b). If we set \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (b) then we have

\[
\sum_{k=0}^{n} x^kW_{2k} = \frac{(2x-1)x^{n+1}W_{2n+2} - x^{n+2}W_{2n+1} - x^{n+3}W_{2n} - x(2x-1)W_2 + x^2W_1 + (4x^2 - 4x + 1)W_0}{-x^3 + 4x^2 - 4x + 1}.
\]

For \(x = 1 \), the right hand side of the above sum formulas is an indeterminate form. Now, we can use L’Hospital rule. Then we get

\[
\sum_{k=0}^{n} W_{2k} = \left. \frac{d}{dx} (f_1(x)) \right|_{x=1}
\]

where

\[
f_1(x) = (2x-1)x^{n+1}W_{2n+2} - x^{n+2}W_{2n+1} - x^{n+3}W_{2n} - x(2x-1)W_2 + x^2W_1 + (4x^2 - 4x + 1)W_0.
\]
(c) We use Theorem 2.1 (c). If we set \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (c) then we have
\[
\sum_{k=0}^{n} x^{2k} W_{2k+1} = -x^{n+2} W_{2n+2} - (x^2 - 4x + 2)x^{n+1} W_{2n+1} + (2x - 1)x^n + x^2 W_{2n} + x^2 W_2 - (2x - 1) W_1 - x(2x - 1) W_0
\]
For \(x = 1 \), the right hand side of the above sum formulas is an indeterminate form. Now, we can use L'Hospital rule. Then we get
\[
\sum_{k=0}^{n} W_{2k+1} = \left. \frac{d}{dx} f_2(x) \right|_{x=1} = - (n + 2) W_{2n+2} + (n + 3) W_{2n+1} + (n + 3) W_{2n} + 2W_2 - 2W_1 - 3W_0
\]
where
\[
f_2(x) = -x^{n+2} W_{2n+2} - (x^2 - 4x + 2)x^{n+1} W_{2n+1} + (2x - 1)x^n + x^2 W_{2n} + x^2 W_2 - (2x - 1) W_1 - x(2x - 1) W_0
\]
From the above theorem we have the following corollary which gives sum formulas of Pell-Padovan numbers (take \(W_n = R_n \) with \(R_0 = 1, R_1 = 1, R_2 = 1 \)).

Corollary 2.1.
For \(n \geq 0 \), Pell-Padovan numbers have the following property:

(a) \(\sum_{k=0}^{n} R_k = \frac{1}{2} (R_{n+3} + R_{n+2} - R_{n+1} - 1) \).
(b) \(\sum_{k=0}^{n} R_{2k} = (n + 3) R_{2n+2} - (n + 2) R_{2n+1} - (n + 3) R_{2n} + 3 \).
(c) \(\sum_{k=0}^{n} R_{2k+1} = - (n + 2) R_{2n+2} + (n + 3) R_{2n+1} + (n + 3) R_{2n} - 3 \).

Taking \(W_n = C_n \) with \(C_0 = 3, C_1 = 0, C_2 = 2 \) in the last theorem, we have the following corollary which presents sum formulas of Pell-Perrin numbers.

Corollary 2.2.
For \(n \geq 0 \), Pell-Perrin numbers have the following property:

(a) \(\sum_{k=0}^{n} C_k = \frac{1}{2} (C_{n+3} + C_{n+2} - C_{n+1} + 1) \).
(b) \(\sum_{k=0}^{n} C_{2k} = (n + 3) C_{2n+2} - (n + 2) C_{2n+1} - (n + 3) C_{2n} + 6 \).
(c) \(\sum_{k=0}^{n} C_{2k+1} = - (n + 2) C_{2n+2} + (n + 3) C_{2n+1} + (n + 3) C_{2n} - 5 \).

2.2. The case \(x = -1 \)

We now consider the case \(x = -1 \) in Theorem 2.1.

Taking \(x = -1, r = s = t = 1 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.1.
If \(r = s = t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^k W_k = \frac{1}{2} ((-1)^n (W_{n+3} - 2W_{n+2} + W_{n+1}) + W_2 - 2W_1 + W_0) \).
(b) \(\sum_{k=0}^{n} (-1)^k W_{2k} = \frac{1}{2} ((-1)^n W_{2n+2} - (-1)^n W_{2n+1} - W_2 + W_1 + 2W_0) \).
(c) \(\sum_{k=0}^{n} (-1)^k W_{2k+1} = \frac{1}{2} ((-1)^n W_{2n+1} + (-1)^n W_{2n} + W_1 - W_0) \).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci numbers (take \(W_n = T_n \) with \(T_0 = 0, T_1 = 1, T_2 = 1 \)).

Corollary 2.3.
For \(n \geq 0 \), Tribonacci numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k T_k = \frac{1}{2} ((-1)^n (T_{n+3} - 2T_{n+2} + T_{n+1}) - 1) \).
(b) \(\sum_{k=0}^{n} (-1)^k T_{2k} = \frac{1}{2} ((-1)^n (T_{2n+2} - T_{2n+1}) \).
(c) \(\sum_{k=0}^{n} (-1)^k T_{2k+1} = \frac{1}{2}((-1)^n T_{2n+1} + (-1)^n T_{2n} + 1) \).

Taking \(W_n = K_n \) with \(K_0 = 3, K_1 = 1, K_2 = 3 \) in the above proposition, we have the following corollary which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 2.4.
For \(n \geq 0 \), Tribonacci-Lucas numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k K_k = \frac{1}{2}((-1)^n (K_{n+3} - 2K_{n+2} + K_{n+1}) + 4) \).

(b) \(\sum_{k=0}^{n} (-1)^k K_{2k} = \frac{1}{2}((-1)^n K_{2n+2} - (-1)^n K_{2n+1} + 4) \).

(c) \(\sum_{k=0}^{n} (-1)^k K_{2k+1} = \frac{1}{2}((-1)^n K_{2n+1} + (-1)^n K_{2n} - 2) \).

Taking \(x = -1, r = 2, s = 1, t = 1 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.2.
If \(r = 2, s = 1, t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^k W_k = \frac{1}{2}((-1)^n (W_{n+3} - 3W_{n+2} + 2W_{n+1} + W_0) + 6W_0). \)

(b) \(\sum_{k=0}^{n} (-1)^k W_{2k} = \frac{1}{2}((-1)^n (2W_{2n+2} - 3W_{2n+1} - W_{2n}) - 2W_2 + 3W_1 + 6W_0). \)

(c) \(\sum_{k=0}^{n} (-1)^k W_{2k+1} = \frac{1}{2}((-1)^n (W_{2n+2} + W_{2n+1} + 2W_{2n}) - W_2 + 4W_1 - 2W_0). \)

From the last proposition, we have the following corollary which gives sum formulas of third-order Pell numbers (take \(W_n = P_n \) with \(P_0 = 0, P_1 = 1, P_2 = 2 \)).

Corollary 2.5.
For \(n \geq 0 \), third-order Pell numbers have the following properties:

(a) \(\sum_{k=0}^{n} (-1)^k P_k = \frac{1}{2}((-1)^n (P_{n+3} - 3P_{n+2} + 2P_{n+1} + 2P_{n+1}) - 1). \)

(b) \(\sum_{k=0}^{n} (-1)^k P_{2k} = \frac{1}{2}((-1)^n (2P_{2n+2} - 3P_{2n+1} - P_{2n}) - 1). \)

(c) \(\sum_{k=0}^{n} (-1)^k P_{2k+1} = \frac{1}{2}((-1)^n (P_{2n+2} + P_{2n+1} + 2P_{2n}) + 2). \)

Taking \(W_n = Q_n \) with \(Q_0 = 3, Q_1 = 2, Q_2 = 6 \) in the last proposition, we have the following corollary which presents sum formulas of third-order Pell-Lucas numbers.

Corollary 2.6.
For \(n \geq 0 \), third-order Pell-Lucas numbers have the following properties:

(a) \(\sum_{k=0}^{n} (-1)^k Q_k = \frac{1}{2}((-1)^n (Q_{n+3} - 3Q_{n+2} + Q_{n+1}) + 6). \)

(b) \(\sum_{k=0}^{n} (-1)^k Q_{2k} = \frac{1}{2}((-1)^n (2Q_{2n+2} - 3Q_{2n+1} - Q_{2n}) + 12). \)

(c) \(\sum_{k=0}^{n} (-1)^k Q_{2k+1} = \frac{1}{2}((-1)^n (Q_{2n+2} + Q_{2n+1} + 2Q_{2n}) - 4). \)

From the last proposition, we have the following corollary which gives sum formulas of third-order modified Pell numbers (take \(W_n = E_n \) with \(E_0 = 0, E_1 = 1, E_2 = 1 \)).

Corollary 2.7.
For \(n \geq 0 \), third-order modified Pell numbers have the following properties:

(a) \(\sum_{k=0}^{n} (-1)^k E_k = \frac{1}{2}((-1)^n (E_{n+3} - 3E_{n+2} + 2E_{n+1} - 2). \)

(b) \(\sum_{k=0}^{n} (-1)^k E_{2k} = \frac{1}{2}((-1)^n (2E_{2n+2} - 3E_{2n+1} - E_{2n}) + 1). \)

(c) \(\sum_{k=0}^{n} (-1)^k E_{2k+1} = \frac{1}{2}((-1)^n (E_{2n+2} + E_{2n+1} + 2E_{2n}) + 3). \)
Taking \(x = -1, r = 0, s = 1, t = 1 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.3.

If \(r = 0, s = 1, t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^k W_k = (-1)^n (W_{n+3} - W_{n+2}) + W_2 - W_1. \)

(b) \(\sum_{k=0}^{n} (-1)^k W_{2k} = \frac{1}{3}((-1)^n (2W_{2n+2} - W_{2n+1} + W_{2n}) - 2W_2 + W_1 + 4W_0). \)

(c) \(\sum_{k=0}^{n} (-1)^k W_{2k+1} = \frac{1}{3}((-1)^n (W_{2n+2} + 3W_{2n+1} + 2W_2) + W_2 + 2W_1 - 2W_0). \)

From the last proposition, we have the following corollary which gives sum formulas of Padovan numbers (take \(W_n = P_n \) with \(P_0 = 1, P_1 = 1, P_2 = 1 \)).

Corollary 2.8.

For \(n \geq 0 \), Padovan numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k P_k = (-1)^n (P_{n+3} - P_{n+2}). \)

(b) \(\sum_{k=0}^{n} (-1)^k P_{2k} = \frac{1}{5}((-1)^n (2P_{2n+2} - P_{2n+1} + P_{2n}) + 3). \)

(c) \(\sum_{k=0}^{n} (-1)^k P_{2k+1} = \frac{1}{5}((-1)^n (-P_{2n+2} + 3P_{2n+1} + 2P_{2n}) + 1). \)

Taking \(W_n = E_n \) with \(E_0 = 3, E_2 = 0, E_2 = 2 \) in the last proposition, we have the following corollary which presents sum formulas of Perrin numbers.

Corollary 2.9.

For \(n \geq 0 \), Perrin numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k E_k = (-1)^n (E_{n+3} - E_{n+2}) + 2. \)

(b) \(\sum_{k=0}^{n} (-1)^k E_{2k} = \frac{1}{5}((-1)^n (2E_{2n+2} - E_{2n+1} + E_{2n}) + 3). \)

(c) \(\sum_{k=0}^{n} (-1)^k E_{2k+1} = \frac{1}{5}((-1)^n (-E_{2n+2} + 3E_{2n+1} + 2E_{2n}) - 4). \)

Taking \(W_n = S_n \) with \(S_0 = 0, S_2 = 0, S_2 = 1 \) in the last proposition, we have the following corollary which gives sum formulas of Padovan-Perrin numbers.

Corollary 2.10.

For \(n \geq 0 \), Padovan-Perrin numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k S_k = (-1)^n (S_{n+3} - S_{n+2}) + 1. \)

(b) \(\sum_{k=0}^{n} (-1)^k S_{2k} = \frac{1}{5}((-1)^n (2S_{2n+2} - S_{2n+1} + S_{2n}) - 2). \)

(c) \(\sum_{k=0}^{n} (-1)^k S_{2k+1} = \frac{1}{5}((-1)^n (-S_{2n+2} + 3S_{2n+1} + 2S_{2n}) + 1). \)

If \(x = -1, r = 0, s = 2, t = 1 \) then \(tx^3 + sx^2 + rx - 1 = 0 \) so we can’t use Theorem 2.1 (a) directly. Observe that setting \(x = -1, r = 0, s = 2, t = 1 \) (i.e. for the generalized Pell-Padovan case) in Theorem 2.1 (a) makes the right hand side of the sum formulas to be an indeterminate form. Application of L’Hospital rule provides the evaluation of the sum formulas. If \(r = 0, s = 2, t = 1 \) then we have the following theorem.

Theorem 2.3.

If \(r = 0, s = 2, t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^k W_k = (-1)^n (-(n + 3)W_{n+3} + (n + 2)W_{n+2} + (n + 5)W_{n+1}) - 2W_2 + W_1 + 4W_0. \)

(b) \(\sum_{k=0}^{n} (-1)^k W_{2k} = \frac{1}{10}((3(-1)^n W_{2n+2} - (-1)^n W_{2n+1} + (-1)^n W_{2n} - 3W_2 + W_1 + 9W_0). \)

(c) \(\sum_{k=0}^{n} (-1)^k W_{2k+1} = \frac{1}{10}((-1)^n (-W_{2n+2} + 7W_{2n+1} + 3W_{2n}) + 3W_1 - 3W_0 + W_2). \)
Proof:

(a) We use Theorem 2.1 (a). If we set \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (a) then we have

\[
\sum_{k=0}^{n} x^{k} W_{k} = \frac{x^{n+3} W_{n+3} + x^{n+2} W_{n+2} - x^{n+1} \left[2x^{2} - 1 \right] W_{n+1} - x^{2} W_{2} - x W_{1} + \left(2x^{2} - 1 \right) W_{0}}{x^{3} + 2x^{2} - 1}.
\]

For \(x = -1 \), the right hand side of the above sum formulas is an indeterminate form. Now, we can use L'Hospital rule. Then we get

\[
\sum_{k=0}^{n} (-1)^k W_k = \left. \frac{d}{dx} \left(x^{n+3} W_{n+3} + x^{n+2} W_{n+2} - x^{n+1} \left[2x^{2} - 1 \right] W_{n+1} - x^{2} W_{2} - x W_{1} + \left(2x^{2} - 1 \right) W_{0} \right) \right|_{x=-1}
\]

\[
= (-1)^n \left(- (n + 3) W_{n+3} + (n + 2) W_{n+2} + (n + 5) W_{n+1} \right) - 2W_{2} + W_{1} + 4W_{0}.
\]

(b) Taking \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (b) we obtain (b).

(c) Taking \(r = 0, s = 2, t = 1 \) in Theorem 2.1 (c) we obtain (c).

From the above theorem we have the following corollary which gives sum formulas of Pell-Padovan numbers (take \(W_n = R_n \) with \(R_0 = 1, R_1 = 1, R_2 = 1 \)).

Corollary 2.11.

For \(n \geq 0 \), Pell-Padovan numbers have the following property:

(a) \(\sum_{k=0}^{n} (-1)^k R_k = (-1)^n \left(-(n + 3) R_{n+3} + (n + 2) R_{n+2} + (n + 5) R_{n+1} \right) + 3. \)

(b) \(\sum_{k=0}^{n} (-1)^k R_{2k} = \frac{1}{10} (3(-1)^n R_{2n+2} - (-1)^n R_{2n+1} + (-1)^n R_{2n+7}). \)

(c) \(\sum_{k=0}^{n} (-1)^k R_{2k+1} = \frac{1}{10} ((-1)^n (-R_{2n+2} + 7R_{2n+1} + 3R_{2n}) + 1). \)

Taking \(W_n = C_n \) with \(C_0 = 3, C_1 = 1, C_2 = 2 \) in the last theorem, we have the following corollary which presents sum formulas of Pell-Perrin numbers.

Corollary 2.12.

For \(n \geq 0 \), Pell-Perrin numbers have the following property:

(a) \(\sum_{k=0}^{n} (-1)^k C_k = (-1)^n \left(-(n + 3) C_{n+3} + (n + 2) C_{n+2} + (n + 5) C_{n+1} \right) + 8. \)

(b) \(\sum_{k=0}^{n} (-1)^k C_{2k} = \frac{1}{10} (3(-1)^n C_{2n+2} - (-1)^n C_{2n+1} + (-1)^n C_{2n+21}). \)

(c) \(\sum_{k=0}^{n} (-1)^k C_{2k+1} = \frac{1}{10} ((-1)^n (-C_{2n+2} + 7C_{2n+1} + 3C_{2n}) - 7). \)

Taking \(x = -1, r = 0, s = 1, t = 2 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.4.

If \(r = 0, s = 1, t = 2 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^k W_k = \frac{1}{2} ((-1)^n W_{n+3} - (-1)^n W_{n+2} + W_2 - W_1). \)

(b) \(\sum_{k=0}^{n} (-1)^k W_{2k} = \frac{1}{2} ((-1)^n (W_{2n+2} - W_{2n+1} + 2W_{2n}) - W_2 + W_1 + 2W_0). \)

(c) \(\sum_{k=0}^{n} (-1)^k W_{2k+1} = \frac{1}{2} ((-1)^n (-W_{2n+2} + 3W_{2n+1} + 2W_{2n}) + W_2 + W_1 - 2W_0). \)

Taking \(W_n = Q_n \) with \(Q_0 = 1, Q_1 = 1, Q_2 = 1 \) in the last proposition, we have the following corollary which presents sum formulas of Jacobsthal-Padovan numbers.

Corollary 2.13.

For \(n \geq 0 \), Jacobsthal-Padovan numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^k Q_k = \frac{1}{2} ((-1)^n (Q_{n+3} - Q_{n+2}). \)
(b) \(\sum_{k=0}^{n} (-1)^{k}Q_{2k} = \frac{1}{4}((-1)^{n}(Q_{2n+2} - Q_{2n+1} + 2Q_{2n}) + 2) \).

(c) \(\sum_{k=0}^{n} (-1)^{k}Q_{2k+1} = \frac{1}{4}((-1)^{n}(Q_{2n+2} + 3Q_{2n+1} + 2Q_{2n}) + 2) \).

From the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-Perrin numbers (take \(W_n = L_n \) with \(L_0 = 3, L_1 = 0, L_2 = 2 \)).

Corollary 2.14.
For \(n \geq 0 \), Jacobsthal-Perrin numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^{k}L_k = \frac{1}{2}((-1)^{n}L_{n+3} - (-1)^{n}L_{n+2} + 2) \).

(b) \(\sum_{k=0}^{n} (-1)^{k}L_{2k} = \frac{1}{4}((-1)^{n}(L_{2n+2} - L_{2n+1} + 2L_{2n}) + 4) \).

(c) \(\sum_{k=0}^{n} (-1)^{k}L_{2k+1} = \frac{1}{4}((-1)^{n}(-L_{2n+2} + 3L_{2n+1} + 2L_{2n}) - 4) \).

Taking \(x = -1, r = 1, s = 0, t = 1 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.5.
If \(r = 1, s = 0, t = 1 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^{k}W_{2k} = \frac{1}{3}((-1)^{n}(W_{n+3} - 2W_{n+2} + 2W_{n+1}) + W_{2} - 2W_{1} + 2W_{0}) \).

(b) \(\sum_{k=0}^{n} (-1)^{k}W_{2k} = (-1)^{n}(W_{2n+2} - W_{2n+1}) - W_{2} + W_{1} + W_{0} \).

(c) \(\sum_{k=0}^{n} (-1)^{k}W_{2k+1} = (-1)^{n}W_{2n} + W_{1} - W_{0} \).

From the last proposition, we have the following corollary which presents sum formulas of Narayana numbers (take \(W_n = N_n \) with \(N_0 = 0, N_1 = 1, N_2 = 1 \)).

Corollary 2.15.
For \(n \geq 0 \), Narayana numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^{k}N_{k} = \frac{1}{2}((-1)^{n}(N_{n+3} - 2N_{n+2} + 2N_{n+1}) - 1) \).

(b) \(\sum_{k=0}^{n} (-1)^{k}N_{2k} = (-1)^{n}(N_{2n+2} - N_{2n+1}) \).

(c) \(\sum_{k=0}^{n} (-1)^{k}N_{2k+1} = (-1)^{n}N_{2n} + 1 \).

Taking \(x = -1, r = 1, s = 1, t = 2 \) in Theorem 2.1 (a), (b) and (c), we obtain the following proposition.

Proposition 2.6.
If \(r = 1, s = 1, t = 2 \) then for \(n \geq 0 \) we have the following formulas:

(a) \(\sum_{k=0}^{n} (-1)^{k}J_{k} = \frac{1}{2}((-1)^{n}(J_{n+3} - 2J_{n+2} + J_{n+1}) - 1) \).

(b) \(\sum_{k=0}^{n} (-1)^{k}J_{2k} = \frac{1}{2}((-1)^{n}(2J_{2n+2} - 3J_{2n+1} + 2J_{2n}) - 2W_{2} + 3W_{1} + 3W_{0}) \).

(c) \(\sum_{k=0}^{n} (-1)^{k}J_{2k+1} = \frac{1}{2}((-1)^{n}(-W_{2n+2} + 4W_{2n+1} + 4W_{2n}) + W_{2} + W_{1} - 4W_{0}) \).

Taking \(W_n = J_n \) with \(J_0 = 0, J_1 = 1, J_2 = 1 \) in the last proposition, we have the following corollary which presents sum formulas of third order Jacobsthal numbers.

Corollary 2.16.
For \(n \geq 0 \), third order Jacobsthal numbers have the following properties.

(a) \(\sum_{k=0}^{n} (-1)^{k}J_{k} = \frac{1}{2}((-1)^{n}(J_{n+3} - 2J_{n+2} + J_{n+1}) - 1) \).

(b) \(\sum_{k=0}^{n} (-1)^{k}J_{2k} = \frac{1}{2}((-1)^{n}(2J_{2n+2} - 3J_{2n+1} + 2J_{2n}) + 1) \).

(c) \(\sum_{k=0}^{n} (-1)^{k}J_{2k+1} = \frac{1}{2}((-1)^{n}(-J_{2n+2} + 4J_{2n+1} + 4J_{2n}) + 2) \).
From the last proposition, we have the following corollary which gives sum formulas of third order Jacobsthal-Lucas numbers (take \(W_n = j_n \) with \(j_0 = 2, j_1 = 1, j_2 = 5 \)).

Corollary 2.17.
For \(n \geq 0 \), third order Jacobsthal-Lucas numbers have the following properties.

\[
\text{(a)} \quad \sum_{k=0}^{n} (-1)^k j_k = \frac{1}{3} ((-1)^n (j_{n+3} - 2j_{n+2} + j_{n+1}) + 5).
\]

\[
\text{(b)} \quad \sum_{k=0}^{n} (-1)^k j_{2k} = \frac{1}{5} ((-1)^n (2j_{2n+2} - 3j_{2n+1} + 2j_{2n}) - 1).
\]

\[
\text{(c)} \quad \sum_{k=0}^{n} (-1)^k j_{2k+1} = \frac{1}{5} ((-1)^n (-j_{2n+2} + 4j_{2n+1} + 4j_{2n}) - 2).
\]

2.3. The Case \(x = 1 + i \)

We now consider the complex case \(x = 1 + i \) in **Theorem 2.1**.

Taking \(x = 1 + i, r = s = t = 1 \) in **Theorem 2.1** (a), (b) and (c), we obtain the following proposition.

Proposition 2.7.
If \(r = s = t = 1 \) then for \(n \geq 0 \) we have the following formulas:

\[
\text{(a)} \quad \sum_{k=0}^{n} (1+i)^k W_k = \frac{1}{2+2i} ((1+i)^n (3(1-i) W_{n+1} + 2W_{n+2} + 2(-1+i) W_{n+3}) - 2i W_2 - (1-i) W_1 + 3i W_0).
\]

\[
\text{(b)} \quad \sum_{k=0}^{n} (1+i)^k W_{2k} = \frac{1}{4+i} ((1+i)^n ((1-i) W_{2n+2} + 4i W_{2n+1} + 2(-1+2i) W_{2n}) - (1-i) W_2 - 4i W_1 + (2+3i) W_0)
\]

\[
\text{(c)} \quad \sum_{k=0}^{n} (1+i)^k W_{2k+1} = \frac{1}{4+i} ((1+i)^n ((1+3i) W_{2n+2} + (1-3i) W_{2n+1} + (1-i) W_{2n}) - (1+3i) W_2 + (1+4i) W_1 - (1-i) W_0).
\]

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci numbers (take \(W_n = T_n \) with \(T_0 = 0, T_1 = 1, T_2 = 1 \)).

Corollary 2.18.
For \(n \geq 0 \), Tribonacci numbers have the following properties.

\[
\text{(a)} \quad \sum_{k=0}^{n} (1+i)^k T_k = \frac{1}{2+2i} ((1+i)^n (3(1-i) T_{n+1} + 2T_{n+2} + 2(-1+i) T_{n+3}) - 1-i).
\]

\[
\text{(b)} \quad \sum_{k=0}^{n} (1+i)^k T_{2k} = \frac{1}{4+i} ((1+i)^n ((1-i) T_{2n+2} + 4i T_{2n+1} + 2(-1+2i) T_{2n}) - 1-3i).
\]

\[
\text{(c)} \quad \sum_{k=0}^{n} (1+i)^k T_{2k+1} = \frac{1}{4+i} ((1+i)^n ((1+3i) T_{2n+2} + (-1+3i) T_{2n+1} + (1-i) T_{2n}) + i).
\]

Taking \(W_n = K_n \) with \(K_0 = 3, K_1 = 1, K_2 = 3 \) in the last proposition, we have the following corollary which presents sum formulas of Tribonacci-Lucas numbers.

Corollary 2.19.
For \(n \geq 0 \), Tribonacci-Lucas numbers have the following properties.

\[
\text{(a)} \quad \sum_{k=0}^{n} (1+i)^k K_k = \frac{1}{2+2i} ((1+i)^n (3(1-i) K_{n+1} + 2K_{n+2} + 2(-1+i) K_{n+3}) - 1+4i).
\]

\[
\text{(b)} \quad \sum_{k=0}^{n} (1+i)^k K_{2k} = \frac{1}{4+i} ((1+i)^n ((1-i) K_{2n+2} + 4i K_{2n+1} + 2(-1+2i) K_{2n}) + 3+8i).
\]

\[
\text{(c)} \quad \sum_{k=0}^{n} (1+i)^k K_{2k+1} = \frac{1}{4+i} ((1+i)^n ((1+3i) K_{2n+2} + (-1+3i) K_{2n+1} + (1-i) K_{2n}) - 5-2i).
\]

Corresponding sums of the other third order linear sequences can be calculated similarly when \(x = 1+i \).
3. Sum formulas of Generalized Tribonacci Numbers with Negative Subscripts

The following theorem presents some summing formulas (identities) of generalized Tribonacci numbers with negative subscripts.

Theorem 3.1.

Let \(x \) be a complex number. For \(n \geq 1 \), we have the following formulas:

(a) If \(t + r x^2 + sx - x^3 \neq 0 \), then

\[
\sum_{k=1}^{n} x^k W_{-k} = \frac{\Omega_4}{t + r x^2 + sx - x^3}
\]

where

\[
\Omega_4 = -(t + r x^2 + sx)x^{n+1} W_{-n-1} - (t + sx)x^{n+2} W_{-n-2} - tx^{n+3} W_{-n-3} + x W_2 - x(r - x) W_1 + x[-s - r x + x^2] W_0.
\]

(b) If \(2 sx^2 - s^2 x + r^2 x^2 + r^2 - x^3 + 2 r t x \neq 0 \) then

\[
\sum_{k=1}^{n} x^k W_{-2k} = \frac{\Omega_5}{2 sx^2 - s^2 x + r^2 x^2 + r^2 - x^3 + 2 r t x}
\]

where

\[
\Omega_5 = -(t + r x)x^{n+1} W_{-2n+1} + (r^2 x + r t + sx - x^2)x^{n+1} W_{-2n+2} + t(s - x)x^{n+1} W_{-2n+1} - x(s - x) W_2 + x(t + r s) W_1 + x[-r^2 x - r t - 2 sx + s^2 + x^2] W_0.
\]

(c) If \(2 sx^2 - s^2 x + r^2 x^2 + r^2 - x^3 + 2 r t x \neq 0 \) then

\[
\sum_{k=1}^{n} x^k W_{-2k+1} = \frac{\Omega_6}{2 sx^2 - s^2 x + r^2 x^2 + r^2 - x^3 + 2 r t x}
\]

where

\[
\Omega_6 = (s - x)x^{n+2} W_{-2n+1} - (t + r s)x^{n+2} W_{-2n-2} - t(t + r x)x^{n+1} W_{-2n-1} + x(t + r x) W_2 + x[-r^2 x - r t - sx + x^2] W_1 - t x(s - x) W_0.
\]

Proof:

(a) Using the recurrence relation

\[W_{-n+3} = r x W_{-n+2} + s x W_{-n+1} + t x W_{-n} \Rightarrow W_{-n} = -\frac{s}{t} W_{-(n-1)} - \frac{r}{t} W_{-(n-2)} + \frac{1}{t} W_{-(n-3)} \]

i.e.

\[t W_{-n} = W_{-n+3} - r W_{-n+2} - s W_{-n+1} \]

or

\[W_{-n} = \frac{1}{t} W_{-n+3} - \frac{r}{t} W_{-n+2} - \frac{s}{t} W_{-n+1} \]

we obtain

\[
\begin{align*}
tx^n W_{-n} &= x^n W_{-n+3} - r x^n W_{-n+2} - s x^n W_{-n+1} \\
tx^{n-1} W_{-n+1} &= x^{n-1} W_{-n+4} - r x^{n-1} W_{-n+3} - s x^{n-1} W_{-n+2} \\
tx^{n-2} W_{-n+2} &= x^{n-2} W_{-n+5} - r x^{n-2} W_{-n+4} - s x^{n-2} W_{-n+3} \\
&\vdots \\
tx^{3} W_{-3} &= x^{3} W_{0} - r x^{3} W_{-1} - s x^{3} W_{-2} \\
tx^{2} W_{-2} &= x^{2} W_{1} - r x^{2} W_{0} - s x^{2} W_{-1} \\
tx^{1} W_{-1} &= x^{1} W_{2} - r x^{1} W_{1} - s x^{1} W_{0}.
\end{align*}
\]

If we add the equations by side by, we get (a).
(b) and (c) Using the recurrence relation

\[W_{n+3} = rW_{n+2} + sW_{n+1} + tW_n \]

i.e.,

\[sW_{n+1} = W_{n+3} - rW_{n+2} - tW_n \]

we obtain

\[
\begin{align*}
x^nW_{n+1} &= x^nW_{2n+3} - rx^nW_{2n+2} - tx^nW_{2n} \\
x^{n-1}W_{n+1} &= x^{n-1}W_{2n+5} - rx^{n-1}W_{2n+4} - tx^{n-1}W_{2n+2} \\
x^{n-2}W_{n+1} &= x^{n-2}W_{2n+7} - rx^{n-2}W_{2n+6} - tx^{n-2}W_{2n+4} \\
x^{n-3}W_{n+1} &= x^{n-3}W_{2n+9} - rx^{n-3}W_{2n+8} - tx^{n-3}W_{2n+6} \\
&\vdots \\
x^nW_{-5} &= x^nW_{-3} - rx^nW_{-4} - tx^nW_{-2} \\
x^nW_{-3} &= x^nW_{-1} - rx^nW_0 - tx^nW_1 \\
x^nW_{-1} &= x^nW_1 - rx^nW_0 - tx^nW_2
\end{align*}
\]

If we add the equations by side by, we get

\[s \sum_{k=1}^{n} x^kW_{-2k+1} = (-x^{n+1}W_{-2n+1} + x^1W_1 + \sum_{k=1}^{n} x^{k+1}W_{-2k+1}) \\
- r(-x^{n+1}W_{-2n} + x^1W_0 + \sum_{k=1}^{n} x^{k+1}W_{-2k}) - t(\sum_{k=1}^{n} x^{k}W_{-2k}) \tag{4}
\]

and so

\[s \sum_{k=1}^{n} x^kW_{-2k+1} = (-x^{n+1}W_{-2n+1} + x^1W_1 + x^1\sum_{k=1}^{n} x^kW_{-2k+1}) \\
- r(-x^{n+1}W_{-2n} + x^1W_0 + x^1\sum_{k=1}^{n} x^kW_{-2k}) - t(\sum_{k=1}^{n} x^{k}W_{-2k}).
\]

Similarly, using the recurrence relation

\[W_{n+3} = rW_{n+2} + sW_{n+1} + tW_n \]

i.e.,

\[sW_{n+1} = W_{n+3} - rW_{n+2} - tW_n \]

we obtain

\[
\begin{align*}
x^nW_{2n} &= x^nW_{2n+2} - rx^nW_{2n+1} - tx^nW_{2n-1} \\
x^{n-1}W_{2n+2} &= x^{n-1}W_{2n+4} - rx^{n-1}W_{2n+3} - tx^{n-1}W_{2n+1} \\
x^{n-2}W_{2n+4} &= x^{n-2}W_{2n+6} - rx^{n-2}W_{2n+5} - tx^{n-2}W_{2n+3} \\
x^{n-3}W_{2n+6} &= x^{n-3}W_{2n+8} - rx^{n-3}W_{2n+7} - tx^{n-3}W_{2n+5} \\
&\vdots \\
x^nW_{-8} &= x^nW_{-6} - rx^nW_{-7} - tx^nW_{-9} \\
x^nW_{-6} &= x^nW_{-4} - rx^nW_{-5} - tx^nW_{-7} \\
x^nW_{-4} &= x^nW_{-2} - rx^nW_{-3} - tx^nW_{-5} \\
x^nW_{-2} &= x^nW_0 - rx^nW_{-1} - tx^nW_{-3}.
\end{align*}
\]

If we add the equations by side by, we get

\[s \sum_{k=1}^{n} x^kW_{-2k} = (-x^{n+1}W_{-2n} + x^1W_0 + \sum_{k=1}^{n} x^{k+1}W_{-2k+1}) - r(\sum_{k=1}^{n} x^{k}W_{-2k+1}) \\
- t(x^{n}W_{-2n-1} - x^0W_{-1} + \sum_{k=1}^{n} x^{k-1}W_{-2k+1})
\]
and so
\[s \sum_{k=1}^{n} x^k W_{-2k} = (-x^{n+1} W_{-2n} + x^1 W_0 + x^1 \sum_{k=1}^{n} x^k W_{-2k}) - r (\sum_{k=1}^{n} x^k W_{-2k+1}) \]
\[- t (x^n W_{-2n-1} - x^0 W_1 + x^{-1} \sum_{k=1}^{n} x^k W_{-2k+1}) \]

Since
\[W_{-1} = (-sW_0 - rW_1 + \frac{1}{t} W_2) \]
it follows that
\[s \sum_{k=1}^{n} x^k W_{-2k} = (-x^{n+1} W_{-2n} + x^1 W_0 + x^1 \sum_{k=1}^{n} x^k W_{-2k}) - r (\sum_{k=1}^{n} x^k W_{-2k+1}) \]
(5)
\[- t (x^n W_{-2n-1} - x^0 (-sW_0 - rW_1 + \frac{1}{t} W_2) + x^{-1} \sum_{k=1}^{n} x^k W_{-2k+1}) \]

Then, solving system (4)-(5) the required result of (b) and (c) follow.

3.1. The case \(x = 1 \)

The case \(x = 1 \) of Theorem 3.1 is given in [18], see also [19]. In this subsection, we only consider the case \(x = 1, r = 0, s = 2, t = 1 \) and we present a theorem which is in different forms than given in [18]).

Observe that setting \(x = 1, r = 0, s = 2, t = 1 \) (i.e. for the generalized Pell-Padovan case) in Theorem 3.1 (b) and (c) makes the right hand side of the sum formulas to be an indeterminate form. Application of L’Hospital rule however provides the evaluation of the sum formulas. If \(r = 0, s = 2, t = 1 \) then we have the following theorem.

Theorem 3.2.
If \(r = 0, s = 2, t = 1 \) then for \(n \geq 1 \) we have the following formulas:

(a) \(\sum_{k=1}^{n} W_k = \frac{1}{2} (-3 W_{-n-1} - 3 W_{-n-2} - W_{-n-3} + W_2 + W_1 - W_0) \).

(b) \(\sum_{k=1}^{n} W_{-2k} = -(n + 1) W_{-2n+1} + (n + 1) W_{-2n} + n W_{-2n-1} + W_1 - W_0. \)

(c) \(\sum_{k=1}^{n} W_{-2k+1} = (n + 1) W_{-2n+1} - (n + 2) W_{-2n} - (n + 1) W_{-2n-1} + W_2 - W_1. \)

Proof:

(a) Taking \(r = 0, s = 2, t = 1 \) in Theorem 3.1 (a) we obtain (a).

(b) We use Theorem 3.1 (b). If we set \(r = 0, s = 2, t = 1 \) in Theorem 3.1 (b) then we have
\[\sum_{k=0}^{n} x^k W_{-2k} = -x^{n+1} W_{-2n+1} + (2x - x^2) x^{n+1} W_{-2n} - x^{n+1} W_{-2n-1} + x(x-2) W_2 + xW_1 + x(x^2 - 4x + 4) W_0. \]
For \(x = 1 \), the right hand side of the above sum formulas is an indeterminate form. Now, we can use L’Hospital rule. Then we get
\[\sum_{k=0}^{n} W_{-2k} = \left. \frac{d}{dx} (g_1(x)) \right|_{x=1} \]
\[= -(n + 1) W_{-2n+1} + (n + 1) W_{-2n} + n W_{-2n-1} + W_1 - W_0. \]

where
\[g_1(x) = -x^{n+1} W_{-2n+1} + (2x - x^2) x^{n+1} W_{-2n} - x^{n+1} W_{-2n-1} + x(x-2) W_2 + xW_1 + x(x^2 - 4x + 4) W_0 \]

(c) We use Theorem 3.1 (c). If we set \(r = 0, s = 2, t = 1 \) in Theorem 3.1 (c) then we have
\[\sum_{k=0}^{n} x^k W_{-2k+1} = -(x-2)x^{n+2} W_{-2n+1} - x^{n+2} W_{-2n} - x^{n+1} W_{-2n-1} + xW_2 - x(x-2) W_1 + x(x-2) W_0. \]
For \(x = 1 \), the right hand side of the above sum formulas is an indeterminate form. Now, we can use L’Hospital rule. Then we obtain
\[\sum_{k=0}^{n} W_{-2k+1} = \left. \frac{d}{dx} (g_2(x)) \right|_{x=1} \]
\[= (n + 1) W_{-2n+1} - (n + 2) W_{-2n} - (n + 1) W_{-2n-1} + W_2 - W_1. \]

where
\[g_2(x) = -(x-2) x^{n+2} W_{-2n+1} - x^{n+2} W_{-2n} - x^{n+1} W_{-2n-1} + xW_2 - x(x-2) W_1 + x(x-2) W_0. \]
From the last theorem, we have the following corollary which gives sum formula of Pell-Padovan numbers (take \(W_n = R_n \) with \(R_0 = 1, R_1 = 1, R_2 = 1 \)).

Corollary 3.1.
For \(n \geq 1 \), Pell-Padovan numbers have the following property:

(a) \(\sum_{k=1}^{n} R_{-k} = \frac{1}{2} (3R_{-n-1} - 3R_{-n-2} - R_{-n-3} + 1) \).

(b) \(\sum_{k=1}^{n} R_{-2k} = -(n + 1) R_{-2n+1} + (n + 1) R_{-2n} + nR_{-2n-1} \).

(c) \(\sum_{k=1}^{n} R_{-2k+1} = (n + 1) R_{-2n+1} - (n + 2) R_{-2n} - (n + 1) R_{-2n-1} \).

Taking \(W_n = C_n \) with \(C_0 = 3, C = 0, C_2 = 2 \) in the last theorem, we have the following corollary which gives sum formulas of Pell-Perrin numbers.

Corollary 3.2.
For \(n \geq 1 \), Pell-Perrin numbers have the following property:

(a) \(\sum_{k=1}^{n} C_{-k} = \frac{1}{2} (3C_{-n-1} - 3C_{-n-2} - C_{-n-3} - 1) \).

(b) \(\sum_{k=1}^{n} C_{-2k} = -(n + 1) C_{-2n+1} + (n + 1) C_{-2n} + nC_{-2n-1} - 3 \).

(c) \(\sum_{k=1}^{n} C_{-2k+1} = (n + 1) C_{-2n+1} - (n + 2) C_{-2n} - (n + 1) C_{-2n-1} + 2 \).

3.2. The case \(x = -1 \)

We now consider the case \(x = -1 \) in Theorem 3.1.

Taking \(x = -1, r = s = t = 1 \) in Theorem 3.1 (a), (b) and (c), we obtain the following proposition.

Proposition 3.1.
If \(r = s = t = 1 \) then for \(n \geq 1 \) we have the following formulas:

(a) \(\sum_{k=1}^{n} (-1)^k W_{-k} = \frac{1}{2} ((-1)^n W_{-n-1} + (-1)^n W_{-n-3} - W_2 + 2W_1 - W_0) \).

(b) \(\sum_{k=1}^{n} (-1)^k W_{-2k} = \frac{1}{2} ((-1)^n W_{-2n} - (-1)^n W_{-2n-1} + W_2 - W_1 - 2W_0) \).

(c) \(\sum_{k=1}^{n} (-1)^k W_{-2k+1} = \frac{1}{2} ((-1)^n W_{-2n+1} - (-1)^n W_{-2n} - W_1 + W_0) \).

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci numbers (take \(W_n = T_n \) with \(T_0 = 0, T_1 = 1, T_2 = 1 \)).

Corollary 3.3.
For \(n \geq 1 \), Tribonacci numbers have the following properties.

(a) \(\sum_{k=1}^{n} (-1)^k T_{-k} = \frac{1}{2} ((-1)^n T_{-n-1} + (-1)^n T_{-n-3} + 1) \).

(b) \(\sum_{k=1}^{n} (-1)^k T_{-2k} = \frac{1}{2} ((-1)^n T_{-2n} - T_{-2n-1}) \).

(c) \(\sum_{k=1}^{n} (-1)^k T_{-2k+1} = \frac{1}{2} ((-1)^n T_{-2n+1} - (-1)^n T_{-2n} - 1) \).

Taking \(W_n = K_n \) with \(K_0 = 3, K_1 = 1, K_2 = 3 \) in the above proposition, we have the following corollary which gives sum formulas of Tribonacci-Lucas numbers.

Corollary 3.4.
For \(n \geq 1 \), Tribonacci-Lucas numbers have the following properties:

(a) \(\sum_{k=1}^{n} (-1)^k K_{-k} = \frac{1}{2} ((-1)^n K_{-n-1} + (-1)^n K_{-n-3} - 4) \).

(b) \(\sum_{k=1}^{n} (-1)^k K_{-2k} = \frac{1}{2} ((-1)^n K_{-2n} - (-1)^n K_{-2n-1} - 4) \).

(c) \(\sum_{k=1}^{n} (-1)^k K_{-2k+1} = \frac{1}{2} ((-1)^n K_{-2n+1} - (-1)^n K_{-2n} + 2) \).
Taking $x = -1, r = 2, s = 1, t = 1$ in Theorem 3.1 (a), (b) and (c), we obtain the following proposition.

Proposition 3.2.
If $r = 2, s = 1, t = 1$ then for $n \geq 1$ we have the following formulas:

(a) $\sum_{k=1}^{n} (-1)^k W_{-k} = \frac{1}{2} (2(-1)^n W_{n-1} + (-1)^n W_{n-3} - W_2 + 3W_1 - 2W_0)$.

(b) $\sum_{k=1}^{n} (-1)^k W_{-2k} = \frac{1}{3} ((-1)^n (W_{2n+1} + 4W_{2n} - 2W_{2n-1}) + 2W_2 - 3W_1 - 6W_0)$.

(c) $\sum_{k=1}^{n} (-1)^k W_{-2k+1} = \frac{1}{2} ((-1)^n (2W_{2n+1} - 3W_{2n} - W_{2n-1}) + W_2 - 4W_1 + 2W_0)$.

From the last proposition, we have the following corollary which gives sum formulas of third-order Pell numbers (take $W_n = P_n$ with $P_0 = 0, P_1 = 1, P_2 = 2$).

Corollary 3.5.
For $n \geq 1$, third-order Pell numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^k P_{-k} = \frac{1}{3} (2(-1)^n P_{n-1} + (-1)^n P_{n-3} + 1)$.

(b) $\sum_{k=1}^{n} (-1)^k P_{-2k} = \frac{1}{3} ((-1)^n (P_{2n+1} + 4P_{2n} - 2P_{2n-1} + 1)$.

(c) $\sum_{k=1}^{n} (-1)^k P_{-2k+1} = \frac{1}{2} ((-1)^n (2P_{2n+1} - 3P_{2n} - P_{2n-1}) - 2)$.

Taking $W_n = Q_n$ with $Q_0 = 3, Q_1 = 2, Q_2 = 6$ in the last proposition, we have the following corollary which gives sum formulas of third-order Pell-Lucas numbers.

Corollary 3.6.
For $n \geq 1$, third-order Pell-Lucas numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^k Q_{-k} = \frac{1}{3} (2(-1)^n Q_{n-1} + (-1)^n Q_{n-3} - 6)$.

(b) $\sum_{k=1}^{n} (-1)^k Q_{-2k} = \frac{1}{3} ((-1)^n (Q_{2n+1} + 4Q_{2n} - 2Q_{2n-1} - 12)$.

(c) $\sum_{k=1}^{n} (-1)^k Q_{-2k+1} = \frac{1}{2} ((-1)^n (2Q_{2n+1} - 3Q_{2n} - Q_{2n-1}) + 4)$.

From the last proposition, we have the following corollary which presents sum formulas of third-order modified Pell numbers (take $W_n = E_n$ with $E_0 = 0, E_1 = 1, E_2 = 1$).

Corollary 3.7.
For $n \geq 1$, third-order modified Pell numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^k E_{-k} = \frac{1}{3} (2(-1)^n E_{n-1} + (-1)^n E_{n-3} + 2)$.

(b) $\sum_{k=1}^{n} (-1)^k E_{-2k} = \frac{1}{3} ((-1)^n (E_{2n+1} + 4E_{2n} - 2E_{2n-1} + 1)$.

(c) $\sum_{k=1}^{n} (-1)^k E_{-2k+1} = \frac{1}{2} ((-1)^n (2E_{2n+1} - 3E_{2n} - E_{2n-1}) - 3)$.

Taking $x = -1, r = 0, s = 1, t = 1$ in Theorem 3.1 (a), (b) and (c), we obtain the following proposition.

Proposition 3.3.
If $r = 0, s = 1, t = 1$ then for $n \geq 1$ we have the following formulas:

(a) $\sum_{k=1}^{n} (-1)^k W_{-k} = (-1)^n W_{n-3} - W_2 + W_1$.

(b) $\sum_{k=1}^{n} (-1)^k W_{-2k} = \frac{1}{3} ((-1)^n (W_{2n+1} + 2W_{2n} - 2W_{2n-1} + 2W_2 - W_1 - 4W_0)$.

(c) $\sum_{k=1}^{n} (-1)^k W_{-2k+1} = \frac{1}{2} ((-1)^n (2W_{2n+1} - W_{2n} + W_{2n-1}) - W_2 - 2W_1 + 2W_0)$.

Taking $W_n = P_n$ with $P_0 = 1, P_1 = 1, P_2 = 1$ in the last proposition, we have the following corollary which gives sum formulas of Padovan numbers.
Corollary 3.8.
For $n \geq 1$, Padovan numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^{k} P_{-k} = (-1)^{n} P_{-n-3}$.
(b) $\sum_{k=1}^{n} (-1)^{k} P_{-2k} = \frac{1}{5}((-1)^{n}(P_{-2n+1} + 2P_{-2n} - 2P_{-2n-1}) - 3)$.
(c) $\sum_{k=1}^{n} (-1)^{k} P_{-2k+1} = \frac{1}{5}((-1)^{n}(2P_{-2n+1} - P_{-2n} + P_{-2n-1}) - 1)$.

From the last proposition, we have the following corollary which presents sum formulas of Perrin numbers (take $W_{n} = E_{n}$ with $E_{0} = 3, E = 0, E_{2} = 2$).

Corollary 3.9.
For $n \geq 1$, Perrin numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^{k} E_{-k} = (-1)^{n} E_{-n-3} - 2$.
(b) $\sum_{k=1}^{n} (-1)^{k} E_{-2k} = \frac{1}{5}((-1)^{n}(E_{-2n+1} + 2E_{-2n} - 2E_{-2n-1}) - 8)$.
(c) $\sum_{k=1}^{n} (-1)^{k} E_{-2k+1} = \frac{1}{5}((-1)^{n}(2E_{-2n+1} - E_{-2n} + E_{-2n-1}) + 4)$.

Taking $W_{n} = S_{n}$ with $S_{0} = 0, S_{1} = 1, S_{2} = 1$ in the last proposition, we have the following corollary which gives sum formulas of Padovan-Perrin numbers.

Corollary 3.10.
For $n \geq 1$, Padovan-Perrin numbers have the following properties.

(a) $\sum_{k=1}^{n} (-1)^{k} S_{-k} = (-1)^{n} S_{-n-3} - 1$.
(b) $\sum_{k=1}^{n} (-1)^{k} S_{-2k} = \frac{1}{5}((-1)^{n}(S_{-2n+1} + 2S_{-2n} - 2S_{-2n-1}) + 2)$.
(c) $\sum_{k=1}^{n} (-1)^{k} S_{-2k+1} = \frac{1}{5}((-1)^{n}(2S_{-2n+1} - S_{-2n} + S_{-2n-1}) - 1)$.

If $x = -1, r = 0, s = 2, t = 1$ then $t + r x^{2} + s x - x^{3} = 0$ so we can't use Theorem 3.1 (a) directly. Observe that setting $x = -1, r = 0, s = 2, t = 1$ (i.e. for the generalized Pell-Padovan case) in Theorem 3.1 (a) makes the right hand side of the sum formulas to be an indeterminate form. Application of L'Hôpital rule provides the evaluation of the sum formulas. If $r = 0, s = 2, t = 1$ then we have the following theorem.

Theorem 3.3.
If $r = 0, s = 2, t = 1$ then for $n \geq 1$ we have the following formulas:

(a) $\sum_{k=1}^{n} (-1)^{k} W_{-k} = (-1)^{n} (-n + 3) W_{-n-1} + (n + 4) W_{-n-2} + (n + 3) W_{-n-3} - W_{2} + 2W_{1} - W_{0}$.
(b) $\sum_{k=1}^{n} (-1)^{k} W_{-2k} = \frac{1}{10}((-1)^{n}(W_{-2n+1} + 3W_{-2n} - 3W_{-2n-1}) + 3W_{2} - W_{1} - 9W_{0})$.
(c) $\sum_{k=1}^{n} (-1)^{k} W_{-2k+1} = \frac{1}{10}((-1)^{n}(3W_{-2n+1} - W_{-2n} + W_{-2n-1}) - W_{2} - 3W_{1} + 3W_{0})$.

Proof:

(a) We use Theorem 3.1 (a). If we set $r = 0, s = 2, t = 1$ in Theorem 3.1 (a) then we have

$$\sum_{k=1}^{n} x^{k} W_{-k} = \frac{(2x+1)x^{n+1}W_{-n-1} + (2x+1)x^{n+2}W_{-n-2} + x^{n+3}W_{-n-3} - x^{3}W_{2} - x^{2}W_{1} - x(W^{2} - 2)W_{0}}{x^{3} - x^{2} - 1}.$$

For $x = -1$, the right hand side of the above sum formulas is an indeterminate form. Now, we can use L'Hôpital rule. Then we get

$$\sum_{k=1}^{n} (-1)^{k} W_{-k} = \left. \frac{d}{dx}(h(x)) \right|_{x=-1} = (-1)^{n} (-n + 3) W_{-n-1} + (n + 4) W_{-n-2} + (n + 3) W_{-n-3} - W_{2} + 2W_{1} - W_{0}.$$

where

$$h(x) = (2x + 1)x^{n+1}W_{-n-1} + (2x + 1)x^{n+2}W_{-n-2} + x^{n+3}W_{-n-3} - x^{3}W_{2} - x^{2}W_{1} - x(W^{2} - 2)W_{0}.$$
(b) Taking \(r = 0, s = 2, t = 1 \) in Theorem 3.1 (b) we obtain (b).

(c) Taking \(r = 0, s = 2, t = 1 \) in Theorem 3.1 (c) we obtain (c).

From the last theorem, we have the following corollary which gives sum formula of Pell-Padovan numbers (take \(W_n = R_n \) with \(R_0 = 1, R_1 = 1, R_2 = 1 \)).

Corollary 3.11.
For \(n \geq 1 \), Pell-Padovan numbers have the following property:

- (a) \(\sum_{k=1}^{n} (-1)^k R_{-k} = (-1)^n (-n + 3) R_{-n-1} + (n + 4) R_{-n-2} + (n + 3) R_{-n-3} \).
- (b) \(\sum_{k=1}^{n} (-1)^k R_{-2k} = \frac{1}{10}((-1)^n (R_{-2n+1} + 3R_{-2n} - 3R_{-2n-1}) - 7) \).
- (c) \(\sum_{k=1}^{n} (-1)^k R_{-2k+1} = \frac{1}{10}((-1)^n (3R_{-2n-1} - R_{-2n} + R_{-2n-1}) - 1) \).

Taking \(W_n = C_n \) with \(C_0 = 3, C = 0, C_2 = 2 \) in the last theorem, we have the following corollary which gives sum formulas of Pell-Perrin numbers.

Corollary 3.12.
For \(n \geq 1 \), Pell-Perrin numbers have the following property:

- (a) \(\sum_{k=1}^{n} (-1)^k C_{-k} = (-1)^n (-n + 3) C_{-n-1} + (n + 4) C_{-n-2} + (n + 3) C_{-n-3} = 5 \).
- (b) \(\sum_{k=1}^{n} (-1)^k C_{-2k} = \frac{1}{10}((-1)^n (C_{-2n+1} + 3C_{-2n} - 3C_{-2n-1}) - 21) \).
- (c) \(\sum_{k=1}^{n} (-1)^k C_{-2k+1} = \frac{1}{10}((-1)^n (3C_{-2n+1} - C_{-2n} + C_{-2n-1}) + 7) \).

Taking \(x = -1, r = 0, s = 1, t = 2 \) in Theorem 3.1 we obtain the following proposition.

Proposition 3.4.
If \(r = 0, s = 1, t = 2 \) then for \(n \geq 1 \) we have the following formulas:

- (a) \(\sum_{k=1}^{n} (-1)^k W_{-k} = \frac{1}{2}((-1)^n (W_{-n-1} - W_{-n-2} + 2W_{-n-3}) - W_2 + W_1) \).
- (b) \(\sum_{k=1}^{n} (-1)^k W_{-2k} = \frac{1}{4}((-1)^n (W_{-2n+1} + W_{-2n} - 2W_{-2n-1}) + W_2 - W_1 - 2W_0) \).
- (c) \(\sum_{k=1}^{n} (-1)^k W_{-2k+1} = \frac{1}{4}((-1)^n (W_{-2n+1} - W_{-2n} + 2W_{-2n-1}) - W_2 - W_1 + 2W_0) \).

From the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-Padovan numbers (take \(W_n = Q_n \) with \(Q_0 = 1, Q_1 = 1, Q_2 = 1 \)).

Corollary 3.13.
For \(n \geq 1 \), Jacobsthal-Padovan numbers have the following properties.

- (a) \(\sum_{k=1}^{n} (-1)^k Q_{-k} = \frac{1}{2}((-1)^n (Q_{-n-1} - Q_{-n-2} + 2Q_{-n-3}) \).
- (b) \(\sum_{k=1}^{n} (-1)^k Q_{-2k} = \frac{1}{4}((-1)^n (Q_{-2n+1} + Q_{-2n} - 2Q_{-2n-1}) - 2) \).
- (c) \(\sum_{k=1}^{n} (-1)^k Q_{-2k+1} = \frac{1}{4}((-1)^n (Q_{-2n+1} - Q_{-2n} + 2Q_{-2n-1}) \).

Taking \(W_n = L_n \) with \(L_0 = 3, L_1 = 0, L_2 = 2 \) in the last proposition, we have the following corollary which gives sum formulas of Jacobsthal-Perrin numbers.

Corollary 3.14.
For \(n \geq 1 \), Jacobsthal-Perrin numbers have the following properties.

- (a) \(\sum_{k=1}^{n} (-1)^k L_{-k} = \frac{1}{2}((-1)^n (L_{-n-1} - L_{-n-2} + 2L_{-n-3}) - 2) \).
- (b) \(\sum_{k=1}^{n} (-1)^k L_{-2k} = \frac{1}{4}((-1)^n (L_{-2n+1} + L_{-2n} - 2L_{-2n-1}) - 4) \).
- (c) \(\sum_{k=1}^{n} (-1)^k L_{-2k+1} = \frac{1}{4}((-1)^n (L_{-2n+1} - L_{-2n} + 2L_{-2n-1} + 4) \).
Taking \(x = -1, r = 1, s = 0, t = 1 \) in \textbf{Theorem 3.1}, we obtain the following proposition.

\textbf{Proposition 3.5.}
If \(r = 1, s = 0, t = 1 \) then for \(n \geq 1 \) we have the following formulas:

(a) \(\sum_{k=1}^{n} (-1)^k W_{-k} = \frac{1}{3}((-1)^n (2W_{-n-1} - W_{-n-2} + W_{-n-3}) - W_2 + 2W_1 - 2W_0). \)

(b) \(\sum_{k=1}^{n} (-1)^k W_{-2k} = (-1)^n (W_{-2n} - W_{-2n-1}) + W_2 - W_1 - W_0. \)

(c) \(\sum_{k=1}^{n} (-1)^k W_{-2k+1} = (-1)^n (W_{-2n+1} - W_{-2n}) - W_1 + W_0. \)

From the above proposition, we have the following corollary which gives sum formulas of Narayana numbers (take \(W_n = N_n \) with \(N_0 = 0, N_1 = 1, N_2 = 1 \)).

\textbf{Corollary 3.15.}
For \(n \geq 1 \), Narayana numbers have the following properties.

(a) \(\sum_{k=1}^{n} (-1)^k N_{-k} = \frac{1}{3}((-1)^n (2N_{-n-1} - N_{-n-2} + N_{-n-3}) + 1). \)

(b) \(\sum_{k=1}^{n} (-1)^k N_{-2k} = (-1)^n (N_{-2n} - N_{-2n-1}). \)

(c) \(\sum_{k=1}^{n} (-1)^k N_{-2k+1} = (-1)^n (N_{-2n+1} - N_{-2n}) - 1. \)

Taking \(x = -1, r = 1, s = 1, t = 2 \) in \textbf{Theorem 3.1} (a), (b) and (c), we obtain the following proposition.

\textbf{Proposition 3.6.}
If \(r = 1, s = 1, t = 2 \) then for \(n \geq 1 \) we have the following formulas:

(a) \(\sum_{k=1}^{n} (-1)^k W_{-k} = \frac{1}{3}((-1)^n (2W_{-n-1} - W_{-n-2} + 2W_{-n-3}) - W_2 + 2W_1 - W_0). \)

(b) \(\sum_{k=1}^{n} (-1)^k W_{-2k} = \frac{1}{3}((-1)^n (W_{-2n+1} + W_{-2n} - 4W_{-2n-1}) + 2W_2 - 3W_1 - 3W_0). \)

(c) \(\sum_{k=1}^{n} (-1)^k W_{-2k+1} = \frac{1}{3}((-1)^n (2W_{-2n+1} - 3W_{-2n} + 2W_{-2n-1}) - W_2 - W_1 + 4W_0). \)

Taking \(W_n = J_n \) with \(J_0 = 0, J_1 = 1, J_2 = 1 \) in the last proposition, we have the following corollary which gives sum formulas of third order Jacobsthal numbers.

\textbf{Corollary 3.16.}
For \(n \geq 1 \), third order Jacobsthal numbers have the following properties.

(a) \(\sum_{k=1}^{n} (-1)^k J_{-k} = \frac{1}{3}((-1)^n (2J_{-n-1} - J_{-n-2} + 2J_{-n-3}) + 1). \)

(b) \(\sum_{k=1}^{n} (-1)^k J_{-2k} = \frac{1}{3}((-1)^n (J_{-2n+1} + J_{-2n} - 4J_{-2n-1}) - 1). \)

(c) \(\sum_{k=1}^{n} (-1)^k J_{-2k+1} = \frac{1}{3}((-1)^n (2J_{-2n+1} - 3J_{-2n} + 2J_{-2n-1}) - 2). \)

From the last proposition, we have the following corollary which gives sum formulas of third order Jacobsthal-Lucas numbers (take \(W_n = j_n \) with \(j_0 = 2, j_1 = 1, j_2 = 5 \)).

\textbf{Corollary 3.17.}
For \(n \geq 1 \), third order Jacobsthal-Lucas numbers have the following properties.

(a) \(\sum_{k=1}^{n} (-1)^k j_{-k} = \frac{1}{3}((-1)^n (2j_{-n-1} - j_{-n-2} + 2j_{-n-3}) - 5). \)

(b) \(\sum_{k=1}^{n} (-1)^k j_{-2k} = \frac{1}{3}((-1)^n (j_{-2n+1} + j_{-2n} - 4j_{-2n-1}) + 1). \)

(c) \(\sum_{k=1}^{n} (-1)^k j_{-2k+1} = \frac{1}{3}((-1)^n (2j_{-2n+1} - 3j_{-2n} + 2j_{-2n-1}) + 2). \)
3.3. The Case $x = 1 + i$

We now consider the complex case $x = 1 + i$ in Theorem 3.1. The following theorem presents some summing formulas of generalized Tribonacci numbers with negative subscripts.

Taking $x = 1 + i$, $r = s = t = 1$ in Theorem 3.1 (a), (b) and (c), we obtain the following proposition.

Proposition 3.7.
If $r = s = t = 1$ then for $n \geq 1$ we have the following formulas:

(a) $\sum_{k=1}^{n} (1 + i)^{k} W_{-k} = \frac{1}{4 + 7i}((1 - 5i) W_{-n+1} + 2(1 - 2i) W_{-n+2} + 2(1 - i) W_{-n+3}) + (1 + i) W_{2} - (1 - i) W_{1} - (3 + i) W_{0}$.

(b) $\sum_{k=1}^{n} (1 + i)^{k} W_{-2k} = \frac{1}{4 + 7i}((1 + 3i) W_{-2n+1} + 3(1 + i) W_{-2n} + (1 - i) W_{-2n-1}) - (1 - i) W_{2} + (2 + 2i) W_{1} - (2 + 4i) W_{0}$.

(c) $\sum_{k=1}^{n} (1 + i)^{k} W_{-2k+1} = \frac{1}{4 + 7i}((1 + i)(2W_{-2n+1} - 4i W_{-2n} - (1 + 3i) W_{-2n-1}) + (1 + 3i) W_{2} - (3 + 3i) W_{1} - (1 - i) W_{0}$.

From the above proposition, we have the following corollary which gives sum formulas of Tribonacci numbers (take $W_{n} = T_{n}$ with $T_{0} = 0, T_{1} = 1, T_{2} = 1$).

Corollary 3.18.
For $n \geq 1$, Tribonacci numbers have the following properties.

(a) $\sum_{k=1}^{n} (1 + i)^{k} T_{-k} = \frac{1}{4 + 7i}((1 - 5i) T_{-n+1} + 2(1 - 2i) T_{-n+2} + 2(1 - i) T_{-n+3}) + 2i$.

(b) $\sum_{k=1}^{n} (1 + i)^{k} T_{-2k} = \frac{1}{4 + 7i}((1 + 3i) T_{-2n+1} + 3(1 + i) T_{-2n} + (1 - i) T_{-2n-1}) + 1 + 3i$.

(c) $\sum_{k=1}^{n} (1 + i)^{k} T_{-2k+1} = \frac{1}{4 + 7i}((1 + i)(2T_{-2n+1} - 4i T_{-2n} - (1 + 3i) T_{-2n-1}) - 2)$.

Taking $W_{n} = K_{n}$ with $K_{0} = 3, K_{1} = 1, K_{2} = 3$ in the last proposition, we have the following corollary which gives sum formulas of Tribonacci-Lucas numbers.

Corollary 3.19.
For $n \geq 1$, Tribonacci-Lucas numbers have the following properties:

(a) $\sum_{k=1}^{n} (1 + i)^{k} K_{-k} = \frac{1}{4 + 7i}((1 - 5i) K_{-n+1} + 2(1 - 2i) K_{-n+2} + 2(1 - i) K_{-n+3}) - 7 + i$.

(b) $\sum_{k=1}^{n} (1 + i)^{k} K_{-2k} = \frac{1}{4 + 7i}((1 + 3i) K_{-2n+1} + 3(1 + i) K_{-2n} + (1 - i) K_{-2n-1}) - 7 - 7i$.

(c) $\sum_{k=1}^{n} (1 + i)^{k} K_{-2k+1} = \frac{1}{4 + 7i}((1 + i)(2K_{-2n+1} - 4i K_{-2n} - (1 + 3i) K_{-2n-1}) - 3 + 9i)$.

Corresponding sums of the other third order linear sequences can be calculated similarly when $x = 1 + i$.

References

76

Generalized Tribonacci Numbers: Summing Formulas