

International Journal of Advances in Applied Mathematics and Mechanics

Differential subordination theorems for new classes of meromorphic multivalent Quasi-Convex functions and some applications

Research Article

Abbas Kareem Wanas*

Department of Mathematics, College of Computer Science and Mathematics, University of Al-Qadisiya, Diwaniya, Iraq

Received 15 December 2014; accepted (in revised version) 09 March 2015

Abstract: In the present paper, we study new classes of meromorphic multivalent quasi-convex functions, we obtain some

subordination theorems for such classes in punctured unit disk. Also we give some applications of firstâĂŞorder

differential subordination.

MSC: 34G10 • 26A33 • 30C45

Keywords: Meromorphic multivalent quasi-convex functions • Differential subordination • Derivative operator.

© 2015 IJAAMM all rights reserved.

1. Introduction

Let $L_p(\lambda)$ denotes the class of all functions f of the form:

$$f(z) = z^{-p} + \sum_{n=0}^{\infty} a_n z^{n-\lambda} \qquad (0 < \lambda < 1, p \in N = \{1, 2, \dots\}),$$
(1)

which are analytic in the punctured unit disk $U = \{z \in C : 0 < |z| < 1\}$.

Also, let $T_n(\lambda)$ denotes the class of all functions f of the form:

$$f(z) = z^{-p} - \sum_{n=0}^{\infty} a_n z^{n-\lambda} \qquad (a_n > 0, 0 < \lambda < 1, p \in \mathbb{N} = \{1, 2, \dots\}),$$
 (2)

which are analytic in the punctured unit disk U.

For two functions f and g analytic in $\Delta = \{z \in C : |z| < 1\}$, we say f is subordinate to g in Δ , denote by $f \prec g$ or $f(z) \prec g(z)(z \in \Delta)$, if there exists a Schwarz function w analytic in U with w(0) = 0 and $|w(z)| < 1(z \in \Delta)$ such that $f(z) = g(w(z)), (z \in \Delta)$. In particular, if the function g is univalent in g, then g if and only if g if and g if an g if an

Let $\psi: C^3 \times U \to C$. and let h be univalent in Δ . Assume that k, ψ are analytic and univalent in Δ if k satisfies the differential subordination

$$\psi(k(z), z k'(z), z^2 k''(z); z) \prec h(z), \tag{3}$$

then k is called a solution of the differential subordination. The univalent function q is called a dominant of the solutions of the differential subordination, or more simply dominant if $k \prec q$ for all k satisfying (3) . A dominant \check{q}

E-mail address: abbas.alshareefi@yahoo.com

^{*} Corresponding author.

that satisfies $\check{q} \prec q$ for all dominants q of (3) is said to be the best dominant of (3). Let L_n be the class of all functions Φ of the form:

$$\Phi(z) = z^{-p} + \sum_{n=0}^{\infty} a_n z^n \qquad (p \in N = \{1, 2, \dots\}),$$

which are analytic in the punctured unit disk U.

Also, let T_n be the class of all functions Φ of the form:

$$\Phi(z) = z^{-p} - \sum_{n=0}^{\infty} a_n z^n \qquad (a_n > 0, p \in N = \{1, 2, \dots\}),$$

which are analytic in the punctured unit disk U.

A function $f \in L_p(\lambda)(T_p(\lambda))$ is meromorphic multivalent starlike if $f(z) \neq 0$ and

$$-Re\left\{\frac{zf'(z)}{f(z)}\right\} > 0, z \in U.$$

Similar, $f \in L_p(\lambda)(T_p(\lambda))$ is meromorphic multivalent convex if $f'(z) \neq 0$ and

$$-Re\left\{1+\frac{zf''(z)}{f'(z)}\right\}>0, z\in U.$$

A function $f \in L_p(\lambda)(T_p(\lambda))$ is called meromorphic multivalent Quasi-convex function if there exists a meromorphic multivalent convex function g such that $g(z) \neq 0$ and

$$-Re\left\{\frac{\left(zf'(z)\right)'}{g'(z)}\right\}>0, z\in U.$$

A function $\Phi \in L_p(T_p)$ is meromorphic multivalent starlike if $\Phi(z) \neq 0$ and

$$-Re\left\{\frac{z\Phi'(z)}{\Phi(z)}\right\} > 0, z \in U.$$

Similar, a function Φ is meromorphic multivalent convex if $\Phi'(z) \neq 0$ and

$$-Re\left\{1+\frac{z\Phi''(z)}{\Phi'(z)}\right\}>0, z\in U.$$

Moreover, a function Φ is called meromorphic multivalent Quasi-convex function if there exists a meromorphic multivalent convex function Ψ such that $\Psi'(z) \neq 0$ and

$$-Re\left\{\frac{(z\Phi'(z))'}{\Psi'(z)}\right\} > 0, z \in U.$$

2. Preliminaries

Definition 2.1 (Srivastava and Owa [11]).

The fractional derivative of order λ , $(0 < \lambda < 1)$ of a function f is defined by

$$D_z^{\lambda} f(z) = \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \int_0^z \frac{f(\varepsilon)}{(z-\varepsilon)^{\lambda}} d\varepsilon, \tag{4}$$

where f is an analytic function in a simply-connected region of the z-plane containing the origin, and the multiplicity of $(z - \varepsilon)^{-\lambda}$ is removed by requiring $\log(z - \varepsilon)$ to be real, when $(z - \varepsilon) > 0$.

Let $a, b, c \in C$ with $c \neq 0, -1, -2, \cdots$. The Gaussian hypergeometric function ${}_2F_1$ (see [12]) is defined by

$$_{2}F_{1}(z) = {}_{2}F_{1}(a,b,c;z) = \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{z^{n}}{n!}$$
 $(z \in \Delta),$

where $(x)_n$ is the Pochhammer symbol defined, in terms of the Gamma function, by

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)} = \begin{cases} 1 & (n=0), \\ x(x+1)\cdots(x+n-1) & (n\in N). \end{cases}$$

Definition 2.2 (Goyal and Goyal [4]).

Let $0 \le \lambda < 1$ and $\mu, \nu \in R$. Then, in terms of familiar (Gauss) hypergeometric function ${}_2F_1$, the generalized fractional derivative operator $J_{0,z}^{\lambda,\mu,\nu}$ of a function f is defined by:

$$J_{0,z}^{\lambda,\mu,\nu}f(z) = \begin{cases} \frac{1}{\Gamma(1-\lambda)} \frac{d}{dz} \left\{ z^{\lambda-\mu} \int_{0}^{z} (z-\varepsilon)^{-\lambda} f(\varepsilon) \cdot {}_{2}F_{1}(\mu-\lambda,-\nu;1-\lambda;1-\frac{\varepsilon}{z}) d\varepsilon \right\}, (0 \le \lambda < 1) \\ \frac{d^{n}}{dz^{n}} J_{0,z}^{\lambda-n,\mu,\nu} f(z) & (n \le \lambda < n+1, n \in N). \end{cases}$$

$$(5)$$

where the function f is analytic in a simply-connected region of the z-plane containing the origin, with the order

$$f(z) = O(|z|^{\epsilon}), \quad (z \to 0)$$

for $\epsilon > \max\{0, \mu - \nu\} - 1$, and the multiplicity of $(z - \epsilon)^{-\lambda}$ is removed by requiring $\log(z - \epsilon) > 0$ to be real, when $(z - \epsilon) > 0$.

By comparing (4) with (5), we find

$$J_{0,z}^{\lambda,\lambda,\nu}f(z) = D_z^{\lambda}f(z), (0 \le \lambda < 1).$$

In terms of gamma function, we have

$$J_{0,z}^{\lambda,\mu,\nu}z^{n} = \frac{\Gamma(n+1)\Gamma(n-\mu+\nu+1)}{\Gamma(n-\mu+1)\Gamma(n-\lambda+\nu+1)}z^{n-\mu}, (0 \le \lambda < 1, \mu, \nu \in R, n > \max\{0, \mu-\nu\}-1). \tag{6}$$

Lemma 2.1 (Miller and Mocanu [8]).

Let q be univalent in the unit disk \triangle and θ and ϕ be analytic in a domain D containing $q(\triangle)$ with $\phi(w) \neq 0$ when $w \in q(\triangle)$. Set $Q(z) = zq'(z)\phi(q(z))$ and $h(z) = \theta(q(z)) + Q(z)$. Suppose that

1- Q(z) is starlike univalent in \triangle , and

$$2\text{-} \operatorname{Re}\left\{\tfrac{zh'(z)}{Q(z)}\right\} > 0 \ for \ z \in \triangle.$$

 $If \theta(k(z)) + zk'(z)\phi(k(z)) \prec \theta(q(z)) + zq'(z)\phi(q(z)), then \ k \prec q \ and \ q \ is the \ best \ dominant.$

Lemma 2.2 (Shanmugam and et al. [9]).

Let q be convex univalent in the unit disk \triangle and ψ and $\gamma \in C$ with $Re\left\{1 + \frac{zq''(z)}{q'(z)} + \frac{\psi}{\gamma}\right\} > 0$. If k is analytic in \triangle and $\psi k(z) + \gamma z k'(z) \prec \psi q(z) + \gamma z q'(z)$, then $k(z) \prec q(z)$ and q is the best dominant.

Such type of study was carried out by various authors for another classes, like, Ibrahim and Darus [5–7], Darus and Ibrahim [3], Singh et al. [10], Billing [2] and Atshan and Wanas [1].

3. Subordination results

In this section, we obtain some sufficient conditions for subordination of analytic functions in the classes $L_p(\lambda)$ and $T_p(\lambda)$.

Theorem 3.1.

Let the function q be univalent in U, $q(z) \neq 0$ and assume that

$$Re\left\{1 + pr + \frac{s(1-t)}{t} \left(q(z)\right)^{s-r} + (r-1)\frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0,\tag{7}$$

where $r, s \in C$, $t \in C \setminus \{0\}$. Suppose that $z(q(z))^{r-1}q'(z)$ is starlike univalent in U. If $f \in L_p(\lambda)$ satisfies the subordination

$$(1-t)\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha s} + t\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha r}\left[p + \alpha\left(\frac{z\left(z^{p}f'(z)\right)''}{\left(z^{p}f'(z)\right)'} - \frac{zg''(z)}{g'(z)}\right)\right]$$

$$\times (1-t)\left(q(z)\right)^{s} + t\left(q(z)\right)^{r}\left(p + \frac{zq'(z)}{q(z)}\right),\tag{8}$$

then

$$\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha} \prec q(z), (z \in U, \alpha \in C \setminus \{0\})$$

and q is the best dominant.

Proof. Define the function *k* by

$$k(z) = \left(-\frac{\left(z^p f'(z)\right)'}{g'(z)}\right)^{\alpha}, \quad z \in U.$$

$$(9)$$

Note that

$$(1-t)(k(z))^{s} + t(k(z))^{r} \left(p + \frac{zk'(z)}{k(z)}\right) = (1-t)\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha s} + t\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha r} \times \left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha r} + t\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{\alpha r} + t\left(-\frac{\left(z^{p}f'(z)\right)'}{g'$$

$$\times \left[p + \alpha \left(\frac{z \left(z^p f'(z) \right)''}{\left(z^p f'(z) \right)'} - \frac{z g''(z)}{g'(z)} \right) \right]. \tag{10}$$

From (8) and (10), we have

$$(1-t)(k(z))^{s} + t(k(z))^{r} \left(p + \frac{zk'(z)}{k(z)}\right) \prec (1-t)\left(q(z)\right)^{s} + t\left(q(z)\right)^{r} \left(p + \frac{zq'(z)}{q(z)}\right). \tag{11}$$

By setting

$$\theta(w) = (1-t)w^{s} + tpw^{r}$$
 and $\phi(w) = tw^{r-1}, w \neq 0$

we see that $\theta(w)$ is analytic in C, $\phi(w)$ is analytic in $C \setminus \{0\}$ and that $\phi(w) \neq 0$, $w \in C \setminus \{0\}$. Also, we get

$$Q(z) = zq'(z)\phi(q(z)) = tz(q(z))^{r-1}q'(z)$$

and

$$h(z) = \theta(q(z)) + Q(z) = (1-t)(q(z))^{s} + t(q(z))^{r} \left(p + \frac{zq'(z)}{q(z)}\right).$$

It is clear that Q(z) is starlike univalent in U,

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} = Re\left\{1 + pr + \frac{s(1-t)}{t}\left(q(z)\right)^{s-r} + (r-1)\frac{zq'(z)}{q(z)} + \frac{zq''(z)}{q'(z)}\right\} > 0. \tag{12}$$

From (7) and (12), we have

$$Re\left\{\frac{zh'(z)}{Q(z)}\right\} > 0.$$

Therefore, by Lemma 2.1, we get $k(z) \prec q(z)$. By using (9), we obtain the result.

By fixing $\alpha = p = 1$ in Theorem 3.1, we obtain the following corollary:

Corollary 3.1.

Let the function q be univalent in U, $q(z) \neq 0$ and assume that

$$Re\left\{1+pr+\frac{s(1-t)}{t}(q(z))^{s-r}+(r-1)\frac{zq^{'}(z)}{q(z)}+\frac{zq^{''}(z)}{q^{'}(z)}\right\}>0,$$

where $r, s \in C$, $t \in C \setminus \{0\}$. Suppose that $z(q(z))^{r-1}q'(z)$ is starlike univalent in U. If $f \in L_p(\lambda)$ satisfies the subordination

$$(1-t)\Biggl(-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)}\Biggr)^{s}+t\Biggl(-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)}\Biggr)^{r}\left[1+\alpha\Biggl(\frac{z\bigl(zf^{'}(z)\bigr)^{''}}{\bigl(zf^{'}(z)\bigr)^{'}}-\frac{zg^{''}(z)}{g^{'}(z)}\Biggr)\right]$$

$$\prec (1-t)(q(z))^s + t(q(z))^r \left(1 + \frac{zq'(z)}{q(z)}\right),$$

then

$$-\frac{\left(zf'(z)\right)'}{g'(z)} \prec q(z)$$

and q is the best dominant.

By taking $q(z) = -\left(\frac{1+Az}{1+Bz}\right)$ $(-1 \le B < A \le 1)$ in Corollary 3.1, we obtain the following corollary:

Corollary 3.2.

Let the function q be convex univalent in U, and assume that

$$Re\left\{1 + pr + \frac{s(1-t)}{t}\left(-\left(\frac{1+Az}{1+Bz}\right)\right)^{s-r} + \frac{1+r(A-B)z - ABz^2}{(1+Az)(1+Bz)}\right\} > 0,$$

where $r, s \in C$, $t \in C \setminus \{0\}$. If $f \in L_n(\lambda)$ satisfies the subordination

$$(1-t)\Biggl(-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)}\Biggr)^{s}+t\Biggl(-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)}\Biggr)^{r}\left[1+\alpha\Biggl(\frac{z\bigl(zf^{'}(z)\bigr)^{''}}{\bigl(zf^{'}(z)\bigr)^{'}}-\frac{zg^{''}(z)}{g^{'}(z)}\Biggr)\right]$$

$$\prec (1-t) \left(-\left(\frac{1+Az}{1+Bz}\right) \right)^s + t \left(-\left(\frac{1+Az}{1+Bz}\right) \right)^r \left(\frac{1+2Az+ABz^2}{(1+Az)(1+Bz)} \right),$$

then

$$-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)} \prec -\left(\frac{1+Az}{1+Bz}\right), (-1 \leq B < A \leq 1)$$

and $q(z) = -\left(\frac{1+Az}{1+Bz}\right)$ is the best dominant.

Theorem 3.2.

Let the function q be convex univalent in U, $q'(z) \neq 0$ and assume that

$$Re\left\{1 + \frac{zq''(z)}{q'(z)} + \frac{1}{\gamma}\right\} > 0,\tag{13}$$

where $\gamma \in C \setminus \{0\}$.

Suppose that $\left(-\frac{\left(z^pf'(z)\right)'}{g'(z)}\right)^{\alpha}$ is analytic in U. If $f \in T_p(\lambda)$ satisfies the subordination

$$\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{a} + \alpha\gamma\left(-\frac{\left(z^{p}f'(z)\right)'}{g'(z)}\right)^{a}\left(\frac{z(z^{p}f'(z))''}{\left(z^{p}f'(z)\right)'} - \frac{zg''(z)}{g'(z)}\right) \prec q(z) + \gamma zq'(z), \tag{14}$$

then

$$\left(-\frac{\left(z^{p}f^{'}(z)\right)^{'}}{g^{'}(z)}\right)^{\alpha} \prec q(z), (z \in U, \alpha \in C \setminus \{0\})$$

and q is the best dominant.

Proof. Define the function k by

$$k(z) = \left(-\frac{\left(z^p f'(z)\right)'}{g'(z)}\right)^{\alpha}, \quad z \in U.$$
(15)

Note that

$$k(z) + \gamma z k'(z) = \left(-\frac{\left(z^{p} f'(z)\right)'}{g'(z)} \right)^{\alpha} + \alpha \gamma \left(-\frac{\left(z^{p} f'(z)\right)'}{g'(z)} \right)^{\alpha} \left(\frac{z \left(z^{p} f'(z)\right)''}{\left(z^{p} f'(z)\right)'} - \frac{z g''(z)}{g'(z)} \right). \tag{16}$$

From (14) and (16), we have

$$k(z) + \gamma z k'(z) < q(z) + \gamma z q'(z). \tag{17}$$

By setting $\psi = 1$ in Lemma 2.2, we get $k(z) \prec q(z)$. By using (15), we obtain the result.

By fixing $\alpha = p = 1$ in Theorem 3.2, we obtain the following corollary:

Corollary 3.3.

Let the function q be convex univalent in U, $q'(z) \neq 0$ and assume that (3.2). Suppose that $-\frac{\left(z^p f'(z)\right)'}{g'(z)}$ is analytic in U. If $f \in T_p(\lambda)$ satisfies the subordination

$$-\frac{\left(zf^{'}(z)\right)'}{g^{'}(z)} + \gamma \left(-\frac{\left(zf^{'}(z)\right)'}{g^{'}(z)}\right) \left(\frac{z\left(zf^{'}(z)\right)''}{\left(zf^{'}(z)\right)'} - \frac{zg^{''}(z)}{g^{'}(z)}\right) \prec q(z) + \gamma zq^{'}(z),$$

then

$$-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)} \prec q(z), \quad (z \in U).$$

and q is the best dominant.

By taking $q(z) = -\left(\frac{1+z}{1-z}\right)$ in Corollary 3.3, we obtain the following corollary:

Corollary 3.4.

Let the function q be convex univalent in U and assume that

$$Re\left\{\frac{z^2+1}{(1-z)(1+z)}+\frac{1}{\gamma}\right\}>0.$$

If $f \in T_n(\lambda)$ satisfies the subordination

$$-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)} + \gamma \left(-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)}\right) \left(\frac{z\left(zf^{'}(z)\right)^{''}}{\left(zf^{'}(z)\right)^{'}} - \frac{zg^{''}(z)}{g^{'}(z)}\right) \prec -\left(\frac{1+z}{1-z}\right) - \frac{2\gamma z}{(1-z)(1+z)},$$

then

$$-\frac{\left(zf^{'}(z)\right)^{'}}{g^{'}(z)} \prec -\left(\frac{1+z}{1-z}\right), \quad (z \in U)$$

and q is the best dominant.

4. Applications of fractional derivative operator

In this section, we introduce some applications of section 3 containing fractional derivative operators. Assume that

$$\Phi(z) = \sum_{n=0}^{\infty} \sigma_n z^n.$$

By Definition 2.1, we have

$$D_z^{\lambda}\Phi(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+1)}{\Gamma(n+1-\lambda)} \sigma_n z^{n-\lambda} = \sum_{n=0}^{\infty} a_n z^{n-\lambda},$$

where

$$a_n = \frac{\Gamma(n+1)}{\Gamma(n+1-\lambda)} \sigma_n, \quad n = 0, 1, 2, \dots$$

Thus $z^{-p} + D_z^{\lambda}\Phi(z) \in L_p(\lambda)$ and $z^{-p} - D_z^{\lambda}\Phi(z) \in T_p(\lambda)$ ($\sigma_n \ge 0$), then we have the following results:

Theorem 4.1.

Let the assumptions of Theorem 3.1 hold. Then

$$\left[-\frac{\left(z^{p}\left(z^{-p}+D_{z}^{\lambda}\Phi(z)\right)^{'}\right)^{'}}{\left(z^{-p}+D_{z}^{\lambda}\Psi(z)\right)^{'}}\right]^{\alpha} \prec q(z), \ z \in U$$

and q is the best dominant.

Proof. Define the function *f* by

$$f(z) = z^{-p} + D_z^{\lambda} \Phi(z) \quad (z \in U),$$

it can easily observed that $f \in L_p(\lambda)$. Thus by using Theorem 3.1, we obtain the result.

Theorem 4.2.

Let the assumptions of Theorem 3.2 hold. Then

$$\left[-\frac{\left(z^{p}\left(z^{-p}-D_{z}^{\lambda}\Phi(z)\right)^{'}\right)^{'}}{\left(z^{-p}-D_{z}^{\lambda}\Psi(z)\right)^{'}}\right]^{\alpha} \prec q(z), \ z \in U$$

and q is the best dominant.

Proof. Define the function *f* by

$$f(z) = z^{-p} - D_z^{\lambda} \Phi(z) \quad (z \in U),$$

it can easily observed that $f \in T_p(\lambda)$. Thus by using Theorem 3.2 , we obtain the result.

By using (6), we have

$$J_{0,z}^{\lambda,\mu,\nu}\Phi(z) = \sum_{n=0}^{\infty} \frac{\Gamma(n+1)\Gamma(n-\mu+\nu+1)}{\Gamma(n-\mu+1)\Gamma(n-\lambda+\nu+1)} \sigma_n z^{n-\mu} = \sum_{n=0}^{\infty} a_n z^{n-\mu},$$

where

$$a_n = \frac{\Gamma(n+1)\Gamma(n-\mu+\nu+1)}{\Gamma(n-\mu+1)\Gamma(n-\lambda+\nu+1)}\sigma_n, \ n = 0, 1, 2, \dots$$

Let $\mu = \lambda$. Then $z^{-p} + J_{0,z}^{\lambda,\mu,\nu}\Phi(z) \in L_p(\lambda)$ and $z^{-p} - J_{0,z}^{\lambda,\mu,\nu}\Phi(z) \in T_p(\lambda)$ ($\sigma_n \ge 0$), then we have the following results:

Theorem 4.3.

Let the assumptions of Theorem 3.1 hold. Then

$$\left[-\frac{\left(z^{p}\left(z^{-p}+J_{0,z}^{\lambda,\mu,\nu}\Phi(z)\right)'\right)'}{\left(z^{-p}+J_{0,z}^{\lambda,\mu,\nu}\Psi(z)\right)'}\right]^{\alpha} \prec q(z), \ z \in U$$

and q is the best dominant.

Proof. Define the function *f* by

$$f(z) = z^{-p} + J_{0,z}^{\lambda,\mu,\nu} \Phi(z) \ (z \in U),$$

it can easily observed that $f \in L_p(\lambda)$. Thus by using Theorem 3.1 , we obtain the result.

Theorem 4.4.

Let the assumptions of Theorem 3.2 hold. Then

$$\left[-\frac{\left(z^{p}\left(z^{-p} - J_{0,z}^{\lambda,\mu,\nu}\Phi(z)\right)'\right)'}{\left(z^{-p} - J_{0,z}^{\lambda,\mu,\nu}\Psi(z)\right)'} \right]^{\alpha} \prec q(z), \ z \in U$$

and q is the best dominant.

Proof. Define the function *f* by

$$f(z) = z^{-p} - J_{0,z}^{\lambda,\mu,\nu} \Phi(z) \ (z \in U),$$

it can easily observed that $f \in T_p(\lambda)$. Thus by using Theorem 3.2 , we obtain the result.

References

- [1] W. G. Atshan, A. K. Wanas, Differential subordination theorems of analytic functions and some applications, American Journal of Scientific Research 49(2012) 91-101.
- [2] B. B. Billing, A subordination theorem with applications to analytic functions, Bulletin of Mathematical Analysis and Applications 3(3) (2011) 1-8.
- [3] M. Darus, R. W. Ibrahim, Coefficient inequalities for a new class of univalent functions, Lobachevskii J. Math. 29(4) (2008) 221âĂŞ229.
- [4] S. P. Goyal, R. Goyal, On a class of multivalent functions defined by a generalized Ruscheweyh derivatives involving a general fractional derivative operator, J. Indian Acad. Math. 27(2) (2005) 439-456.
- [5] R. W. Ibrahim, M. Darus, On subordination theorems for new classes of normalize analytic functions, Appl. Math. Sci. 2(56) (2008) 2785åÅS2794.
- [6] R. W. Ibrahim, M. Darus, Subordination results for new classes of meromorphic functions, American Journal of Scientific Research 2(2009) 31-36.
- [7] R. W. Ibrahim, M. Darus, Differential subordination for classes of normalized analytic functions, General Mathematics 18(3) (2010) 41-50.
- [8] S. S. Miller, P. T. Mocanu, Differential Subordinations: Theory and Applications, Series on Monographs and Textbooks in Pure and Applied Mathematics Vol. 225, Marcel Dekker Inc., New York and Basel, 2000.
- [9] T. N. Shanmugam, V. Ravichangran, S. Sivasubramanian, Differential sandwich theorems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl. 3(1) (2006) 1-11.
- [10] S. Singh, S. Gupta, S. Singh, Differential subordination and superordination theorems for certain analytic functions 1, General Mathematics 18(2) (2010) 143-159.
- [11] H. M. Srivastava, S. Owa, Univalent Functions, Fractional Calculus, and Their Applications, Halsted Press, John Wiley and Sons, New York, Chichester, Brisbane, and Toronto, 1989.
- [12] H. M. Srivastava, S. Owa (Eds.), Current Topics in Analytic Function Theory, World Scientific Publishing Company, Singapore, New Jersey, London and Hong Kong, 1992.