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1. Introduction

Most nonlinear phenomena that arise in a wide variety of scientific fields such as solid state physics, plasma
physics, fluid dynamics, mathematical biology and chemical kinetics can be modelled by partial differential equa-
tions (PDEs). This paper is concerned with finding solutions to linear and nonlinear PDEs using the semi analytic
iterative method (SAIM) which was first proposed by Temimi and Ansari [1]. This method has been used for solving
all kinds of linear and nonlinear ordinary differential equations, PDEs and higher-order integrodifferential equations
[1-3]. More recently it has been applied to solution of the KdV equation [4].

In this paper we propose to use the SAIM to solve linear and nonlinear Klein-Gordon equations (KGEs) which occur
in relativistic quantum mechanics and field theory. Consider the KGE

U+ Qlyy + Bu+0F(u) = G(x, 1), 1)
subject to the initial conditions
u(x,0) = f(x), us(x,0) = g(x),

where u = u(x, t) represents the wave displacement at position x and time ¢, F(u) is the nonlinear force such that

F
™ >0, G(x,1), f(x) and g(x) are known analytic functions and «a, §, § are constants. F(u) usually takes many forms

2

which include u, u?, u?, sin(w), sin(u) + sin(2u), sinh(u) + sinh(2u) and e* which characterises the linear KGE, the
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nonlinear KGE with quadratic and cubic nonlinearity, respectively, the sine-Gordon, the double sine-Gordon, the dou-
ble sinh-Gordon and Liouville equations, respectively [5].

The KGE in its linear and nonlinear forms has been the subject of much interest from researchers in studying solitons
and finding soliton solutions. The KGE is a relativistic wave equation, i.e., it is a quantised version of the energy-
momentum relation and has been solved using a variety of methods, e.g., Adomian decomposition method [6], vari-
ational iteration method [7], homotopy perturbation method [8], homotopy analysis transform method [9], reduced
differential transform method [10], multi-quadric quasi-interpolation scheme [5] and perturbation iteration trans-
form method [11], to name but a few.

The outline of the rest of the paper is as follows: Section 2 reviews the semi analytic iterative method. In Section 3
we apply the SAIM to the solution of five test problems in order to show the validity and efficiency of the method and
Section 4 gives some conclusions.

2. Review of the Semi Analytic Iterative Method

The SAIM was used by Yassein [3] to solve higher order integro-differential equations and by Yassein and Aswhad
[4] to solve KdV equations. This method uses an iterative approach together with analytical computations to provide a
solution of a modified reformulated linear problem. The SAIM was inspired by the homotopy analysis method (HAM)
which is a general approximate analytical approach for obtaining convergent series solutions of strongly nonlinear
problems [2]. The SAIM offers several advantages over existing methods such as SAM and ADM. The SAIM is very easy
to implement in that it avoids the calculation of Adomian polynomials for the nonlinear term in the ADM or Lagrange
multipliers in the VIM, thus demanding less computational work [12]. In this paper we propose to use the SAIM to
solve linear and nonlinear KGEs. Consider the KGE in (1) with a = -1, i.e.,

Upr— Uxx + Bu+6F(u) = G(x, 1), 2)
subject to the initial conditions

u(x,0) = f(x), us(x,0) = g(x). 3)
If § = 0, then (2) is linear, otherwise it is nonlinear. Equation (2) can be written as

Lu+ Nu=G(x, 1), (4)

with the condition C (u, %) =0, where Lu = uyy, Nu = —uyy + fu+0F(u) and G(x, t) is the source term. The first step
of the SAIM is to find the initial approximation by solving

. Oug
Llug(x, t)] — G(x, t) = 0 with C(uo,ﬁ) =0. (5)

The next iteration to the solution can be obtained by solving

Lluy (x, )] + Nlug(x, )] — G(x, t) =0 with C (ul, %) =0. (6)

After several iterations we obtain the general form of the SAIM solution which is

_ . Oupt1 _
Llup+1(x, O] + Nlugp(x, 0)] = G(x, 1) = 0 with C| uy41, el 0, (7
from which the general iterative formula for solving the KGE (2) is
Uns1(X, 1) = Ups1(x,0) + L7 [~ Nlup (x, 0] + G(x, 1)], 8)

where L7 = fol fot(-)d sds. Each iteration of the function u, (x, t) effectively represents a complete solution for equa-
tion (4). For the homogeneous KGE, G(x, t) = 0.

3. Numerical Examples

In this section we present some numerical examples illustrating the applicability of the SAIM for solving linear
KGEs as well as nonlinear KGEs with quadratic nonlinearity. All the computations associated with these examples
were performed using a Samsung Series 3 PC with an Intel Celeron CPU 847 at 1.10GHz and 6.0GB internal memory.
A fixed t = 0.1 was used throughout and the figures were constructed using MATLAB R2016a.
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Example 3.1.
Consider the linear homogeneous KGE (Kumar et al. [9]; Khalid et al. [11]):

U — Uxx +u=0, u(x,0), us(x,0)=x, 9)

with exact solution u(x, t) = xsin t.
In order to use the SAIM, we need to rewrite (9) in the form

Lu+Nu=0,
where Lu = u;; and Nu = —uy, + u. The primary problem is to find the initial approximation by solving

L{ug(x, £)] =0, with ug(x,0) =0, up,(x,0) = x. (10)
Using the initial conditions, the solution of the primary problem is

uog(x, t) = u(x,0) + tus(x,0) = xt.
The general recursive relation for solving (9) is

Llup+1(x, D] = =Nlugp(x, 0], with up41(x,0), Uy, (x,0) = x, (11

ie.,

t t
Uns1(X, 1) = Up41(x,0) +j(; j(; [unxx - un] dsds. (12)

Using this recursive relation, we have the approximations

up(x, t) = xt,

6

1 1 1

P —1r - — tG) ,

6 120 720

1 1 1 1

- —t5——t7+—t8),
6 120 5040 40320

and so on. Thus, as n — oo we obtain the solution

13 15 15 .
ulx,t)=x|t——t’+—=>——t"+---| = xsint,
3! 5! 7!

which is the exact solution of the given KGE. The results are the same as those obtained using the perturbation itera-
tion transform method of Khalid et al. [11] and are shown in Table 1. Fig. 1 compares the exact and SAIM solutions.

Table 1. Comparison of approximate and exact solutions from SAIM and PITM for Example 3.1 (£ =0.1)

X u(x, ) usamm(x, 1) uprtm (X, 1)
0 0 0 0
0.2 0.019966683 0.019966683 0.019966683
0.4 0.039933367 0.039933367 0.039933367
0.6 0.059900050 0.059900050 0.059900050
0.8 0.079866733 0.079866733 0.079866733

1.0

0.099833417

0.099833417

0.099833417
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Fig. 1. Comparison of approximate and exact solutions for the linear KGE in Example 3.1 for fixed £ = 0.1

Example 3.2.
Consider the linear homogeneous KGE (Yusufoglu [7]):

U — Uxx = U, U(X,0)=1+sinx, us(x,1)=0
whose exact solution is u(x, £) = sin x + cosh z. Rewriting (13) as

Lu+Nu=0,
where Lu = u;; and Nu = —uy, — u, and the general recursive relation

Llup1(x, D] = —Nluy(x, )], with u,41(x,0) =1 +sinx, U@, (x,0) =0,
we use the iteration

t t
Up+1(%, 1) = Ups1(x,0) +f f [Un,, +un|dsds
0 Jo

to obtain the successive approximations

up(x,t) =1+sinx,

t t 1
u(x,t)=1 +sinx+f f [uo,, +uo|dsds=1+sinx+ Etz’
0 Jo

t pt 1 1
ug(x,t):1+sinx+f f [ulm+u1]dsds=1+sinx+§t2+—t4,
0 Jo

24
. Lt . 1, 1, 1 4
uz(x,t)=1+sinx+ [tz +up]dsds=1+sinx+=1"+—1*+—1°,
0 Jo 2 24 720

and so on, i.e.,

- 1, 1,4
u(lx,t)=sinx+1+—-t"+—t"+ —
2 24 720

6

t°+.--=sinx+cosht,

57

(13)

(14)

(15)

(16)

the exact solution. This is the same result obtained using the Adomian decomposition method and variational iter-
ation method [7] and variational homotopy perturbation method [13]. The results are shown in Table 2 and Fig. 2.



58 On Exact Solutions of Klein-Gordon Equations using the Semi Analytic Iterative Method

Table 2. Comparison of approximate and exact solutions from SAIM and VIM for Example 3.1 (£ =0.1)

X u(x, 1) usamM (X, 1) uym (x, 1)
0 1.005004168 1.005004168 1.005004168
0.2 1.203673499 1.203673499 1.203673499
0.4 1.394422510 1.394422510 1.394422510
0.6 1.569646641 1.569646641 1.569646641
0.8 1.722360259 1.722360259 1.722360259
1.0 1.846475153 1.846475153 1.846475153
19 T T T T T T
Exact D
1.8+ |—=0G SAM -
171 b
16 T
= 15 ]
X
14t j
131 ,
12 i
111 7
1 (_ 1 1 1 1 I 1 I 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Fig. 2. Comparison of approximate and exact solutions for the linear KGE in Example 3.2 for fixed = 0.1

Example 3.3.
Consider the nonlinear nonhomogeneous KGE with homogeneous initial conditions (Kumar et al. [9]; Sarboland and
Aminataei [5]; Khalid et al. [11]):

Upt — Uy + U2 =6x1(x% — 12) + x%2%, u(x,0) =0, us(x,0)=0. (17)

The exact solution is u(x, ) = x33. Here, Lu = u;;, Nu = uy, — u? and h(x, t) = 6xt(x* — t?) + x5¢5. Knowing that the
primary problem Lug = 0, with uy(x,0) = u;(x,0) = 0, has a solution uy(x, £) = 0, equation (17) can be solved using the
general iterative scheme

t pt
Up+1(x, 1) =[ f [tn,, — U2 +6xs(x* — s) + x55%] dsds. (18)
0 Jo

Thus, the first three approximations are
up(x, 1) =0,

t pt
uy (x, 1) =f f [uo,, — uj +6xs(x* — %) + x°s8] dsds,
0 Jo

1 1
=3 - —xt®+ —x8¢8,
56

10
t pt
U (x, 1) =f f [ur,, — uf +6xs(x* — %) + x°s8] dsds,
0 Jo
3 2

3 1 1 1
5,10 212 9,13 | 7.15 1218

=X t3 + — Xt X -
19600 959616

2100 4400 4368
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This third iteration approximates the exact solution u(x, t) = x3 13 which was also obtained by Kumar et al. [9], Sar-

boland and Aminataei [5] and Khalid et al. [11]. Table 3 compares the results from the SAIM and PITM. The exact and
SAIM solutions are compared in Fig. 3.

Table 3. Comparison of approximate and exact solutions from SAIM and PITM for Example 3.5 (£ = 0.1)

X u(x,r) usAIM(x, 1) uPITM(x, t)
0 0 0 0
0.2 0.000008 0.000008 0.000008
0.4 0.000064 0.000064 0.000064
0.6 0.000216 0.000216 0.000216
0.8 0.000512 0.000512 0.000512
1.0 0.001000 0.001000 0.001000
-3
1 X 10 T T T T T T ’)
Exact

091 |-G sAaMm 1

0.8 b

0.7 7

06 b

g 05 b

=

04 b

03 b

02 7

01 r b

0( 1 1 1 1 1 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 09 1

Fig. 3. Comparison of approximate and exact solutions for the nonlinear KGE in Example 3.3 for fixed t = 0.1

Example 3.4.
Consider the following nonlinear homogeneous KGE (Yusufoglu [7]; Yousif and Mahmood [13]):

Upr — Ugy = —u?, u(x,0) =1+sinx, u,(x,0) =0. (19)
We rewrite this equation as
Lu+Nu=0,

with Lu = u;; and Nu = —u,, + u?>. With the initial problem yielding the solution ug(x, t) = 1 + sinx, the first three
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iterations give the approximations
up(x,t) =1+sinx

t pt
uy (x, t):1+sinx+f f [uo,, — ug) dsds,
0 Jo

1
= 1+sinx—Et2(1+3sinx+sin2x),

t ot
Uy (x, t):f f [ulm—uf]dsds,
o Jo

1, 1., 1,( 11, 1 4.
=l+sinx——t"+—t (1-cos(2x))——t“|3——t"+ —1¢"|sinx,
2 12 2 12 10
1 2 11 1 1 1 1
——tz(l——t2+—t4)sin2x+—t4(———t2)sin3x——t6(1+sin4x).
2 3 60 2 \6 10 120

The solution is given by u(x, t) = uy(x, f) which can be compared with the ADM and VIM solutions obtained by Yusu-
foglu [7] and the variational homotopy perturbation method solution by Yousif and Mahmood [13]. These results are
compared in Table 4 and Fig. 4. The exact solution for this problem is not known. However, because the SAIM gives
exact to near-exact solutions it can be taken that the exact solution is approximated by the SAIM solution.

Table 4. Comparison of approximate solutions from SAIM, ADM, VIM and VHPM for Example 3.4 (¢ =0.1)

X UsaM (x, 1) uapMm (x, 1) uym (x, 1) uvipMm (%, 1)

0 0.994999992 0.994999986 0.995000024 0.995002750
0.1 1.093291150 1.093291132 1.093291179 1.093318762
0.2 1.190503066 1.190502988 1.190503087 1.190560110
0.3 1.285668836 1.285668610 1.285668848 1.285759573
0.4 1.377844712 1.377844211 1.377844710 1.377972870
0.5 1.466119236 1.466118315 1.466119219 1.466287819
0.6 1.549621976 1.549620480 1.549621939 1.549833071
0.7 1.627531752 1.627529538 1.627531694 1.627786380
0.8 1.699084324 1.699081273 1.699084244 1.699382315
0.9 1.763579458 1.763575490 1.763579356 1.763919383
1.0 1.820387340 1.820382425 1.820387216 1.820766487
Example 3.5.

Consider the nonlinear nonhomogeneous KGE (Kumar et al. [9]):
Upe — Uy + UP = X212, u(x,0) =0, u,(x,0) = x, (20)
with exact solution u(x, t) = xt. We rewrite this equation as
Lu+Nu=h(x,1t),
where Lu = u;;, Nu=—uy, + u® and h(x, t) = x*t%. Using the SAIM, the iterations are
up(x, t) = xt,

t pt
up (x, t)=xt+f f [uo,, — ug + x*t*] dsds = xt,
0 Jo

Up+1(x, 1) =xt, n=0,

i.e., u(x, r) = xt, the exact solution also obtained by Kumar et al. [9] using the HATM. However, the SAIM achieves
much faster convergence than the HATM. The results are shown in Table 5 and Fig. 5.
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Fig. 4. Comparison of approximate and exact solutions for the nonlinear KGE in Example 3.4 for fixed £ = 0.1
Table 5. Comparison of approximate and exact solutions from SAIM and HATM for Example 3.5 (£ =0.1)
X u(x, r) usaim (x, 1) UHATM (X, ©)
0 0 0 0
0.2 0.02 0.02 0.02
0.4 0.04 0.04 0.04
0.6 0.06 0.06 0.06
0.8 0.08 0.08 0.08
1.0 0.1 0.1 0.1
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Exact
0.09 |-G sAM 7

Fig. 5. Comparison of approximate and exact solutions for the nonlinear KGE in Example 3.5 for fixed £ =0.1

4. Conclusion

In this work the semi analytic iterative method has been applied to the solution of linear and nonlinear KGEs. The
paper has confirmed the suitability of this method for solving these types of PDEs. The method compares favourably
with, and in some cases performs better than, other analytical methods used in the literature such as the VIM, ADM,
PITM, HPM and HATM. Possible future work includes the use of this method for solving initial and boundary value
ODEs and many other linear and nonlinear PDEs.
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